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Abstract
The present study is interested in the role of the corpus callosum in the development of the language network. We, therefore, 
investigated language abilities and the language network using task-based fMRI in three cases of complete agenesis of the 
corpus callosum (ACC), three cases of partial ACC and six controls. Although the children with complete ACC revealed 
impaired functions in specific language domains, no child with partial ACC showed a test score below average. As a group, 
ACC children performed significantly worse than healthy controls in verbal fluency and naming. Furthermore, whole-brain 
ROI-to-ROI connectivity analyses revealed reduced intrahemispheric and right intrahemispheric functional connectivity in 
ACC patients as compared to controls. In addition, stronger functional connectivity between left and right temporal areas 
was associated with better language abilities in the ACC group. In healthy controls, no association between language abilities 
and connectivity was found. Our results show that ACC is associated not only with less interhemispheric, but also with less 
right intrahemispheric language network connectivity in line with reduced verbal abilities. The present study, thus, supports 
the excitatory role of the corpus callosum in functional language network connectivity and language abilities.
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Introduction

The corpus callosum (CC) is involved in the neural organiza-
tion of language. In a recent functional magnetic resonance 
imaging (fMRI) study in healthy children, we described 

the integrative function of the central and posterior parts 
of the CC in the language network allowing stronger inter-
hemispheric functional connectivity and enhanced language 
abilities (Bartha-Doering et al. 2020). These findings are in 
line with the previous studies on the association of language 
lateralization and callosal measures, where weaker language 
lateralization was associated with increased posterior CC 
size and volume in healthy adults (Hines et al. 1992; Josse 
et al. 2008).

In this study, we ask the question if these findings can 
be transferred to patients with altered CC morphology. To 
the best of our knowledge, there are no language-specific 
functional connectivity studies available in such a patient 
population; however, some studies used functional magnetic 
resonance imaging (fMRI) in patients with disrupted or non-
existent callosal connections to investigate resting-state net-
works, i.e. regional interactions independent of a specific 
task condition. In patients after surgical callosotomy due to 
intractable epilepsy, studies have reported markedly reduced 
interhemispheric functional resting-state connectivity and, 
thus, strongly support a causal role of the CC in maintain-
ing interhemispheric functional connectivity (Roland et al. 
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2017; Johnston et al. 2008). Agenesis of the corpus callosum 
(ACC), however, is quite a different condition where callosal 
interhemispheric connectivity does never or only partially 
develop. In the absence of the CC, evidence for white mat-
ter circuit reorganization has been given, allowing for some 
kind of interhemispheric transfer (Wahl et al. 2009; Jakab 
et al. 2015; Meoded et al. 2015). The Probst bundle, the 
sigmoid bundle and two aberrant midbrain and ventral fore-
brain tracts represent the main components of altered brain 
circuitry in individuals with ACC (Tovar-Moll et al. 2007). 
Accordingly, fMRI studies emphasize that functional cou-
pling of both hemispheres within resting-state networks may 
be nearly normal in ACC patients (Tovar-Moll et al. 2007; 
Tyszka et al. 2011; Owen et al. 2013; Khanna et al. 2012). 
In line with this, an fMRI study on six adult patients with 
ACC did not find significant differences in language later-
alization indices between ACC patients and six IQ-matched 
healthy controls (Pelletier et al. 2011). However, other stud-
ies found less language lateralization and/or increased right 
hemisphere activation in ACC patients as compared to con-
trols (Komaba et al. 1998; Riecker et al. 2007; Hinkley et al. 
2016).

Based on these studies, early compensation for the 
absence of the CC seems possible. This explains the fre-
quently reported favourable cognitive development in chil-
dren with isolated ACC with overall intellectual abilities 
often described within the normal to low average range 
(Moutard et al. 2012; Siffredi et al. 2013). However, when 
investigated in detail, patients with ACC often exhibit defi-
cits in high-level cognitive functions, including slower reac-
tion times and processing speed (Marco et al. 2012), abstract 
reasoning, and problem solving (Hinkley et al. 2012; Siffredi 
et al. 2013; Brown and Paul 2000). In basic language func-
tioning, various subtle deficits have been described, most 
often occurring in phonological and syntactic processing 
(Tappe 1999; Dennis 1981; Temple et al. 1989, 1990; Sand-
ers 1989). More profound impairments have been reported in 
paralinguistic functioning. Children and adults with isolated 
ACC show difficulties in understanding idioms, proverbs, 
affective prosody and narrative humour (Brown et al. 2005; 
Paul et al. 2003). Furthermore, individuals with ACC are 
reported to exhibit deficits in the expression of emotions and 
their conversational abilities are described as ‘meaningless’ 
and ‘out-of-place’ (O’Brien 1994). In addition, verbal mem-
ory functions, including encoding, retention and retrieval 
are reduced in many individuals with ACC (Erickson et al. 
2014; Geffen et al. 1994).

The present study investigated, for the first time, a pos-
sible link between language abilities and connectivity within 
the functional language network in children with ACC and 
may thus further our understanding of the role of the CC 
during the development of the language network. This 
is of particular interest as the existence of compensatory 

commissural tracts did not yet prove to be a good predic-
tor of cognitive outcome in CC agenesis (Hannay et al. 
2009; Severino et al. 2017). The investigation of the early 
functional language network may help to predict cognitive 
development. We, therefore, investigated the language net-
work using task-based fMRI and language abilities with a 
comprehensive neurolinguistic test battery in four cases of 
complete ACC, two cases of partial ACC and six matched 
healthy controls. We hypothesized that comparable to our 
findings in healthy children, fewer interhemispheric func-
tional language network connectivity would be associated 
with weaker language functions in children with ACC.

Methods

Participants

Six children with ACC, aged 6 to 15, were recruited at the 
neuropediatric outpatient unit of the Department of Pedi-
atrics and Adolescent Medicine, Medical University of 
Vienna. Three patients had complete ACC, three patients 
showed partial ACC, as diagnosed by MRI (Table 1). None 
of the patients had known chromosomal or genetic abnor-
malities or extracranial abnormalities. No patient suffered 
from epilepsy or was under anticonvulsant therapy.

We furthermore included six healthy, right-handed chil-
dren matched for sex and age in this study. The controls had 
no history of neurological or psychiatric disease nor any 
clinical evidence of neurological dysfunction or develop-
mental delay. They were recruited by blackboard announce-
ment and flyer distribution. Further inclusion criteria for all 
study participants were native German speaking, normal 
hearing, normal or corrected-to-normal vision and no MRI 
contraindications.

Study participants were investigated using structural and 
functional MRI as well as neurolinguistic assessment. All 
children received a 30 € voucher for a bookstore. The study 
was approved by the Ethics Committee of the Medical Uni-
versity of Vienna and in accordance with the Helsinki Dec-
laration of 1975. For children, age-appropriate assent forms 
were provided, parents received a parental permission form. 
All children and one parent per child gave written, informed 
consent prior to inclusion.

Table 1 depicts demographic information of the individ-
ual study participants. Although all healthy controls were 
right handed, three of the ACC patients exhibited clear left 
handedness, as measured with the Edinburgh Handedness 
Inventory EHI (Oldfield 1971).
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Data acquisition

MRI image acquisition

All participants were scanned on a 3 T Siemens TIM Trio 
whole-body MR-Tomograph (Siemens Medical Solutions, 
Erlangen Germany) and equipped with a high-performance 
gradient system to support fast, high-resolution whole-brain 
echo-planar imaging. 3D structural MRI scans were per-
formed using an isocubic magnetization-prepared rapid gra-
dient-echo (MPRAGE, T1-weighted, TE/TR_4.21/2300 ms, 
inversion time 900, with a matrix size of 240 × 256 × 160, 
voxel size 1 × 1 × 1.10 mm, flip angle 9°) sequence. FMRI 
was acquired using a phase-corrected blipped gradient echo, 
single-shot echo-planar imaging (EPI) sequence. Altogether, 
200 EPI volumes were acquired with a square FOV of 
210 mm, voxel size 2.1 × 2.1 × 4 mm, 20 slices with a gap of 
25 percent were aligned parallel to the AC–PC plane; repeti-
tion time (TR) was 2000 ms, echo time (TE) 42 ms and the 
flip angle was set to 90°.

FMRI Paradigm

The German version of an auditory description definition 
task adapted from Berl et al. (2014) and Sepeta et al. (2016) 
was administered during fMRI assessment. Detailed descrip-
tion of this paradigm can be found in Bartha-Doering et al. 
(2018a, b) or (2019). In the auditory description defini-
tion condition, the participants heard the definition of an 
object followed by a noun and were instructed to press a 
button each time the definition truly described the noun. The 

control condition consisted of reverse speech, with some 
items additionally containing a pure tone at the end. The 
participants were instructed to press the button each time 
they heard the tone. Three age-adjusted versions of the fMRI 
paradigm were available (7–9 years old, 10–12 years old, 
13–16 years old). The total fMRI scan time was 6 min, 40 s.

Cognitive examinations

Standardized tests of language comprehension, naming and 
verbal fluency were used to assess verbal abilities with a 
particular focus on semantic language processing. Language 
comprehension was measured with the Token Test for Chil-
dren (McGhee et al. 2007), where tokens varying in size and 
shape have to be moved according to auditory commands 
with increasing length and linguistic complexity. Naming 
was examined using the Wortschatz- und Wortfindungstest 
WWT (Glück 2011). The WWT provides information about 
expressive vocabulary in different lexical categories, includ-
ing nouns, verbs, and adverbs/adjectives, and has no time 
limit. Verbal fluency was evaluated using the Regensburger 
Wortflüssigkeitstest (RWT) (Aschenbrenner et al. 2001), 
which requires the participant to name, within 2 min, as 
many words as possible of the semantic category animals.

Data analysis

Preprocessing

The images were preprocessed using Statistical Parametric 
Mapping 12 software (Wellcome Department of Cognitive 

Table 1  Demographics and MRI findings

EHI Edinburgh Handedness inventory; the scale of the EHI ranges from − 1 (completely left handed) to + 1 (completely right handed)

Study participants Age Sex Handedness EHI* MRI findings

ACC patients
 1 10 m − 1.00 Complete absence of the CC, Probst bundles structurally present, anterior commis-

sure present, severe colpocephaly
 2 9 m − 1.00 Complete absence of the CC, anterior commissure thick and present, moderate 

colpocephaly, bilateral Probst bundles structurally present
 3 12 m 0.70 Partial callosal agenesis, extremely shortened and thinned, Probst bundle structur-

ally left larger than right
 4 15 f 1.00 Partial callosal agenesis, extremely shortened, only anterior portion present (genu 

and truncus), fornix and hippocampal commissure present, normal anterior com-
missure

 5 14 m 0.70 Partial callosal agenesis, missing splenium, normal rostrum and genu, thinned 
truncus, anterior commissure present

 6 6 m − 1.00 Complete absence of the CC, anterior commissure present, asymmetric colpo-
cephaly right > left, associated malformation of cortical development left central 
region (schizencephaly), Probst bundles structurally present

 Group means (SD) 11.00 (3.35) − 0.10 (.99)
Controls
 Group means (SD) 11.17 (2.56) 0.88 (0.19)
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Neurology, London, UK) and the CONN toolbox 16b (Whit-
field-Gabrieli and Nieto-Castanon 2012) working on MAT-
LAB 2019a. EPI volumes were spatially realigned and cor-
rected for movement. Frame to frame displacement between 
successive volumes was estimated by calculating the Euclid-
ian distance from the translational parameters obtained from 
the realignment. Customized prior probability maps and a 
customized T1 template, matched to age and sex compo-
sition of the study group, were created by employing the 
Template-O-Matic (TOM) toolbox (Wilke et al. 2008). After 
co-registration, the derived spatial normalization parameters 
were used to normalize the functional volumes. Normalized 
EPI volumes were visually inspected for maximum overlap 
with the template and then smoothed using a spatial filter 
kernel of FWHM = 4 mm.

Analysis of the lateralization of language activation

BOLD signal increases pertaining to task-evoked responses 
in brain activity were modeled using a general linear model 
as implemented in SPM. A regressor modeling residual 
movement-related variance (translational and rotational 
movement) was included in the model as a covariate of no-
interest. Language activation was measured by contrasting 
auditory description definition task condition > reversed 
language control condition. To examine the group effect 
of functional brain activations, fixed effects analyses were 
performed (pFWE < 0.05, extend threshold k = 40 voxels) due 
to the small number of subjects. Thus, the fMRI results are 
valid only for the investigated group of subjects. Single-
subject fMRI activations were analyzed with a significance 
threshold of puncorr < 0.001, extend threshold k = 100 voxels.

Individual lateralization of activations was estimated at 
the single-subject level by use of the LI-toolbox (Wilke and 
Lidzba 2007). LIs were computed for the whole brain. In 
order to avoid the threshold dependency of LIs, a bootstrap-
ping approach was employed. LIs were calculated accord-
ing to the formula (Σ activation left − Σ activation right)/(Σ 
activation left) + Σ activation right) where “Σ activation” 
is the sum of activated voxels. Based upon previous stud-
ies (Lidzba, Kupper, et al. 2017a, b; Bartha-Doering et al. 
2018a, b), LI was categorized as left lateralized if ≥ 0.20, 
bilateral if within -0.20 and + 0.20 or right if ≤ − 0.20.

Task‑based connectivity analysis

Functional connectivity is defined as the temporal coinci-
dence of spatially distant neurophysiological events (Friston 
2011). In the present study, two regions were considered to 
show functional connectivity if there was a statistical rela-
tionship between their measures of activity.

Functional connectivity analysis was carried out in the 
CONN toolbox using SPM preprocessed data. Additionally, 
a band‐pass filter (0.008–0.09 Hz) using SPM’s Fast-Fou-
rier-Transformation-based procedure for bandpass filtering 
was applied to the time series. ART-based outlier detec-
tion was performed (97th percentiles in normative sample, 
global-signal z value threshold of 5, subject-motion thresh-
old 0.9 mm). Segmented white matter and cerebrospinal 
fluid were identified by CONN using the aCompCor method 
(Behzadi et al. 2007). Noise-related confounds, along with 
realignment parameters, were regressed from the data before 
calculating functional connectivity.

To assess task-related connectivity changes, we con-
ducted a seed-based ROI-to-ROI analysis to create a con-
nectivity map separately for both task conditions. A bivariate 
correlation was used to determine the associations between 
each of the ROI-to-ROI pairs; afterwards, these correlation 
coefficients were Fisher’s z-transformed and submitted to a 
2 group × 2 condition linear model. Within this model, lan-
guage-related connectivity changes between ACC patients 
and controls were described using a two-sample t tests 
comparing positive task differences in functional language 
network connectivity. This functional language network con-
nectivity was obtained by directly contrasting the auditory 
description definition task condition with the reversed lan-
guage control condition.

Second level regression analyses were employed to 
describe the effect of language scores on functional net-
work connectivity separately per group. To this end, a linear 
model with individual language scores as covariates and the 
contrast between the two functional tasks (auditory descrip-
tion and reversed language control) was calculated. Within 
this model, separate regression analyses, one per score, were 
calculated and tested for significance. The significance level 
for all tests was set at pFDR < 0.05.

To evaluate differences in language network connec-
tivity between ACC patients and controls, a whole‐brain 
ROI-to-ROI functional connectivity analysis was carried 
out using the default atlas (132 ROIS) in the CONN tool-
box that combines the FSL Harvard–Oxford atlas (Cavi-
ness et al. 1996) and the AAL atlas (Tzourio-Mazoyer 
et al. 2002). To evaluate the effect of the language scores 
on network connectivity, language ROIs were selected 
from the Brainnetome Atlas (Fan et al. 2016) that were 
characterized as involved in language processing, along 
with their contralateral homologues. The Brainnetome 
Atlas uses meta data labels of the BrainMap Database 
(www.brain map.org/taxon omy) using forward and reverse 
inferences (Cieslik et al. 2013; Clos et al. 2013; Eickhoff 
et al. 2011). For our language nodes, we included regions 
that were involved in paradigms of speech, semantics, 
syntax and phonology, while we excluded regions that 
were only involved in orthography. In addition, we 

http://www.brainmap.org/taxonomy
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included the hippocampi and parahippocampal gyri 
within both hemispheres as their involvement in seman-
tic language processing was indicated in the previous 
research (Bartha-Doering et al. 2018a, b; Bartha et al. 
2003, 2005). In sum, we obtained a total of 60 language 
ROIs (please see Supplementary Table S1 for a list of all 
language ROIs).

Cognitive test analyses

Statistical analyses were conducted using IBM SPSS Sta-
tistics (Version 26). Raw scores of language tests were 
transformed into age-adjusted z scores for each test. For 
the WWT norms were only available until 11 years of 
age. Therefore, we transformed the WWT raw scores of 
the children aged 12–15 (n = 6) into z scores based on the 
11-year-old children with the risk of an overestimation 
of WWT results in these participants. In line with clini-
cal conventions, individual z scores from − 1 to 1 were 
defined within the average range. Performance below − 1 
was read as below average and performance below − 2 
was interpreted as reduced. To reduce the number of lan-
guage variables for connectivity analyses, a mean z score 
was calculated from all language tests for each participant 
and used as “overall language score” in functional con-
nectivity regression analyses.

As cognitive data were not normally distributed, group 
differences in cognitive test results were investigated 
by Mann–Whitney U test. Significance of findings was 
set based on a strict Bonferroni correction factor, i.e. 
α = 0.05/number of comparisons.

Results

Language abilities

Figure 1 displays the individual language profiles in study 
participants. Language scores were within, or above, nor-
mal limits for all control participants and participants with 
partial ACC. The three participants with complete ACC per-
formed within normal limits on language comprehension, 
but were impaired on verbal fluency and/or naming. Figure 1 
displays the individual language profiles in study partici-
pants (for more information on individual results, please see 
the Supplementary File, Table S2). Group comparisons are 
reported in Table 2.

In‑scanner task performances

In ACC patients, mean correct response to in-scanner tasks 
was 89.5% (SD 7.45), controls had a mean correct task per-
formance of 93.0% (SD 7.24). Overall, these data indicate 
good task performances. In-scanner task performances did 
not significantly differ between groups [U = 13.0, p = 0.485, 
r = 0.23].

Localization and lateralization of language 
activations

Head movement was within the tolerable limit in all children 
(overall movement group mean 0.19 mm, SD 0.32, range 
0.03–1.21 mm) and did not significantly differ between 
groups, though it was larger in ACC patients than controls 
[U = 9.0, p = 0.180, r = 0.42]. In the individual analyses, two 

Fig. 1  Individual language pro-
files in study participants. The 
solid line represents z scores—2 
(impaired function), the dashed 
line z scores—1 (below average 
function)
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ACC patients revealed atypical language lateralization, both 
of them having a complete ACC (individual fMRI results 
and LIs are presented in the Supplementary file, Table S2). 
The other four ACC patients (1 complete, 3 partial ACC), as 
well as all healthy controls, showed left lateralized LIs. As 
a group, ACC patients exhibited significantly less left later-
alized language than controls [U = 2.0, p = 0.009, r = 0.74] 
(Table 2).

Whole‑brain language network connectivity in ACC 

ROI-to-ROI analyses within the whole brain revealed signifi-
cantly less functional language network connectivity in ACC 
patients as compared to controls (Table 3; Fig. 2). Inter-
hemispheric functional connectivity was reduced from left 
mesial frontal and mesial occipital regions to the right supra-
marginal gyrus and to right basal ganglia and amygdala. 

Furthermore, within the right hemisphere, less functional 
connectivity was found within fronto-temporal regions and 
from Heschl`s gyrus to the vermis. In contrast, within the 
left hemisphere, ACC patients did not show less connectivity 
as compared to controls. Furthermore, functional language 
network connectivity was not increased in ACC patients 
compared to controls in any region.

In sum, ACC patients revealed significantly reduced inter- 
and right intrahemispheric functional language network con-
nectivity as compared to controls.

The association of functional language network 
connectivity and language abilities

In ACC patients, second level regression analyses revealed a 
better overall language score being associated with stronger 
functional connectivity between the left supramarginal gyrus 
and the right superior and middle temporal gyri (Table 4; 
Fig. 3). The overall language score was not associated with 
any reduction of functional connectivity in ACC patients. In 
healthy controls, better language abilities were associated 
with stronger connectivity within the right hemisphere from 
the supramarginal to the fusiform gyrus, but the strength of 
the relationship between functional connectivity and lan-
guage performance was smaller and did not reach signifi-
cance (t test = 8.83, pFDR = 0.06).

In sum, in ACC patients, stronger interhemispheric func-
tional connectivity between temporal language areas was 
associated with better language abilities. In contrast, controls 
did not show a significant effect of language abilities on 
functional connectivity.

Discussion

The aim of the present study was to investigate the func-
tional organization of the language network in a case series 
of six patients with ACC. Those children with complete 
ACC presented impaired language functions, whereas chil-
dren with partial ACC had intact verbal abilities. As a group, 

Table 2  Differences in language measures between groups

Statistical significance after Bonferroni correction is indicated in bold
LI laterality index

ACC patients Controls U p r

Language abilities z scores mean, SD (range) z scores mean, SD (range)
 Language comprehension − 0.14, 0.57 (− 0.81 to 0.81) 1.39, 0.48 (0.81 to 1.88) 1.0 0.004 0.80
 Naming − 0.56, 2.34 (− 3.09 to 1.64) 1.14, 0.38 (0.61 to 1.64) 14.5 0.589 0.16
 Verbal fluency − 1.33, 1.20 (− 3.09 to 0.10) 2.78, 0.75 (− 0.61 to 1.64) 4.0 0.026 0.65

Language lateralization LI scores mean, SD (range) LI scores mean, SD (range)
 LI 0.22, 0.43 (− 0.50 to 0.60) 0.69, 0.12 (0.50 to 0.84) 2.0 0.009 0.74

Fig. 2  Contrast of whole-brain functional language network connec-
tivity of ACC patients versus controls. Blue lines indicate decreased 
ROI-to-ROI functional connectivity. ACC patients showed a signifi-
cant decrease in interhemispheric and right intrahemispheric func-
tional connectivity as compared to controls. No functional network 
increase was observed in ACC patients versus controls
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the ACC children revealed significantly worse verbal fluency 
and naming as compared to the healthy control group. Task-
based functional connectivity analysis furthermore exhib-
ited reduced interhemispheric and right intrahemispheric 
language network connectivity in children with ACC as 
compared to healthy controls. In the patient group, stronger 
interhemispheric functional connectivity was correlated 
with better language abilities, while controls did not show a 
significant association between language performance and 
connectivity.

Interhemispheric connectivity in ACC 

The findings of reduced interhemispheric functional lan-
guage network connectivity in ACC underline the important 
role of the CC in the integration of linguistic information 
from both hemispheres. When compared with controls, ACC 
patients showed significantly less interhemispheric connec-
tivity from left mesial frontal and mesial occipital regions to 
right temporal and subcortical areas. Interestingly, stronger 
interhemispheric connectivity was associated with better 
overall language performance in children with ACC. In 

Table 3  Functional language 
network connectivity contrasts 
between ACC patients and 
controls

L  left hemisphere, R  right hemisphere, ant anterior part, post posterior part

ROI to ROI connectivity ACC patients > controls t value pFDR

Interhemispheric network
 L lingual gyrus—R supramarginal gyrus, ant − 8.09 0.001
 L intracalcerine cortex—R supramarginal gyrus, ant − 5.41 0.019
 L superior frontal gyrus—R putamen − 5.81 0.023
 L cuneal cortex—R putamen − 4.90 0.039
 L cuneal cortex—R amygdala − 4.90 0.039
 L cuneal cortex—R caudate − 4.66 0.039

Left hemisphere network ns
Right hemisphere network
 R superior temporal gyrus, post—R middle temporal gyrus, ant − 5.55 0.020
 R superior temporal gyrus, post—R middle temporal gyrus, post − 5.39 0.020
 R Heschl’s gyrus—vermis − 5.59 0.030
 R inferior frontal gyrus, pars triangularis—R planum polare − 5.59 0.030
 R middle temporal gyrus, ant—R superior temporal gyrus, post − 5.55 0.032
 R supramarginal gyrus, ant—R frontal orbital cortex − 4.52 0.048

Fig. 3  Associations of language abilities with functional language 
network connectivity within the ACC group. Red lines indicate 
increased ROI-to-ROI functional connectivity. Better overall lan-
guage scores correlated with increased interhemispheric network con-
nectivity. No functional network decrease was observed in association 
with better language functions

Table 4  Association of 
functional language network 
connectivity with language 
abilities

L left hemisphere, R right hemisphere, ant anterior part, post posterior part

ROI to ROI connectivity associated with a better overall language score t value pFDR

ACC patients
 Functional connectivity increases
  L supramarginal gyrus, post—R superior temporal gyrus, post 8.44 0.038
  L supramarginal gyrus, post—R middle temporal gyrus, ant 8.04 0.038

 Functional connectivity decreases ns
  Controls ns
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healthy controls, the correlation of the relationship between 
language score and connectivity was smaller and did not 
reach significance. The findings in our ACC patients sug-
gest that the existence of white matter tracts enabling some 
kind of interhemispheric functional transfer is favourable for 
language outcome in these children. This interhemispheric 
connectivity may be supported by a partially developed CC. 
Indeed, in our study, the three children with partial ACC 
performed better in the language tests than the three chil-
dren with complete ACC. In the complete absence of CC, 
white matter reorganization may compensate for the lack 
of callosal connections and allow some kind of interhemi-
spheric transfer. In fact, an enlarged anterior commissure has 
shown to be favourable for the interhemisperic integration of 
visual stimuli in patients with ACC (van Meer et al. 2016; 
Barr and Corballis 2002). In addition, the sigmoid bundle 
has been identified as an asymmetric, heterotopic commis-
sural tract. Together with the Probst bundle and two novel 
aberrant midbrain and ventral forebrain tracts, it forms the 
fundamental brain circuitry in ACC patients (Tovar-Moll 
et al. 2014, 2007).

Nevertheless, those routes may be functionally costly and 
less effective (Ocklenburg et al. 2015). Although resting-
state networks have often been found bilaterally symmetrical 
in ACC (Tyszka et al. 2011; Owen et al. 2013), increased 
task demands during fMRI measurements revealed specific 
functional connectivity deficits in ACC patients (Hearne 
et al. 2019). Accordingly, studies showed that individuals 
with ACC primarily exhibit deficits in higher level cogni-
tive functions, including problem solving and processing 
speed (Siffredi et al. 2013). Similarly, linguistic deficits in 
our sample were only found in verbal fluency and naming, 
whereas language comprehension was intact in all children. 
Thus, verbal abilities with a higher processing load were 
more severely impaired.

The findings in ACC patients are in line with previous 
research in healthy children and adolescents, showing that 
bilateral language representation is favourable for language 
abilities (Bartha-Doering et al. 2018a). The present study 
furthermore resumes a recent study from our lab that demon-
strated the integrative function of the posterior CC in func-
tional language network connectivity, fostering improved 
interhemispheric functional connectivity and enhanced 
language abilities in healthy children (Bartha-Doering et al. 
2020). Interestingly, some previous studies point to differ-
ent effects of the CC on language lateralization in tempo-
ral and frontal brain areas dependent on the nature of task. 
Whereas for perceptual language tasks, the CC seems to 
play a predominantly excitatory role integrating posterior 
brain regions, some studies suggest an inhibitory role for 
the CC during language production in anterior brain areas 
(Josse et al. 2008; Thiel et al. 2006; Hines et al. 1992). This 
dichotomy of anterior and posterior language lateralization 

corresponds to the hypothesis that hemispheric specializa-
tion for language is not a uniform phenomenon but has com-
plex task and region dependent characteristics (Josse and 
Tzourio-Mazoyer 2004; Cohen and Dehaene 2004; Boles 
et al. 2008; Piervincenzi et al. 2016).

Intrahemispheric connectivity in ACC 

Remarkably, ACC children showed not only less interhemi-
spheric connectivity, this group of children also exhibited 
reduced right intrahemispheric language network connec-
tivity. Reduced connectivity was found within temporal 
areas, between frontal and temporal regions and between 
the Heschl’s gyrus and the vermis. Interestingly, functional 
connectivity within the left hemisphere did not differ in ACC 
patients compared to healthy controls.

Previous diffusion tensor imaging studies in ACC have 
shown diffusion abnormalities and reduced volumes in 
white matter bundles not only between but also within the 
hemispheres (Nakata et al. 2009). Our results, thus, further 
emphasize the concept that ACC cannot be considered as 
the simple absence of the CC, but represents a condition 
associated with a globally altered structural brain organiza-
tion and the inherent potential to (at least) partially estab-
lish normal function (Hinkley et al. 2012). Moreover, our 
results may also be interpreted considering the predomi-
nantly excitatory role of the CC in language network con-
nectivity (Galaburda et al. 1990; Gazzaniga 2000). Reduced 
interhemispheric connectivity may also lessen stimulation 
of intrahemispheric language processes, resulting in weaker 
language abilities. This explanation is supported by the fact 
that we only observed less intrahemispheric functional lan-
guage connectivity in ACC as compared to healthy controls, 
whereas ACC did not result in increased functional con-
nectivity within one hemisphere. This result is in contrast to 
previous studies investigating resting-state networks in both 
humans and monkeys with split-brain conditions (Roland 
et al. 2017; O’Reilly et al. 2013; Johnston et al. 2008). In 
these studies, reduced inter- and increased intrahemispheric 
resting-state connectivity after callosotomy pointed to both 
excitatory (interhemispheric) and inhibitory (intrahemi-
spheric) functions of the CC. However, callosotomy is quite 
a different condition compared to ACC and an increase of 
intrahemispheric functional connectivity found the day after 
callosotomy in some patients (Roland et al. 2017) should be 
interpreted with caution as a sign of functional reorganiza-
tion (Mancuso et al. 2019a, b). Moreover, functional connec-
tivity during resting state is different to task-based connec-
tivity, as the covariance between ROIs during specific tasks 
reflects the degree to which two regions are coordinated in 
their specific activity, rather than a general shared co-activa-
tion (Tran et al. 2018), and the function of the CC may not 
be the same in different cognitive domains. Furthermore, it 
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might be hypothesized that the role of the CC in functional 
connectivity is not only domain- but also demand-specific, 
an assumption supported by previous fMRI studies that have 
proven a positive correlation between task difficulty and 
bilateral activation volume (Caplan et al. 2002; Just et al. 
1996; Just and Varma 2007; Kaan and Swaab 2002). Hence, 
the interaction between hemispheres may be especially ben-
eficial under conditions of high complexity and attentional 
demand (Banich and Brown 2000). The present study, thus, 
supports the excitatory model proposing CC as the pathway 
that integrates information from both cerebral hemispheres, 
allowing improved inter- and intrahemispheric connectiv-
ity and better language functioning (Galaburda, Rosen, and 
Sherman 1990; Gazzaniga 2000).

Hemispheric specialization

Although language is predominantly processed in the left 
hemisphere in most healthy children (Szaflarski et al. 2002, 
2012), stronger functional connectivity with the right hemi-
sphere enables better verbal abilities (Bartha-Doering et al. 
2020). Thus, the CC seems to play an excitatory role in the 
integration of information of both hemispheres and language 
abilities profit from additional right hemisphere language 
processing that support and interact with left hemisphere 
processing. In healthy right-handed children, these language 
regions to the right seem to play a subordinate role; how-
ever, the situation might be different in children with ACC. 
In fact, two of our ACC children present atypical language 
lateralization, an observation in line with previous studies 
reporting a higher incidence of atypical language laterali-
zation in ACC (Hinkley et al. 2012; Siffredi et al. 2013; 
Sauerwein and Lassonde 1994). These findings can be inter-
preted in terms of hemispheric autonomy in ACC: Inter-
hemispheric exchange is diminished, hemispheric speciali-
zation is reduced, and both hemispheres are able to process 
specific cognitive demands to similar degrees (Ocklenburg 
et al. 2015), though often with less efficiency.

Our small ACC population includes three children with 
left handedness, two of them also presenting atypical lan-
guage lateralization. The high proportion of left-handers 
in our study is consistent with the previous ACC studies 
that reported left handedness in 24% to 56% of their study 
populations (Siffredi et al. 2018; Labadi and Beke 2017; 
Sauerwein and Lassonde 1994; Chiarello 1980) and thus 
representative for the ACC population. The finding of atypi-
cal language lateralization in two of our six ACC children 
may be explained by their left handedness, as left handed-
ness is associated with a higher increase of right hemisphere 
involvement in language processing (Carey and Johnstone 
2014; Tzourio et al. 1998; Knecht et al. 2000). However, 
healthy left-handers also reveal a stronger functional con-
nectivity between left and right language areas (Wiberg 

et al. 2019). Thus, the reduction of interhemispheric and 
right intrahemispheric language network connectivity in 
our ACC patients can not be explained by the increased left 
handedness in our ACC population. Rather, left handedness 
and reduced language network connectivity may be signifi-
cantly but independently associated with ACC.

Does functional connectivity reflect structural 
connectivity?

The present study found differences in functional interhem-
ispheric connectivity between ACC patients and healthy 
controls that also affect heterotopic areas. At first glance 
these results do not fit to the well-established belief that 
callosal axons mainly connect homotopic cortices (Schmah-
mann and Pandya 2006). However, heterotopic transcallosal 
projections exist (Chovsepian et al. 2017; Hedreen and Yin 
1981; Mancuso, Costa, et al. 2019a, b), especially in partial 
ACC. Wahl et al. (2009) investigated interhemispheric white 
matter connectivity in parietal ACC and identified not only 
homotopic but also heterotopic connections in the majority 
of their patients. Furthermore, the nature of homotopic and 
heterotopic connectivity varied considerably in their patient 
group.

Above all, functional connectivity does not imply any 
causal relationship and does not have to reflect a direct con-
nection between functionally coupled areas. Rather, the 
correlation of two regions may be mediated via additional 
structures relaying information from one region to another 
(Damoiseaux and Greicius 2009). Contrary to structural 
connectivity, functional correlation of areas of interest 
can furthermore inform about increases and decreases of 
their functional connectivity and can thus provide addi-
tional information of the nature of their connectivity (Fox 
et al. 2005). A number of recent studies have revealed that 
functional connectivity strength correlates with structural 
connectivity strength (Damoiseaux and Greicius 2009), but 
there is not a direct one-to-one mapping between them, and 
functional networks often exceed patterns of structural con-
nectivity (Adachi et al. 2012).

Limitations

We transformed the WWT raw scores of the elder partici-
pants into z scores based on the 11-year-old children as there 
are no normative data for children older than 11 years of 
age. The mean difficulty to name the items of the WWT 
decreases exponentially and phases out in a flat curve with 
10 years of age (Glück 2011); however, the risk remains 
that we overestimated z score results for the elder study par-
ticipants. Thus, the fact that we did not find an association 
between naming performance and language connectivity in 
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our study may also be due to a z-score transformation error 
in the older participants.

A further limitation of the present study is the presence 
of a small schizencephalic defect in the left central region 
in one ACC patient. This cortical malformation may have 
had impact on the functional network connectivity in 
this patient and may thus reduce the generalizability of 
findings.

Furthermore, as we administered only one fMRI run per 
participant, within-subject reliability of connectivity and 
LI could not be assessed.

Electrophysiological studies indicate that the infor-
mation flow between language-relevant brain areas may 
depend on the contributions of distinct brain rhythms and 
point to the interplay of rapid excitation and slow inhibi-
tion that might be important for this interhemispheric com-
munication (Steinmann and Gutschalk 2011; Schoffelen 
et al. 2017). FMRI measures haemodynamic response as 
the indirect consequence of neural activity and offers high 
spatial resolution, but cannot measure rapidly fluctuating 
brain activity. Identifying network interactions from the 
complementary haemodynamic and electrophysiological 
signals may help to explain these complex interactions 
between brain areas (Lei et al. 2011; Mulert 2013), thus, 
future studies may use simultaneous EEG-fMRI to offer 
new insights into the connectivity mechanisms in ACC.

Conclusion

ACC is associated not only with a reduction of inter-, but 
also right intrahemispheric language network connectiv-
ity, going along with reduced verbal abilities. The pre-
sent study, thus, supports the excitatory role of the CC in 
functional language network connectivity and language 
abilities.
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