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Abstract

We identified a novel gene encoding a Bombyx mori thymosin (BmTHY) protein from a cDNA library of silkworm pupae,
which has an open reading frame (ORF) of 399 bp encoding 132 amino acids. It was found by bioinformatics that BmTHY
gene consisted of three exons and two introns and BmTHY was highly homologous to thymosin betas (Tb). BmTHY has a
conserved motif LKHTET with only one amino acid difference from LKKTET, which is involved in Tb binding to actin. A His-
tagged BmTHY fusion protein (rBmTHY) with a molecular weight of approximately 18.4 kDa was expressed and purified to
homogeneity. The purified fusion protein was used to produce anti-rBmTHY polyclonal antibodies in a New Zealand rabbit.
Subcellular localization revealed that BmTHY can be found in both Bm5 cell (a silkworm ovary cell line) nucleus and
cytoplasm but is primarily located in the nucleus. Western blotting and real-time RT-PCR showed that during silkworm
developmental stages, BmTHY expression levels are highest in moth, followed by instar larvae, and are lowest in pupa and
egg. BmTHY mRNA was universally distributed in most of fifth-instar larvae tissues (except testis). However, BmTHY was
expressed in the head, ovary and epidermis during the larvae stage. BmTHY formed complexes with actin monomer,
inhibited actin polymerization and cross-linked to actin. All the results indicated BmTHY might be an actin-sequestering
protein and participate in silkworm development.
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Introduction

Thymosins, one family of thymic hormones, play a crucial role

in the development and maintenance of a competent immune

system, especially in the differentiation and maturation of T-

lymphocytes [1,2,3,4]. Thymosins (THY) were originally isolated

and purified from calf thymus by Goldstein and White in 1966 [5].

Thymosins belong to a superfamily of small molecular proteins

and are divided into 3 main groups (a, b, and c) based on their

isoelectric points [6,7]. Thymosins exist in many different animal

species and are highly conserved and contain one or two THY

domains comprised by 37 amino acids. Many studies on the

structure and function of thymosin isoforms isolated from

vertebrates, such as thymosin alfas (Ta) and Tb, have been

reported. Some of them have been developed into pharmacolog-

ical agents and widely used in clinical. For example,thymosin-a1

(Ta1),a 28-amino acid polypeptide, is a potent inducer of helper

T-cell activity and lymphokine production [8,9,10] and is used

clinically in certain immunological diseases [11,12,13]. Both

thymosin b4 (Tb4) and b10 are G-actin binding proteins [14,15]

and in this manner are believed to play important roles in

maintaining cytoskeletal functions, such as cell locomotion and cell

spreading, for which actin is a crucial component [16]. Tb4 also

acts as an anti-inflammatory agent, promotes corneal wound

healing, and is important in tumor metastasis [17,18].

However, few studies on thymosin from lepidoptera animal

have been reported. There are only 18 related proteins which

contain THY conservative structural domain registered in NCBI

[19,20]. These proteins exist in Drosophila melanogaster, Aedes aegypti,

Bombyx mori and other species, and are highly homologous to Tb.

For instance, the homology of the THY related protein from

Drosophila to Tb is 70%. Both of them have a WASP

homeodomain [21]. Up to date, no physical or chemical

information on the thymosin protein from silkworm is available.

In this study, we identified a silkworm thymosin complementary

DNA (cDNA; BmTHY) from a pupal cDNA library (GenBank

Accession: FJ602790). Using bioinformatics analysis, we have

determined the evolutionary relationship and degree of conserva-

tion between BmTHY and other thymosin orthologs. We have

also used immunohistochemistry, real-time RT-PCR, and West-

ern blotting analyses to determine its subcellular localization in

Bm5 cells (a silkworm ovary cell line), expression patterns in

different silkworm developmental stages, and tissue distribution in

the fifth instar larvae. Actin sequestering properties of BmTHY

were evaluated by nondenaturing gel electrophoresis (NPAGE),

sedimentation of polymerization and cross-linking of BmTHY to
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G-actin.The results provide a solid foundation on which to base

further research on the developmental and functional roles played

by thymosin in silkworm.

Materials and Methods

Materials
The Escherichia coli strains TG1 and BL21(DE3) were grown at

37uC in LB medium, pH 7.5 (5 g of yeast extract, 10 g of tryptone

and 10 g of NaCl per liter). Bm5 cells [22], a silkworm ovary cell

line, were cultured in TC-100 medium (Sigma) supplemented with

10% (v/v) fetal calf serum (FCS, Gibco BRL) at 27uC. The New

Zealand white rabbits and BALB/c mice were provided by

Zhejiang Academy of Medical Sciences. The animal experiments

in this project were conducted according to a protocol approved

by the Institutional Animal Care and Use Committee (IACUC) of

Institute of Laboratory Animal Sciences, Chinese Academy of

Medical Science (The approved No.: N-07-6001). The protocol

conforms to internationally accepted guidelines of the animal

welfare. The Bombyx mori strain used in this study is Qingson-

g6Haoyue. Silkworms were reared on mulberry leaves under

standard conditions. The head, fatty body, intestine, Malpighian

tubules, silk gland, skin, trachea and ovary from the fifth instar

larvae were dissected, frozen immediately in liquid nitrogen, and

stored at 280uC. Nascent eggs, day-5 fifth instar larvae with

mulberry leaves removed from the gut, pupae (3 days after

pupation), and moths were also frozen in liquid nitrogen and

stored at 280uC. Rabbit skeletal muscle actin (.95% pure) and

G-actin buffer were obtained from Cytoskeleton Inc.USA. Tb4

was purchased from Prospec Ltd. Reagents for polyacrylamide

electrophoresis, such as acrylamide, bis-acrylamide, tricine,

ammoniumpersulfate, and TEMED were purchased from Sigma

(USA).

Bioinformatics Analysis
A cDNA sequence encoding the BmTHY protein was obtained

from a cDNA library of the silkworm pupa constructed in our

laboratory [23]. All new data about the cDNA has been deposited

in GenBank (GenBank Accession No. FJ602790).The character-

istics of the gene were analyzed using DNAstar software

(DNASTAR, Inc., USA). Analysis of the similarity of nucleotide

and protein sequences was performed using the BLAST algorithm

from NCBI (http://www.ncbi.nlm.nih.gov/). The orthologous

sequences used for multiple sequence alignments were obtained

from NCBI. Multiple sequence alignment was performed with the

biosoftware BioEdit (Tom Hall, http://www.mbio.ncsu.edu/

BioEdit/bioedit.html). The three-dimensional models for BmTHY

protein was built using 3D-JIGSAW software (http://bmm.

cancerresearchuk.org/,3djigsaw/).The characteristics of the pro-

tein domain and its function were analysed using ExPASy software

(http://us. expasy. org/tools)

Construction of Recombinant Plasmids
We used pHelix-BmTHY constructed by our laboratory [23] as

a template to amplify BmTHY ORF by PCR, with primers

complementary to the flanking sequences of the ORF with EcoRI

and XhoI recognition sites as follows:

P1:59- CGCGAATTCATGGCCTGCTCC -39;

P2:59- CCGCTCGAGTCAAGCTGATTTCTCTT -39;

The PCR products were purified after electrophoresis on 1%

agarose gel using the PCR Rapid Purification Kit (BioDev-Tech,

China).After digestion with EcoRI and XhoI, the purified PCR

products were subcloned into the expression vector pET-28a

(Novagen, Darmstadt, Germany) using T4 DNA ligase (Promega,

USA) and transformed into E. coli TG1 cells (maintained in our

laboratory) for screening purposes. A positive colony with BmTHY

gene in the plasmid was identified by double digestion of the

plasmid, followed by analysis on 1% agarose gel electrophoresis

and was subsequently verified by DNA sequencing.

Expression, Purification, and Antibody Preparation of
Recombinant BmTHY

The recombinant plasmid pET-28a- BmTHY was transformed

into E. coli BL21 (DE3) competent cells, which were incubated at

37uC in liquid LB culture media containing 50 mg/mL kanamy-

cin. Expression of the Histag fusion protein was induced at an

A600 of 0.6 followed by adding IPTG (isopropylthio-b-D-

galactoside) to a final concentration of 1 mM before another 5-

hour incubation. A 5 mL Ni2+-SephadexTM G-25 Superfine

column (Amersham) was used to purify the expressed recombinant

BmTHY (rBmTHY) protein, as instructed by the manufacturer.

The concentrated rBmTHY was further purified by reversed-

phase FPLC with acetonitrile linear gradient from 5 to 95% in

20 min with the flow rate of 1.7 ml/min and analyzed by the Q

Trap LC/MS/MS System (Applied Biosystems, Foster City, CA)

to determine its molecular weight. The presence and purity of

rBmTHY were evaluated by 12% SDS-PAGE and quantified by

the Bradford method [24].

Polyclonal antibody was prepared by immunizing New Zealand

White rabbits using purified rBmTHY as antigen [25]. Subse-

quently, 100 mg of rBmTHY (equal to about 200 ml of the

antigen/adjuvant mix) was injected into each of 8–10 subcutane-

ous sites at the back of the rabbit. In total, 4 times immunizations

were done at one-week intervals. For the first time, Freund’s

Complete Adjuvant was used, and for the other three times,

Freund’s Incomplete Adjuvant was used. Serum was collected 10

days after the last boost, and was purified using HiTrap Protein A

HP (Amersham, Hemel Hempstead, UK) following the manufac-

turer’s instructions. Prior to being loaded, 1 ml HiTrap Protein A

HP column was equilibrated with Binding buffer (20 mM sodium

phosphate, pH 7.0), and then loaded with anti-serum and washed

with 5 column volumes of Binding buffer; anti-BmTHY IgG was

eluted with Elution buffer (0.1 M glycine-HCl, pH 3.0) to yield the

final fractions. After filtering the IgG through Ultracel PLCHK

(Millipore, Billerica,MA), the purified anti- BmTHY IgG was

stored in 50% glycerol at 280uC.Indirect ELISA was used to

detect the titer of antibody, with negative rabbit sera as control.

Western blotting was used to evaluate the specificity of polyclonal

antibodies with rBmTHY.

Protein Extraction
Eggs, the fifth instar larvae, pupae, moths and tissues isolated

from the fifth instar larvae were collected and ground to powder in

liquid nitrogen followed by suspending in buffer M (50 mM Tris-

Cl, pH 8.0; 0.15 M NaCl; 5 mM EDTA; 0.5% NP-40; 1 mM

dithiothreitol; 5 mg/mL sodium deoxycholate;100 mg/L PMSF;

5 mg/mL Aprotin (Sigma)), then incubating for 30 minutes on ice.

The homogenates were centrifuged at 12 0006g for 15 minutes at

4uC. Protein concentrations were quantitated by the method of

Bradford, in which BSA was used as the protein standard [24].

Western Blotting
Protein samples were equalized and electrophoresed by 10%

SDS-PAGE and electrotransfered to polyvinylidene difluoride

(PVDF) membranes by semi-dry method with constant current of

2 mA/cm2 for 90 min. The membranes were blocked with 5%

skim milk in TBS (pH 7.5). Following incubation with purified
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anti-BmTHY IgG, membranes were washed and incubated with

HRP-labeled anti-rabbit IgG (DingGuo, Beijing, China). Mem-

branes were washed three times with TBS, then washed three

times with ddH2O, and scanned using the Odyssey Infrared

Imaging System (LI-COR, Lincoln, NE) at 700 nm.

RNA Extraction and Real-Time RT-PCR
Total RNA was extracted from different developmental stages

of silkworm and tissues of the fifth instar larvae using Trizol

reagent (Invitrogen) according to the manufacturer’s instructions.

The purity of extracted RNA was determined by UV spectropho-

tometer. Ratios of UV 260/280 were between 1.8 and 2.1 for all

RNA samples analyzed. The concentration of total RNA was

determined by measuring the absorbance at 260 nm using

SPECTRA max PLUS384 (Molecular Devices). RT-PCR primers

were designed using the Primer Select program of the DNA STAR

software.

A pair of primers was also designed to amplify 18S ribosomal

RNA (rRNA), which was used as an internal control. The primer

pairs were as follows:

-(BmTHY) Forward primer, 59-TGACACTCCCTCCCTG-

AAAGA-39, Reverse 59-CTCCTGGGTCTTCTCAGTGGC-39;

-(18S rRNA) Forward primer,59-CGATCCGCCGACGTTA-

CTACA-39, Reverse 59-GTCCGGGCCTGGTGAGATTT-39.

SuperScript III Platinum SYBR Green One-Step RT-PCR Kit

with ROX (Invitrogen) was used. 15 mL reaction mixtures

contained 7.5 mL 26 SYBR-Green Reaction mixed with Rox,

0.3 mL SuperScript III RT/platinumTaq mix, 1.2 mL 1 mM

forward and reverse primers, respectively, 1 mL total RNA and

3.8 mL DEPC-water. RT-PCR was performed by ABI Prism 7300

Sequence Detection System (Applied Bio systems) under the

following conditions: an initial cycle at 50uC for 3 minutes, one

cycle at 95uC for 5 minutes, followed by 40 cycles of 95uC for

15 seconds, 59uC for 15 seconds, and 72uC for 30 seconds. Each

reaction was performed in triplicate in 96-well plates, with the

endogenous 18S rRNA control. Dissociation curves were per-

formed to check for the presence of nonspecific dsDNA SYBR

Green hybrids, such as primer dimers. Data analysis was

performed using ABI Prism 7300 SDS Software V1.3.1 (Applied

Biosystems, USA). Expression levels of the target genes were

normalized against the expression level of the 18S rRNA gene.

The relative expression level was calculated using 22DDCT, where

DCT = CT(target gene)2CT(18S rRNA), DDCT =DCT(target gene)

2DCT(maximum) [32].

Subcellular Localization of BmTHY by
Immunofluorescence

Bm5 cells were seeded in dishes for confocal microscopy, and

cultured overnight, washed for 10 min three times in PBS, and

fixed (PBS, pH 7.2, 4% poly-formaldehyde, 0.1% Triton X-100)

at room temperature for 15 min. The fixed cells were blocked with

3% BSA at room temperature for 2 h followed by three 10-min

washes in PBST (0.05% Tween-20 in PBS). Cells were then

incubated with purified anti-rBmTHY polyclonal antibody

(diluted 1:200 in blocking buffer) at 4uC overnight; cells were

simultaneously incubated with negative serum as a control. The

negative serum was obtained from the rabbit before immunizing

with antigen. After three 10-min washes in PBST, cells were

incubated with Cy3-labeled goat anti-rabbit IgG (diluted 1:500;

Promega) at 37uC for 2 h and were then washed twice for

10 min in PBST. Cells were then incubated with 49-6-diamidino-

2-phenylindole (1 g/ml in PBS) at room temperature for

10 min. Cells were washed three times with PBST (10 min each),

and analyzed with a Nikon ECLIPSE TE2000-E Confocal

Microscope (Nikon, Tokyo, Japan) with image analysis software

EZ-C1.

Binding of BmTHY to Actin in Nondenaturing Gels
Nondenaturing polyacrylamide gel electrophoresis (NPAGE)

was performed in gels containing 25 mM Tris, 194 mM glycine,

0.2 mM ATP, 0.1% Triton X-100, 7.5% acrylamide, 0.2% N,N9-

methylenebisacrylamide, 0.03% N,N,N9JV9-tetramethylethylene-

diamine, and 0.1% ammonium persulfate. The electrode buffer

contained 25 mM Tris, 194 mM glycine, and 0.2 mM ATP. Gels

were prerun at 20–25 V/cm for 1 h in a 4uC coldbox; the

electrode buffer was poured off and replaced, and samples were

then loaded and run at 20–25 V/cm at 4uC [26].

0.6–1.2 mg of Tb4 or BmTHY were mixed with 2.0 mg of rabbit

muscle actin monomers in 12 mLof G-buffer containing 0.5 mM

ATP, 0.5 mM b-mercaptoethanol,0.2 mM KCl, 10 mM Tris-

HC1, pH 7.5. After a 10-min incubation at room temperature,

3 mL of glycerol with a trace of bromphenol blue was added, and

the samples were electrophoresed at 4uC at 20–25 V/cm until the

bromphenol blue dye front ran out.The proteins were stained with

Coomassie Blue to get electrophoresis pattern.

Sedimentation Assays for Actin Polymerization
Sedimentation Assays for Actin Polymerization was performed

using a Beckman Airfuge with fixed-angle rotor as previously

described [27]. G-actin was added as a 11.5 mM solution in G-

buffer (0.2 mM ATP, 0.2 mM CaCl2,0.2 mM dithiothreitol,

0.2 mM NaN3, 3 mM Tris-HCl, pH 7.6); Tb4 or BmTHY were

added as 10 mM solutions in KCl buffer (137 mM KCl, 12 mM

NaHC03, 5 mM MgCl2, 10 mM HEPES, 0.36 mM NaH2P04,

pH 7.1). For each assay, 100 mL of actin was mixed with the

specified volume of peptide solution, and the final volume was

brought to 200 mL with KCl buffer. After mixing, the actin was

allowed to polymerize for 15 min at 25uC before centrifuging at

100,0006 g for 30 min. The supernatants were pipetted off, and

each pellet was solubilized in 50 mL of SDS sample buffer. Equal

aliquots were analyzed by SDS-PAGE on a 10% gel.

Cross-linking of BmTHY to G-actin
Cross-linking of BmTHY or Tb4 to G-actin was analyzed

according to the method described by Safer [27].G-actin (23 mM)

3 mM triethanolamine-HC1,0.2 mM CaC12, 0.2 mM ATP,

0.2 mM NaN3, pH 7.5, was incubated at 4uC for 45 min with

either BmTHY or Tb4 at different molar ratio. Aliquots of 10 mL

were then mixed with 12.2 mL of 5.4 mM l-ethyl-3-(3-dimethyla-

minopropyl) carbodimidie in 0.1 M MES, pH 6.5, and incubated

for 2 h at 25uC. Equal aliquots were taken up into SDS sample

buffer and analyzed by SDS-PAGE on a 10% gel under reducing

conditions.

Results

Bioinformatics Analysis of BmTHY
The BmTHY cDNA sequence (GenBank accession number

FJ602790) was identified from a cDNA library of the silkworm

pupa constructed in our laboratory [23]. It consists of 1,656 bp

and contains an ORF of 399 bp encoding a protein of 132 amino

acids. This gene, BmTHY, contains two introns and three exons

(Fig. 1a). The BmTHY cDNA sequence and predicted amino acid

sequence are shown in Fig. 1b. The predicted protein contains two

complete THY conserved domains (Fig. 1c) and has a predicted

Characterization of Silkworm Thymosin
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molecular weight of 14.74 kDa, with a theoretical pI of 4.83.

BmTHY is an acidic protein.

By multiple sequence alignment, it was found that BmTHY had

a high degree of homology to Tb proteins, especially in the

conserved domains. For example,the amino acid sequence

similarities between two conserved domains from BmTHY and

human Tb protein are 74% and 81% respectively. The conserved

domains from BmTHY and insect thymosin superfamily protein

are of high sequence similarity, especially in the N-terminus

(shown in Fig. 2).The six peptide motif ‘LKKTET’ of Tb family

proteins is very conservative and plays a key role in the process of

Tb binding to actin [14].The relatively conserved sequence also

exists in BmTHY and a six peptide motif ‘LKHTET’ of BmTHY

is shown in Figure 2, with only one amino acid difference from

‘LKKTET’. Structure predictions indicate that there are an N-

terminus a-helix and a C-terminus a-helix in the three-

dimensional conformation of BmTHY (Fig. 3.). The structure of

intermediate sequence is relatively simple but its N-terminus is

complicate.

Expression and Purification of Recombinant BmTHY
We confirmed expression of recombinant BmTHY in E. coli by

SDS-PAGE. The result of 12% SDS-PAGE on recombinant

BmTHY showed a protein of expected size in recombinant

bacteria (Fig. 4A). Histagged rBmTHY could be purified by

HiTrap Chelating HP (Fig. 4B). The predicted molecular weight

of BmTHY is 14.74 kDa, and the molecular weight of the His

label is 3.56 kDa. We confirmed the molecular weight of the

fusion protein by mass spectrometry, which indicated a molecular

weight of 18.4 kD (Fig. 5), matching the theoretical value of

18.3 kD (14.74 kD+3.56 kD) well. The results indicated that

rBmTHY was expressed successfully.

Titer Analysis and Specificity Detection of the Polyclonal
Antibodies

We used ELISA, after obtaining all extinction values, to

determine the following ratio for antibodies against rBmTHY:

positive serum extinction value/negative serum extinction value

(P/N)$2.1 was positive; 1.5#P/N,2.1 was suspicious expression;

P/N,1.5 was negative. From this, the titer of the antibodies was

greater than 1:25600 at a concentration of 10 mg/mL, which had

met requirement for next experiments (Fig. 6). The specificity of

anti-rBmTHY polyclonal antibodies was determined by Western

blotting. The anti-rBmTHY rabbit serum generated using the

purified recombinant protein strongly reacted with the 18.4-kDa

rBmTHY expressed in induced E. coli extracts, while no signal was

detected in uninduced extracts (Fig. 7). These results illustrated

high specificity of the polyclonal antibodies.

Figure 1. Profile of silkworm BmTHY gene. (a) Schematic representation of BmTHY gene. (b) ORF sequence and predicted amino acid sequence
of BmTHY gene. (c) BmTHY contains two intact THY domains.
doi:10.1371/journal.pone.0031040.g001
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Figure 2. Multiple amino acid sequence alignment of BmTHY with homologous proteins. The identical residues were shaded in black,
while the similar residues were shaded in gray, Ruler shows the number and position of residue. BmTHY, TcTHY, DrTHY and ApTHY represent
thymosin superfamily protein of Bombyx Mori, Tribolium castaneum, Drosophila melanogaster, Apis mellifera respectly; HuTB4X:Tb4(X-
Chromosome,Homosapiens);HuTB4Y:Tb4(Y-chromosome,Homosapiens);BtTB10:Tb10(Bos Taurus);SsTB12:Tb12(Salmo salar);SsTB11:Tb11(Salmo salar).
doi:10.1371/journal.pone.0031040.g002

Figure 3. The tertiary structure of BmTHY. (a)The tertiary structure
of BmTHY(strands); (b)The tertiary structure of BmTHY(Molecular
Surface).
doi:10.1371/journal.pone.0031040.g003

Figure 4. Expression and purification of the His-tag-BmTHY
fusion protein. Samples were resolved by 12% SDS-polyacrylamide
gel electrophoresis under reducing conditions. A: Expression of fusion
protein in Rosetta (DE3); M: protein molecular weight marker (low); 1:
Rossetta (pET-28a-BmTHY) without induction; 2: Rossetta (pET-28a-
BmTHY) after induction; B: Purification of the His-tag fusion protein in
Rosetta (DE3); M: protein molecular weight marker (low); 1: supernatant
of E.coli Rosetta/pET-28a-BmTHY induced by IPTG after supersonic
treatment; 2: purified fusion protein expressed in E.coli Rosetta.
doi:10.1371/journal.pone.0031040.g004
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Figure 5. Analysis of the His-tag-BmTHY fusion protein by MS.
doi:10.1371/journal.pone.0031040.g005

Figure 6. Determine of polyclonal antibody titer by ELISA. ELISA was used to determine the following ratio for antibodies against rBmTHY:
positive serum extinction value/negative serum extinction value (P/N)$2.1 was positive; 1.5#P/N,2.1 was suspicious expression; P/N,1.5 was
negative. From this, the titer of the antibodies was greater than 1:25600 at a concentration of 10 mg/mL.
doi:10.1371/journal.pone.0031040.g006
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Transcription and Expression Levels of BmTHY at Various
Silkworm Developmental Stages

We performed Real-Time RT-PCR analysis on mRNA to

determine BmTHY transcription levels at four different silkworm

developmental stages like eggs, the fifth instar larvae, pupae, and

moths. From the melting curves (data not shown), we established,

there were no overt primer dimers, indicating good primer

specificity. The amplification curves (data not shown) showed good

reproducibility. The PCR results indicated an obvious difference

in BmTHY transcription levels between the four silkworm

developmental stages. BmTHY mRNA was highest in moth,

lower in instar larva, pupae, and lowest in egg (Fig. 8a).

In order to determine the protein expression levels of BmTHY

at silkworm various developmental stages, we extracted total

protein from the egg, fifth instar larvae, pupa, and moth. Western

blotting analyses were performed on protein extracts to determine

BmTHY expression levels. The highest amount of expressed

BmTHY was in moth, decreasing in the fifth instar larvae;no

BmTHY was expressed in egg or pupa (Fig. 8b).

Transcription and Expression Level of BmTHY in Different
Fifth-Instar Larva Tissues

In order to determine transcription levels of BmTHY in the

head, Malpighian tubule,epidermis, spiracle, silk gland, testis,o-

vary, gut, and fatty body of the fifth-instar larvae, total RNA was

isolated from these tissues for RT-PCR. From the amplification

curves and melting curves(data not shown), we determined that

there was excellent reproducibility and no overt primer dimers

formed during amplification, indicating good specificity for the

primer pair. BmTHY mRNA was universally distributed in the

examined tissues, with the transcription level of BmTHY highest

in the head and ovary,and lower in the gut, spiracle, Malpighian

tubule, epidermis, fatty body, silk gland and testis (Fig. 9a).

To elucidate the expression of BmTHY protein in the head,

Malpighian tubule, epidermis, spiracle, silk gland, ovary, testis,

gut, and fatty body of fifth-instar larvae, we extracted protein from

these tissues, and performed Western blotting analysis to

determine the amount of BmTHY in each. The result of

immunoblots on protein extracts revealed that anti-BmTHY

serum reacted with a 18.4-kDa protein in extracts isolated from

head, ovary and epidermis, but no signal was detected in extracts

isolated from silk gland, spiracle, gut, Malpighian tubule, testis and

fatty body (Fig. 9b).

Subcellular Localization of BmTHY
The treated cells were examined under a Nikon ECLIPSE

TE2000-E Confocal Microscope,and images were analyzed using

EZ-C1software. Cy3-labeled goat anti-rabbit IgG emitted red

fluorescence when stimulated with light having a wavelength of

550 nm, and DAPI-stained nuclei emitted red fluorescence when

stimulated with light having a wavelength of 353 nm. The results

Figure 7. Western blotting analysis of the His-tag-BmTHY
fusion protein expression. Samples were resolved by 12% SDS PAGE
under reducing conditions (M,1,2,3 SDS-PAGE; 19, 29,39 Western
blotting). M: protein molecular weight marker (low); 1: purified fusion
protein expressed in E.coli Rosetta; 2: supernatant of E.coli Rosetta/pET-
28a-BmTHY induced by IPTG after supersonic treatment; 3: E.coli
Rosetta/pET-28a. Arrow indicates the fragment of the His-tag fusion
BmTHY.
doi:10.1371/journal.pone.0031040.g007

Figure 8. Transcription and expression level of BmTHY in
different development stages of Bombyx mori. (a) Analysis of
BmTHY expression was performed by RT-PCR. Relative BmTHY
expression was determined in relation to the corresponding BmTHY
expression level in the silkworm moth: DDCT (stage) =DCT (stage)2DCT

(egg); (b) Western blotting analysis of the expression levels of of BmTHY
in different development stages. 1,egg;2,pupa; 3,larva;4,moth.
doi:10.1371/journal.pone.0031040.g008

Figure 9. Transcription and expression level of BmTHY in
different tissues of fifth-instar larva of Bombyx mori. (a)
Transcription level of BmTHY in different tissues of fifth-instar larva of
Bombyx mori. Total RNA from the silk gland, spiracle,midgut, Malpighian
tubule, head, ovary, testis,fatty body, and epidermis of fifth-instar larva
was used as a template for RT-PCR. Relative BmTHY expression was
determined in relation to the corresponding BmTHY expression level in
testis: DDCT (tissue) =DCT (tissue)2DCT (testis); (b) Western blotting
analysis of the expression levels of of BmTHY in different development
stages. 1:Silk gland;2:Spiracle;3:Midgut; 4: Malpighian tubule;5:Hea-
d;6:Ovary; 7: Testis;8:Fatty body;9: Epidermises.
doi:10.1371/journal.pone.0031040.g009
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indicated that BmTHY was mainly located in nucleus, although it

was rarely present in the cytoplasm (Fig. 10).

Actin Sequestering Properties of BmTHY
Binding of BmTHY to Actin in Nondenaturing Gels was firstly

analyzed. BmTHY and Tb4 both formed complexes with skeletal

muscle G-actin. Fig. 11a shows that the complexes of BmTHY and

G-actin migrated more rapidly than G-actin alone, like that of

Tb4 and G-actin. This is consistent with the observation

demonstrated by Safer et al. [27,28] The results demonstrated

that BmTHY is an actin-binding protein.

Incubation of BmTHY with G-actin inhibited salt-induced

polymerization by an equivalent amount as assayed by sedimen-

tation. Fig. 11b (lane 4 and 6) shows that BmTHY decreased the

sedimentability of actin under polymerizing conditions. With

increasing BmTHY concentrations, less actin was recovered in the

pellet after high speed centrifugation. In the positive control group

(Fig. 11b, lane 3 and 5), similar inhibition was observed with Tb4

as described previously [15,27]. Fig. 11c indicates that both

BmTHY and Tb4 could be covalently linked to actin by adding

the cross-linker l-ethyl-3-(3-dimethylaminopropyl) carbodiimidie

to a stoichiometric mixture of actin with each peptide. A

covalently cross-linked product was formed in both cases

(Fig. 11c, lane 2,3,4,5 and 6).The above results indicated that

BmTHY is an actin-sequestering protein similar to Tb4.

Discussion

Tb protein family has a relatively conserved motif ‘LKKTET’

involving Tb binding to actin [29,30]. Interestingly, through

bioinformatics analysis, it is found that BmTHY also has a

relatively conserved motif ‘LKHTET’ with only one amino acid

difference from ‘LKKTET’. Therefore, we speculated that

BmTHY may bind to actin by means of the conserved motif

‘LKHTET’ to play its role. It is reported that proteins homologous

to Tb found in Drosophila may bind to actin in the same way as

Tb4,but exert the same function as Profilin in cell [31]. Profilin

plays an important role in many important cellular processes,

including membrane trafficking, GTPase signal transduction,

transcription regulation, RNA splicing, neurological genesis and

differentiation [32,33,34,35,36].The results of tertiary structure

analysis showed that there is an a-helix at both C-terminus and N-

terminus of BmTHY. N-terminus structure of BmTHY is more

complex than that of Tb. However both N-terminus sequences of

Figure 10. Subcellular localization of BmTHY in Bm5 cells by immunofluorescence. A1–A4,B1–B4: Experimental group, using anti-BmTHY
polyclonal antibody;C1-C4: negative control group, using negative rabbit serum;A1,B1,C1: Cells under transmitted light. A2,B2,C2: DAPI
staining;A3,B3,C3: BmTHY subcellular localization as indicated by Cy3-labeled secondary antibody;A4,B4,C4: merged image.
doi:10.1371/journal.pone.0031040.g010
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them are different. These different structures from each other may

lead to their different function.

In this study, we made some experiments on BmTHY to

analyze its characteristics and functions. Recombinant BmTHY

protein was expressed highly in E. coli and was mostly in the

supernatant of E.coli Rosetta/pET-28a-BmTHY induced by IPTG

after supersonic treatment. Recombinant BmTHY protein was

also purified easily by affinity chromatography. The molecular

weight of the purified fusion protein was confirmed by mass

spectrometry, which indicated a molecular weight of 18.4 kD

(Fig. 5), matching the theoretical value of 18.3 kD well. The results

verified that recombinant BmTHY was expressed successfully.

Analysis on bioinformatics and actin-sequestering function of

BmTHY (Fig. 11) suggests that BmTHY, like Tb, may well be an

actin-binding protein which is involved in cellular activity in that

actin represents one of the major cytoskeletal components and

participates in cellular processes such as movement and morpho-

genesis [37]. Silkworm goes through a complete metamorphosis

development process, including egg, larva, pupa, and moth, four

developmental stages that have great differences in morphology,

physiological characteristics, and biological function [38,39]. In

the larva and moth stage, more and more actins will polymerize or

depolymerize due to morphological changes and physiological

peculiarity, which needs more and more actin-binding proteins

regulation [39]. Therefore, the transcription and expression level

of actin-binding proteins will increase during larva and moth stage.

We performed Real-Time RT-PCR analysis on mRNA to

determine BmTHY transcription levels at four different silkworm

developmental stages. The PCR results indicated BmTHY mRNA

was highest in moth, lower in instar larva, pupae, and lowest in

egg. Western blotting to determine the expression pattern of

BmTHY at different developmental stages of B. mori showed that

BmTHY was expressed in moth and larva. This discovery suggests

that BmTHY might participate in the regulation of morphological

changes in silkworm by means of binding to actin. However, no

positive signals of western blotting were detected in egg and pupae.

One possibility is that the expression of BmTHY in the egg or

pupae developmental stages is too little to be detected, or there is

no expression in both stages. We are apt to the former because the

result of the transcription profile analysis showed that BmTHY

mRNA was also found in both pupae and egg by Real-Time RT-

PCR.

Because both Real-Time RT-PCR and Western blotting

analysis testified BmTHY expressed in the fifth instar larva, we

extracted total RNA and proteins from nine fifth-instar larva

tissues to further examine transcription and translation of the

BmTHY gene. The result of RT-PCR revealed that the BmTHY

mRNA was universally distributed in most of tissues (except testis)

extracted from the fifth-instar larvae. BmTHY transcription level

in the tested tissues from high to low in turn is orderly:

head.ovary.midgut.spiracle.Malpighian tubule.epidermi-

ses.fatty body.silk gland.testis. The result of Western blotting

showed that BmTHY was expressed in the head, ovary and

epidermis. Why was BmTHY expressed in ovary but testis? We

presume that BmTHY might be involved in sex differentiation in

the developmental stage of silkworm. Why was BmTHY expressed

in head and epidermis? We speculate that BmTHY might

participate in cell differentiation and migration because both head

and epidermis are important parts of morphological changes in

silkworm.

We carried out subcellular localization of BmTHY in Bm5 cell

by immunofluorescence. BmTHY was found mostly in the nucleus

but was also observed in the cytoplasm. Some actin-binding

proteins have been previously reported to localize intracellularly to

or shuttle into the nucleus [30,40,41,42]. For example, Huff [40]

reported that Tb4 served as a G-actin sequestering peptide in the

nucleus and was specifically translocated into the cell nucleus by

an active transport mechanism, requiring an unidentified soluble

cytoplasmic factor. Kim demonstrated that nuclear localization of

thymosin b15 was a controlled process during kainic acid or

staurosporine stimulation [42].Interestingly, the subcellular local-

ization of BmTHY in this study was found to be similar to that of

Tb4. The experimental results suggested that BmTHY might be

translocated into the cell nucleus depending on synergistic effects

of some cytokines. Analysis on actin sequestering of BmTHY

shows that BmTHY not only forms complexes with actin, inhibits

salt-induced G-actin polymerization but also covalently links to

actin. Considering the experimental results of subcellular locali-

zation and actin sequestering of BmTHY together, we speculate as

the following : By binding to nuclear actins, BmTHY might be

involved in the physiological function of actin, such as RNA

Figure 11. Electrophoretic analysis of the interaction of actin
with BmTHY. a,Effect of BmTHY and Tb4 on the mobility of actin in
nondenaturing polyacrylamide gel. NPAGE of muscle G-actin plus
BmTHY or Tb4 shows that both BmTHY and Tb4 shift the mobility of
actin in a stoichiometric fashion. Lane 1,2 mg of G-actin ; Lane2 and
5,blank; Lane 3, 0.6 mg of Tb4 and 2 mg of G-actin ; Lane 4, 1.2 mg of Tb4
and 2 mg of G-actin ; Lane 6, 0.6 mg of BmTHY and 2 mg of G-actin ; Lane
7, 1.2 mg of BmTHY and 2 mg of G-actin. b,sedimentation analysis of the
effect of BmTHY and Tb4 on salt-induced actin polymerization. 100 mL
of G-actin was mixed with:100 mL of G-buffer (lane 1); 100 mL of KCl-
buffer (lane 2); 66 mL of Tb4 (lane 3); 66 mL of BmTHY (lane 4);33 mL of
Tb4 (lane 5); 33 mL of BmTHY (lane 6);The molar ratio of BmTHY (Tb4) to
actin was 0.57:1 in lanes 3 and 4 and 0.28:1 in lanes 5 and 6. The final
actin concentration was 5.8 mM in each assay. Each pellet was
solubilized in 50 mL of SDS sample buffer. c,cross-linking of BmTHY
and Tb4 to G-actin. G-actin was incubated with either BmTHY (lane 2, 3
and 4) or Tb4 (lane 5 and 6) plus 1-ethyl-3-(3-dimethylaminopropyl)
carbodimide for 2 h at 25uC. The molar ratio of BmTHY (Tb4) to actin
was 1:5 in lanes 2, 3 and 5 and 1:9 in lanes 4 and 6. Lane 1 was G-actin.
Lane 7 was protein molecular weight marker. Each aliquots were taken
up into SDS sample buffer and analyzed by SDS-PAGE on a 10% gel
under reducing conditions.
doi:10.1371/journal.pone.0031040.g011
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splicing, chromosome remolding, and transcriptional regulation

[43,44,45].

In a word, the presented data indicated that BmTHY might

participate in the regulation of morphological changes and

physiological function in silkworm development by means of

binding to actin.
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