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High efficiency all-polymer tandem 
solar cells
Jianyu  Yuan*, Jinan Gu*, Guozheng Shi, Jianxia Sun, Hai-Qiao Wang & Wanli Ma

In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-
cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is 
among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction 
cell. The largely improved device performance can be mainly attributed to the enhanced absorption 
of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the 
recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to 
effectively boost the performance of current all polymer solar cells.

Polymer solar cells (PSCs) have attracted a great deal of attention in recent years. Not only are polymer solar 
cells lightweight and flexible, they are transparent in the visible range, inexpensive and easy to manufacture. 
Additionally, there exists a wide range of available materials for use as the active materials in these photo-
voltaic devices1–5. The PCEs of polymer solar cells have increased rapidly in the past few years as a result of 
improved materials and device architecture. Recently, Hsiang et al. achieved a PCE over 8.5% by using 
Porphyrin-incorporated 2D D/A polymers in organic solar cells6. Wei et al. employed two donors in the ternary 
blend to form an alloy and obtained a PCE of 10.5%7. Ade and Yan have achieved 10.8% PCE for polymer/fuller-
ene composites after careful optimization8. Fullerenes, with excellent electron mobility, are usually used as the 
acceptor materials in polymer solar cells. Although fullerene derivatives have many advantages, conventional 
PC61BM (phenyl-C61-butyric acid methyl ester) demonstrates weak absorbance in the visible region, resulting in 
inefficient photon harvest. In addition, fullerenes tend to aggregate under elevated temperatures, causing deteri-
orated morphology and consequently reduced lifetime of PSCs9–11.

Using polymers as both electron donors and acceptors is considered as an effective strategy to solve these 
problems. Compared with polymer/fullerene system, all-polymer solar cells (all-PSCs) demonstrate many supe-
rior properties, such as enhanced optical absorption and mechanical properties, as well as greater synthetic flexi-
bility in tuning the acceptor material properties12,13. Rapid developments in all-polymer solar cell technology have 
taken place in the last two years. Much progress in boosting the efficiency of polymer/polymer solar cells has been 
demonstrated. Hwang et al. designed a series of new semiconducting naphthalene diimide (NDI)-selenophene/
perylene diimide (PDI)-selenophene random copolymers, and achieved a PCE of 6.3% by optimizing the pro-
portion of PDI in copolymers14. Jung et al. employed Fluoro-substituted n-type conjugated polymers to achieve a 
PCE of 6.71% without using any additives15. The PCE of 7.7% for single junction all-polymer cells was achieved by 
Hwang and his coworkers by controlling the self-organization rate of the polymer blend film16. And very recently, 
new high PCE of 8.27% was reported for all-polymer solar cells by Li et al.17. Despite its early promise, the PCE of 
the all-polymer solar cell still lags behind that of polymer-fullerene solar cell. More strategies should be adopted 
to further increase the PCE of all-polymer solar cells.

Tandem structure has been widely reported for enhancing the PCE in organic solar cells as a result of bet-
ter utilization of the solar spectrum18–28. By using polymers with complementary absorption, tandem cell can 
broaden the device absorption to near infrared region, covering more solar spectrum. Meanwhile, the potential 
loss during photo-to-electron conversion process can be reduced by using tandem structure. To date, the high-
est PCE of 11.3% has been reported for polymer tandem solar cell using sub-cells with different absorption29. 
However, this structure requires the two sub-cells are both efficient and with complementary absorbance. On the 
other hand, the optimal thickness of active layers in PSCs (especially in all-PSCs) is usually around 100 nm since 
the carrier mobility of organic materials is relatively low, which thus limits the overall film absorption between 
60% to 80%30–37. Therefore using tandem structure with the same sub-cells can potentially further enhance the 
absorption and hence improve the device PCE. This strategy requires only one efficient D/A composite and the 
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processing conditions are relatively simpler. Indeed, a few organic tandem solar cells with identical sub-cells 
have been reported previously28,38–40. However, it is worth noting that no tandem structure has been reported 
in all-PSCs till now, likely due to the difficulty to select two D/A composites with high efficiency and comple-
mentary absorbance simultaneously. Thus the strategy to use identical sub-cells in fabricating tandem devices 
is especially useful for all-PSCs. In this work, we reported an efficient all polymer tandem solar cell for the 
first time. Polymer P2F-DO with a broad absorption from 400–800 nm was used as the donor material. The 
P2F-DO:NDI2OD-T2(N2200) system shows high performance in single junction solar cells. Tandem cells based 
on P2F-DO:NDI2OD-T2(N2200) system were fabricated, with inverted structures to achieve better device stabil-
ity. As a result, improved power conversion efficiency of 6.70% was achieved for the tandem device, which is over 
43% higher than the 4.68% PCE of the optimized single cell. This work demonstrates the promising potential to 
employ tandem structure in all-polymer solar cells.

Results
Chemical structures of the polymer donor P2F-DO and the polymer acceptor N2200 are shown in Fig. 1a. The 
synthesis method of P2F-DO is reported elsewhere41. Figure 1b shows normalized ultraviolet-visible absorp-
tion spectra of the two polymers. Both polymers show broad absorption from 300 nm to over 800 nm and their 
absorption spectra are partially complementary. The total film absorption of the P2F-DO:N2200 blend layers is 
shown in Fig. 1c by using a integrating sphere. We can see that the blend film absorption for tandem cells is signif-
icantly higher than that for single cell. Thus the use of tandem structure can largely improve the device absorption 
and meanwhile avoid the carrier recombination resulting from thick film.

The tandem device structure and energy levels for the used materials are shown in Fig. 2a,b, respectively. 
Inverted device structure with zinc oxide (ZnO) was used to enhance the device stability42. A simple intercon-
necting layer of M-PEDOT:PSS/ZnO was adopted to connect the two sub-cells. The recombination layer plays 
an important role in tandem devices, which requires a resistance-free electrical connection to minimize electric 
potential loss between sub cells. And it must be transparent enough to minimize absorption losses. In addition, 
the recombination layer should be the recombination zone to align the quasi-Fermi level of both holes and elec-
trons, which enables a more efficient recombination. More importantly, to fabricate a successful tandem device, 
the recombination layer should be physically robust to protect the underlying layers from the solution process of 
the upper layers43. The combination of M-PEDOT:PSS and ZnO have been confirmed to be an efficient recombi-
nation layer in previous works23,26. The M-PEDOT:PSS works as the hole transport layer and ZnO as the electron 
transport layer. In our work, the optimal thickness of the recombination layers is about 90 nm, with a 50 nm 
M-PEDOT:PSS and a 40 nm ZnO layer. The film thickness is small enough to ensure the transmissivity of the 
light. Meanwhile, the combination layer shows good electrical connection in these tandem devices, and the layers 

Figure 1. (a) Chemical structures of polymer (P2F-DO) and polymer (N2200). (b) Normalized ultraviolet-
visible absorption spectra of P2F-DO and N2200. (c) The total absorption of the P2F-DO:N2200 blend film in a 
tandem cell (red) and single cell (black) device.
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also serve well as the protection layer, strong enough to avoid the penetration of the solvent during the coating 
of upper layer in our experiment. For each processing condition, six devices were fabricated to assure the data 
reproducibility. The details of ZnO synthesis and device fabrication as well as characterizations are provided in 
the experiment section.

At first, single junction solar cells were fabricated with an inverted structure of ITO/ZnO/P2F-DO:N2200/
MoO3/Al. The photovoltaic parameters are summarized in Table 1. An optimal PCE of 4.68% was obtained with 
an open circuit voltage (Voc) of 0.8 V, a Jsc of 10.08 mA cm−2 and a fill factor (FF) of 58%. The thickness of the 
active layer for the optimized single cell is around 110 nm (See Table S1). We investigated the non-geminate 
recombination of devices with different film thickness by adjusting the incident light intensity44. The results 
are shown in Figure S2. The tandem solar cells were then fabricated with the configuration of ITO//ZnO/
P2F-DO:N2200/M-PEDOT:PSS/ZnO/P2F-DO:N2200/MoO3/Al. It is well-known that the thickness of the 
sub-cell is the critical factor for the PCEs of the tandem devices28. The current balance between the top and 
bottom sub-cells can be achieved by finely tuning the thickness of each sub-cell, since the current is largely deter-
mined by the film absorption45. We thus fixed the thickness of the bottom or the top cell and then adjust the thick-
ness of the other sub cell until the optimal device performance was obtained. The fixed thickness for the sub-cell 
is 110 nm, since excellent absorption and charge collection can be achieved simultaneously at this thickness. 
The experiment results are shown in Fig. 3, with the detailed parameters listed in Table 2. In Fig. 3a, the top cell 
thickness is fixed at 110 nm while the thickness of bottom cell is varied from 80 nm to 170 nm to reach the current 
balance. Judging from the J-V curves and data in Table 2, the best device performance is achieved for the tandem 
device with the thickness of bottom cell at 110 nm. The highest PCE is 6.70%, with a Jsc of 7.31 mA cm−2, a Voc 

Figure 2. (a) Tandem device structure: glass/ITO/ZnO/P2F-DO:N2200/M-PEDOT:PSS/ZnO/P2F-DO:N2200/
MoO3/Al. (b) Energy levels of materials used in tandem devices.

Jsc/mA/cm2 Voc/V FF PCE/%

Tandem cell 7.31 1.58 0.58 6.70

Single cell 10.08 0.80 0.58 4.68

Table 1.  Device parameters of optimized single junction solar cell and tandem solar cell based on  
P2F-DO:N2200.
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of 1.58 V, and a FF of 58%, which is significantly higher than the PCE of single cell. Any deviation from 110 nm 
for the thickness of active layer results in decreased device performance. For example, for a thick film of 170 nm, 
the FF and Voc are decreased, both indicating increased charge recombination which is likely caused by the large 
film thickness. In contrast, for a thin film of 80 nm, the Jsc is significantly decreased which can be attributed to the 
weak absorption of the bottom layer. These results show the strong correlation between the PCE and the thickness 
of the sub-cell film. The effect of the top-cell thickness on the device performance was also investigated, as shown 
in Fig. 3b. In this investigation, the active-layer thickness of the bottom cell is fixed at 110 nm while the thickness 
of the top-cell thickness varies from 50 nm to 140 nm. 110 nm is also found to be the optimal thickness for the 
top cell. If the thickness of the active layer in the top cell increases above the optimal 110 nm, FF and Voc drop 
significantly as a result of large serial resistance. If the thickness is smaller than 110 nm, we observe the device Jsc 
is dramatically decreased as a result of reduced absorption. Interestingly, the Voc is also decreased, likely due to 
unbalanced current between the sub-cells. In short, the performance of all-PSC tandem cells is very sensitive to 
the sub-cell thickness. Our experiments reveal that the optimal PCE is achieved when the two sub-cells have the 
same film thickness of 110 nm.

Figure 3. (a) J-V curves of the tandem devices with different thickness of bottom cell (The thickness of top cell 
is fixed at 110 nm). (b) J-V curves of the tandem devices with different thickness of top cell (the thickness of 
bottom cell is fixed at 110 nm).

Bottom 
thickness/
nm

Top 
thickness/

nm Jsc/mA/cm2 Voc/V FF PCE/%

170 110 7.20 1.49 0.53 5.69

140 110 7.20 1.55 0.54 6.03

110 110 7.31 1.58 0.58 6.70

80 110 6.82 1.58 0.57 6.14

110 140 7.26 1.08 0.39 3.06

110 80 6.80 1.55 0.56 5.90

110 50 5.89 1.17 0.59 4.07

Table 2.  Device performance of tandem solar cells with different thickness of sub-cells.
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The J-V curves of the optimized single junction and tandem cells are shown in Fig. 4a, with the corresponding 
photovoltaic parameters listed in Table 1. We can see that the Voc of the tandem cell is equal to the sum of two 
sub-cells’ and the FF is the same for both devices, indicating minimally increased recombination after stacking 
of the two sub-cells. After film thickness optimization, the Jsc of tandem device is 7.31 mA/cm−2, which is about 
73% of the optimal single-cell current 10.08 mA/cm−2. Since the Jsc of tandem cell is limited by the sub-cell with 
the smaller current, the total current generated by the two sub-cells is thus larger than 14.62 mA/cm−2, which is 
apparently higher than that of the single cell. We can then conclude that our optimized all-polymer single cell can-
not fully utilize the incident photons, since the film thickness has to be thin to achieve efficient charge extraction. 
Tandem structure, with doubled film thickness, can thus achieve largely improved absorption without sacrificing 
the charge exaction efficiency, which is therefore a simple approach to boost the efficiency of the current all-PSCs. It 
is necessary to measure the external quantum efficiency (EQE) of tandem devices to confirm the high performance. 
However, EQE measurements with bias lights do not fit in such a structure since both sub-cells have identical light 
response. So, we measured the reflectivity of the devices and calculated the internal quantum efficiency (IQE) of 
the single junction cell28. Then we assume the sub cell has the same IQE. Thus the EQE of the tandem cell can be 
estimated, as shown in Fig. 4b. The Integrated current density of the single cell is 9.13 mA/cm2, close to the measured 
10.08 mA/cm−2. We can also observe that the EQE of tandem cell is generally higher than that of single cell over all 
the absorption range, suggesting enhanced light harvesting by using tandem structure with identical sub-cells.

Conclusion
In summary, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells 
based on P2F-DO:N2200. A high PCE of 6.70% was achieved, which is among the highest efficiencies for all 
polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance 
can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device 
remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can 
become an easy approach to effectively boost the performance of current all polymer solar cells.

Methods
Synthesis of ZnO Nanoparticles. ZnO nanoparticles synthesis was performed with a modified recipe 
according to the paper46. 1.1 g (5 mmol) of zinc acetate dihydrate (ZnAc2• H2O) was dissolved in 76 ml MeOH 
in a three necked bottle, heating to 60 °C for 30 min. 0.57 g KOH was added to 24 ml MeOH, and this solution 

Figure 4. (a) J-V curves of both single junction and tandem cells. (b) Measured external quantum efficiency of 
single junction solar cells and calculated EQE of the tandem solar cells.
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was added dropwise to ZnAc2• H2O solution under vigorous stirring. The mixed solution was stirred at 60 °C for 
2 h. Once cooled, the solution was divided into three tubes and centrifuged at 5000 rpm for 5 min. The residual 
solution was removed and then 30 mL MeOH was added into each tube followed by vigorous vibration. The cen-
trifugation step was repeated twice. The resulting dry nanoparticles was treated with CF, MeOH, n-butanol with 
a ratio of 1:1:8 to obtain a concentration of 8 mg/mL. Before use, the ZnO nanoparticle solution was filtered by a 
0.22 mm PVDF syringe filter.

Fabrication of single cell. The glass substrate coated with ITO was cleaned by sequential sonication in ace-
tone, deionized water, isopropanol and acetone, and treated with UV-ozone for 20 min. ZnO nanoparticles were 
then spin-coated at 1500 rpm on the substrate and heated at 120 °C for 2 min. The last step was repeated and the 
sample was heated at 120 °C for 5 min. When it cooled down, the active layer (P2F-DO and N2200 with a mass 
ratio of 2:1 were dissolved in chloroform with a concentration of 10 mg/mL) were spin-coated at 3000 rpm to 
obtain a thickness of 110 nm, then heated at 100 °C for 1 min. Before spin-coating of the active layer, the solution 
should be kept heating at 50 °C for at least 2 h. After the spin-coating, thin layers of 8 nm MoO3 and 80 nm of Al 
were deposited via the methods of thermal evaporation. The area of each device is 0.0725 cm−2.

Fabrication of tandem devices. The bottom cell was fabricated as the single junction cell produced. After 
that, M-PEDOT:PSS was spin-coated on the surface of the active layer at a speed of 1300 rpm47, then heated for 
5 min at 120 °C , then the process is just like the fabrication of the bottom cell. The thickness of the active layer 
was adjusted by controlling the speed of spin-coating. Finally, thin layers of 8 nm MoO3 and 80 nm of Al were 
deposited by the methods of thermal evaporation. The area of each device is also 0.0725 cm−2.

Device characterization. The current density–voltage characteristics of the solar cells were measured with 
the Keithley 2400 (I–V) digital source meter under a simulated AM 1.5 G solar irradiation of 100 mW cm−2 
(Newport, Class AAA solar simulator, 94023A-U). The light intensity is calibrated by the certified Oriel Reference 
Cell (91150V) and verified with the NREL calibrated Hamamatsu S1787–04 diode. The external quantum effi-
ciency (EQE) was recorded using a certified IPCE instrument (Zolix Instruments, Inc, Solar Cell Scan100). 
UV-vis-NIR spectra were recorded on a Perkin Elmer model Lambda 750.
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