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Abstract

For many disease-causing virus species, global diversity is clustered into a taxonomy of

subtypes with clinical significance. In particular, the classification of infections among the

subtypes of human immunodeficiency virus type 1 (HIV-1) is a routine component of clinical

management, and there are now many classification algorithms available for this purpose.

Although several of these algorithms are similar in accuracy and speed, the majority are pro-

prietary and require laboratories to transmit HIV-1 sequence data over the network to

remote servers. This potentially exposes sensitive patient data to unauthorized access, and

makes it impossible to determine how classifications are made and to maintain the data

provenance of clinical bioinformatic workflows. We propose an open-source supervised and

alignment-free subtyping method (KAMERIS) that operates on k-mer frequencies in HIV-1

sequences. We performed a detailed study of the accuracy and performance of subtype

classification in comparison to four state-of-the-art programs. Based on our testing data set

of manually curated real-world HIV-1 sequences (n = 2, 784), KAMERIS obtained an overall

accuracy of 97%, which matches or exceeds all other tested software, with a processing

rate of over 1,500 sequences per second. Furthermore, our fully standalone general-

purpose software provides key advantages in terms of data security and privacy, transpar-

ency and reproducibility. Finally, we show that our method is readily adaptable to subtype

classification of other viruses including dengue, influenza A, and hepatitis B and C virus.

Introduction

Subtype classification is an important and challenging problem in the field of virology. Sub-

types (also termed clades or genotypes) are a fundamental unit of virus nomenclature (taxon-

omy) within a defined species, where each subtype corresponds to a cluster of genetic

similarity among isolates from the global population. Defined subtype references for hepatitis

C virus, for example, can diverge by as much as 30% of the nucleotide genome sequence [1],

but there is no consistent threshold among virus species. Many virus subtypes are clinically
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significant because of their associations with variation in pathogenesis, rates of disease pro-

gression, and susceptibility to drug treatments and vaccines [2]. For example, the HIV-1 sub-

types originated early in the history of the global pandemic [3] and have diverged by about

15% of the nucleotide genome sequence [4]. Rates of disease progression vary significantly

among HIV-1 subtypes and classifying newly diagnosed infections by their genetic similarity

to curated reference subtypes [5] is a recommended component for the clinical management

of HIV-1 infection [6, 7]. Consequently, a number of algorithms have been developed for the

automated determination of HIV-1 subtypes from genetic sequence data [8–10].

Today, there are important practical considerations that HIV-1 subtyping algorithms

should meet. These include:

1. High Accuracy and Performance: The cost of sequencing is rapidly decreasing and the

amount of sequence data increasing due to next-generation sequencing (NGS) technolo-

gies. Thus, in addition to being accurate, software must be computationally fast and scalable

in order to handle rapidly growing datasets.

2. Data Security and Privacy: Policy, legal, and regulatory issues can prohibit patient

sequence data from being transmitted to an external server on the Internet. In addition,

concerns around privacy policies and the possibility of data breaches can cause issues for

researchers and clinicians. For these reasons, software should be made available in an off-

line, standalone version.

3. Transparency: With closed-source or proprietary software, it can be impossible to deter-

mine precisely how classification determinations are made. An open-source implementa-

tion gives full visibility into all aspects of the classification process.

4. Reproducibility: Relying on an externally-hosted service can make it impossible to deter-

mine which version of the software has been used to generate subtype classifications. This

makes it difficult to guarantee that classification results can be reproduced, and reproduc-

ibility is generally recognized as a necessary component of clinical practice.

In our effort to develop a general sequence classification method satisfying the above con-

siderations, we propose a simple, intuitive, general-purpose, highly-efficient technique based

on k-mer frequency vectors for supervised nucleotide sequence classification, and we release

an open-source software implementation of this method (designated KAMERIS) under a permis-

sive open-source license.

Alignment-free subtyping

Most subtype classification methods for HIV-1 require the alignment of the input sequence

against a set of predefined subtype reference sequences [11], which enables the algorithm to

compare homologous sequence features [12–14]. For example, the NCBI genotyping tool [15]

computes BLAST similarity scores against the reference set for sliding windows along the

query sequence. Other methods such as REGA [9] and SCUEAL [10] reconstruct maximum

likelihood phylogenies from the aligned sequences: REGA (version 3.0) reconstructs trees

from sliding windows of 400bp from the sequence alignment and quantifies the confidence in

placement of the query sequence within subtypes by bootstrap sampling (bootscanning) [16].

Alignment-based methods are relatively computationally expensive, especially for long

sequences; the heuristic methods require a number of ad hoc settings, such as the penalty for

opening a gap; and alignment method may not perform well on highly-divergent regions of

the genome. To address these limitations, various alignment-free classification methods have

been proposed. Some of them make use of nucleotide correlations [17], or sequence
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composition (e.g. COMET [8] and [18]). Other methods include those based on restriction

enzyme site distributions, applied to the subtyping of human papillomavirus (HPV), hepatitis

B virus (HBV) and HIV-1 (CASTOR [19]); based on the “natural vector” which contains infor-

mation on the number and distribution of nucleotides in the sequence, applied to the classifi-

cation of single-segmented [18] and multi-segmented [20] whole viral genomes, as well as viral

proteomes [21]; based on neural networks using digital signal processing techniques to yield

“genomic cepstral coefficient” features, applied to distinguishing four different pathogenic

viruses [22]; based on different genomic materials (namely DNA sequences, protein sequences,

and functional domains), applied to the classification of some viral species at the order, family,

and genus levels [23]; and based on interpolated Markov models, applied to the phylogenetic

classification of metagenomic samples [24].

k-mer-based classifiers

The use of k-mer (substrings of length k) frequencies for phylogenetic applications started

with Blaisdell, who reported success in constructing accurate phylogenetic trees from several

coding and non-coding nDNA sequences [25] and some mammalian alpha and beta-globin

genes [26]. Other authors [27–31] have observed that the excess and scarcity of specific k-

mers, across a variety of different DNA sequence types (including viral DNA in [27]), can be

explained by factors such as physical DNA/RNA structure, mutational events, and some pro-

karyotic and eukaryotic repair and correction systems. Typically, k-mer frequency vectors are

paired together with a distance function in order to measure the quantitative similarity

between any pair of sequences. Studies measuring quantitative similarity between DNA

sequences from different sources have been performed, for instance using the Manhattan dis-

tance [32, 33], the weighted or standardized Euclidean distance [34, 35], and the Jensen-

Shannon distance [36, 37]. Applications of these distances and others have been compared and

benchmarked in [38–41], and detailed reviews of the literature can be found in [42–45].

In the context of viral phylogenetics, k-mer frequency vectors paired with a distance metric

have been used to construct pairwise distance matrices and derive phylogenetic trees, e.g.,

dsDNA eukaryotic viruses [46], or fragments from Flaviviridae genomes [47]. Other studies

have investigated the multifractal properties of k-mer frequency patterns in HIV-1 genomes

[48], and the changes in dinucleotide frequencies in the HIV genome across different years

[49]. We used k-mer frequency vectors to train supervised classification algorithms. Similar

approaches have previously been explored (with different classifiers than those used here), for

example to subtype Influenza and classify Polyoma and Rhinovirus fragments [50], to predict

HPV genotypes [51, 52], to classify whole bacterial genomes to their corresponding taxonomic

groups at different levels [53], to classify whole eukaryotic mitochondrial genomes [54–57], to

classify microbial metagenomic samples [58], to predict virus-host relationships for some bac-

terial genera [59], and to identify viral sequences in metagenomic samples [60].

To evaluate our method, we curated manually-validated testing sets of ‘real-world’ HIV-1

data sets. We assessed fifteen classification algorithms and conclude that for these data the

SVM-based classifiers, multilayer perceptron, and logistic regression achieved the highest

accuracy, with the SVM-based classifiers also achieving the lowest running time out of those.

We measured classification accuracy and running time for k-mers of length k = 1. . .10 and

found that k = 6 provides the optimal balance of accuracy and speed. Overall, our open-source

method obtains a classification accuracy average of 97%, with individual accuracies equal or

exceeding other subtyping methods for most datasets, and processes over 1,500 sequences per

second. Our method is also applicable to other virus datasets without modification: we
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demonstrate classification accuracies of over 90% in all cases for full-length genome data sets

of dengue, hepatitis B, hepatitis C, and influenza A viruses.

Methods

Supervised classification

First, we needed to determine which supervised classification method would be the most effec-

tive for classifying virus sequences, using their respective k-mer frequencies as feature vectors

(numerical representations). We trained each of 15 classifiers, listed below, on a set S = {s1,

s2, . . . sn} of nucleotide sequences partitioned into groups g1, g2, . . ., gp. Given as input any

new, previously unseen, sequence (i.e., not in the dataset S), the method outputs a prediction

of the group gi that the sequence belongs to, having ‘learned’ from the training set S the corre-

spondence between the k-mer frequencies of training sequences and their groups. The feature

vector Fk(s) for an input sequence s was constructed from the number of occurrences of all 4k

possible k-mers (given the nucleotide alphabet {A, C, G, T}), divided by the total length of s.
Any ambiguous nucleotide codes (e.g., ‘N’ for completely ambiguous nucleotides) were

removed from s before computing Fk(s).
Next, we processed the feature vectors for more efficient use by classifiers. We rescaled the

k-mer frequencies in Fk(s) to have a standard deviation of 1, which satisfies some statistical

assumptions invoked by several classification methods. In addition, we performed dimension-

ality reduction using truncated singular value decomposition [61] to reduce the vectors to 10%

of the average number of non-zero entries of the feature vectors. This greatly reduces running

time for most classifiers while having a negligible effect on classification accuracy.

Finally, we trained a supervised classifier on the vectors Fk(s). Supervised classifiers, in gen-

eral, can be intuitively thought of as constructing a mapping from the input feature space to

another space which in some sense effectively separates each training class. As a concrete

example, the support vector machine (SVM) classifier maps the input space to another space

of equal or higher dimensionality using a kernel function, and then selects hyperplanes that

represent the largest separation between every pair of classes. Those hyperplanes induce a par-

tition on the transformed space which is then used for the classification of new items. We

tested fifteen different specific classifier algorithms: 10-nearest-neighbors [62] with Euclidean

metric and uniform weights (10-nearest-neighbors); nearest centroid, to class mean

(nearest-centroid-mean) and to class median (nearest-centroid-median)

[63]; logistic regression with L2 regularization, one-vs-rest as the multiclass generalization,

stopping tolerance of 10−4, and regularization strength (λ) of 1 (logistic-regression)

[64]; SVM with the linear (linear-svm), quadratic (quadratic-svm), and cubic

(cubic-svm) kernel functions, with penalty parameter of 1 and stopping tolerance of 10−3

[65]; SVM with stochastic gradient descent learning (maximum 5 training epochs) and linear

kernel function (sgd) [66]; decision tree with Gini impurity metric (decision-tree) [67];

random forest using 10 decision trees with Gini impurity metric as sub-estimators (random-
forest) [68]; AdaBoost with maximum 50 decision trees as the weak learners and the

SAMME.R real boosting algorithm (adaboost) [69, 70]; Gaussian naïve Bayes (gauss-
ian-naive-bayes) [71]; linear (lda) and quadratic (qda) discriminant analysis [72]; and

multi-layer perceptron with a single 100-neuron hidden layer, rectified linear unit (ReLU) acti-

vation function, the Adam stochastic gradient-based weight optimizer, L2 penalty term of

10−4, learning rate of 10−3, and maximum 200 epochs (multilayer-perceptron) [73,

74]. We used the implementations of these classifiers in the Python library scikit-learn
[75]—all settings and hyperparameters were left as the defaults given in the library.
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For some of the results that follow, we required a method for measuring classification accu-

racy without the need for a separate testing dataset. To do so, we used 10-fold cross-validation,

a technique widely used for assessing the performance of supervised classifiers [76]. N-fold

cross-validation is performed by taking the given dataset and randomly partitioning it into N
groups of equal size. Taking each group in turn, we trained a classifier on the sequences out-

side of the selected group, and then computed its accuracy from predicting the classes of the

sequences in the selected group. The outcome of the cross-validation are N accuracy values for

the N distinct, independent training and testing runs. We report the arithmetic mean of those

accuracies as the final accuracy measure.

Unsupervised visualization

Supervised classification requires, by definition, a training set consisting of examples of classes

determined a priori. However, one may wish to explore a dataset where the groups are not nec-

essarily all known. For the problem of virus subtyping for example, one may suspect the exis-

tence of a novel subtype or recombinant. To this end, unsupervised data exploration techniques

are useful, and herein we also explore the use of Molecular Distance Maps (MoDMaps), previ-

ously described in [41, 77, 78], for this purpose. After computing the vectors Fk(s), this method

proceeds by first constructing a pairwise distance matrix. In this paper, we use the well-known

Manhattan distance [79], defined between two vectors A = (a1, . . . an) and B = (b1, . . . bn) as

being:

dMðA;BÞ ¼
Xn

i¼1

jai � bij:

Next, the distance matrix is visualized by classical MultiDimensional Scaling (MDS) [80]. MDS

takes as input a pairwise distance matrix and produces as output a 2D or 3D plot, called a MoD-

Map [81], wherein each point represents a different sequence, and the distances between points

approximate the distances from the input distance matrix. As MoDMaps are constrained to

two or three dimensions, it is in general not possible for the distances in the 2D or 3D plot to

match exactly the distances in the distance matrix, but MDS attempts to make the difference as

small as possible.

Implementation

We have developed a software package called KAMERIS which implements our method. It can

be obtained from https://github.com/stephensolis/kameris, and may be used on Windows,

macOS, and Linux. KAMERIS is implemented in Python, with the feature vector computation

parts implemented in C++ for performance. It is packaged so as to have no external dependen-

cies, and thus is easy to run. The package has three different modes: first, it can train one or

more classifiers on a dataset and evaluate cross-validation performance; second, it can summa-

rize training jobs, computing summary statistics and generating MDS plots; and third, it can

classify new sequences on already-trained models. More information, including usage and

setup instructions, can be found at https://github.com/stephensolis/kameris. All running time

benchmarks of our software were performed on an Amazon Web Services (AWS) r4.8xlarge

instance with 16 physical cores (32 threads) of a 2.3GHz Intel Xeon E5-2686 v4 processor. We

also note that many of the implementations of the classifier algorithms we use are single-

threaded and that performance can almost certainly be substantially improved by using paral-

lelized implementations.
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Datasets

In this paper, a variety of different datasets were used to validate the performance of the

method. Straightforward reproducibility of results was a priority in the design of this study,

and to that end, every sequence and its metadata from every dataset referenced here can be

retrieved from our GitHub repository at https://github.com/stephensolis/kameris-

experiments. Further, instructions for using KAMERIS to replicate the experiment results are

available in S1 Appendix.

In some cases, these datasets had few examples for some classes. Training on classes with

very few examples would unfairly lower accuracy since the classifier does not have enough

information to learn, so we wish to omit such classes from our analysis. However, the mini-

mum number of examples per class to achieve proper training of a classifier is difficult to esti-

mate; this number is known to be dependent on both the complexity of the feature vectors and

characteristics of the classifier algorithm being used [82, 83]. Since we vary both k and the clas-

sifier algorithms in this study, this makes it especially challenging to determine an adequate

minimum class size. Here, we arbitrarily selected 18 as our minimum, so we omitted from

analysis any subtype with fewer than 18 sequences. It may be that specific values of k and some

classifier algorithms work well in scenarios with very small datasets, and we leave this as an

open question.

Primary dataset. The primary dataset used was the full set of HIV-1 genomes available

from the Los Alamos (LANL) sequence database, accessible at https://www.hiv.lanl.gov/

components/sequence/HIV/search/search.html. In this database, the option exists of using full

or partial sequences—in our analysis, we consider both full genomes and just the coding

sequences of the pol gene. For the set of whole genomes, the query parameters “virus: HIV-1,

genomic region: complete genome, excluding problematic” were used; this gave a total of 6625

sequences with an average length of 8970 bp. For the set of pol genes, the query parameters

“virus: HIV-1, genomic region: Pol CDS, excluding problematic” were used; this gave a total of

9270 sequences with an average length of 3006 bp. In both cases, the query was performed on

May 18, 2017, and at the time, the LANL database reported a last update on May 6, 2017. After

removing small classes (see preceding section), this dataset contained 25 subtypes and circulat-

ing recombinant forms (CRFs) for the set of whole genomes, and 26 for the set of pol genes.

The list of subtypes for this dataset and all other datasets described here are available in S2

Appendix. This dataset was used to determine the best value of k, the best classifier algorithm,

to compare the performance of whole genomes with pol gene sequences only, and to produce

the MoDMaps of HIV-1. In those experiments, cross-validation was used to randomly draw

training and testing sets from the dataset.

Evaluation datasets. To evaluate classifiers trained on HIV-1 sequences and subtype

annotations curated by the LANL database, we needed testing sets but wanted to avoid select-

ing them from the same database. We manually searched the GenBank database for large data-

sets comprising HIV-1 pol sequences collected from a region with known history of a

predominant subtype, and evaluated the associated publications to verify the characteristics of

the study population (Table 1). After selection of the datasets, we wished to obtain labels with-

out relying on another subtyping method. To do so, first we made use of the known geographic

distribution of HIV-1 subtypes, where specific regions are predominantly affected by one or

two particular subtypes or circulating recombinant forms due to historical ‘founding’ events

[84]. Next, we screened each dataset using a manual phylogenetic subtyping process to verify

subtype assignments against the standard reference sequences. This was done, essentially, by

reconstructing phylogenetic trees to identify possible subtype clusters. A cluster was identified

as a certain subtype if it included a specific subtype reference sequence we had initially
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provided in our datasets. Thus, the first step was to download the most recent set of subtypes

reference sequences for the HIV-1 pol gene at the LANL database, accessible at https://www.

hiv.lanl.gov/content/sequence/NEWALIGN/align.html [85].

We loaded the resulting FASTA file in the eleven datasets from Table 1. We then aligned

the datasets with MUSCLE v3.8.425 [97], implemented in AliView 1.19-beta-3 [98], where we

also visually inspected the alignments. To avoid overfitting, we searched for the nucleotide

model of substitution that was best supported by each dataset using the Akaike Information

Criterion (AIC) in jModeltest v2.1.10 [99]. For the dataset US.Wolf2017, the large number of

sequences precluded this model selection process, so we chose a General Time Reversible

model incorporating an invariant sites category and a gamma distribution to model rate varia-

tion among the remaining sites (GTR+I+G); this parameter-rich model is often supported by

large HIV-1 data sets, and was similar to the model selected by the authors in the original

study [93]. Phylogenetic trees were reconstructed by maximum likelihood using PHYML

v20160207 [100] with a related bootstrap support analysis. The resulting trees were visualized

and their relative sequences were manually annotated in FigTree v1.4.3 [101].

In order to benchmark performance on this manually curated testing dataset, we required a

separate training dataset. Since the subtype annotations from the full set of HIV-1 genomes in

the LANL database are typically given by individual authors using unknown methods, they

may be incorrect at times, potentially negatively impacting classification performance. Thus,

we trained our classifier on the subset of HIV-1 pol sequences from the 2010 Web alignment

from the LANL database, accessible at https://www.hiv.lanl.gov/content/sequence/

NEWALIGN/align.html. This Web alignment dataset is a more curated set of pol sequences,

and is more likely to be correctly annotated. Specifically, we selected ‘Web’ as the alignment

type, ‘HIV1/SIVcpz’ as organism, ‘POL’ as ‘Pre-defined region of the genome’ under ‘Region’,

‘All’ as subtype, ‘DNA’, and ‘2010’ as the year. Any Simian Immunodeficiency Virus (SIV)

sequences were manually removed from the query results. This gave a total of 1979 sequences,

containing 15 subtypes or CRFs after removal of small classes.

Synthetic data. For another experiment, we generated a set of synthetic HIV-1 sequences

by simulating the molecular evolution of sequences derived from the curated HIV-1 subtype

references. To do so, we used a modified version of the program INDELible [102], assigning

one of the subtype reference sequences to the root of a ‘star’ phylogeny with unit branch

Table 1. Statistics for the manually curated testing datasets. The first author, year, and reference number for the publication associated with each data set is listed under

the ‘Source’ column heading. The historically most prevalent HIV-1 subtype(s) is indicated under the ‘Subtype’ column heading.

Source Country Subtype Count Sequence length (nt)

Average Min. Max.

Nadai (2009) [86] Haiti B 66 1024.0 1024 1025

Niculescu (2015) [87] Romania F 97 1301.2 1257 1302

Paraschiv (2017) [88] Romania F 86 1295.9 1164 1299

Rhee (2017) [89] Thailand CRF01_AE 282 703.8 633 756

Sukasem (2007) [90] Thailand CRF01_AE 221 286.4 270 288

Eshleman (2001) [91] Uganda A/D 102 1261.2 1260 1302

Ssemwanga (2012) [92] Uganda A/D 72 1025.0 1025 1025

Wolf (2017) [93] USA B 1653 1020.8 868 1080

TenoRes Study Group (2016) [94] South Africa C 102 1001.4 921 1209

van Zyl (2017) [95] South Africa C 59 1056.7 1002 1070

Huang (2003) [96] Reference panel n/a 44 1189.9 1187 1190

Overall 2784 960.4 270 1302

https://doi.org/10.1371/journal.pone.0206409.t001
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lengths and 100 tips. The codon substitution model parameters, including the transition-trans-

version bias parameter and the two-parameter gamma distribution for rate variation among

sites, were calibrated by fitting the same type of model to actual HIV-1 sequence data [103].

We adjusted the ‘treelength’ simulation parameter in the INDELIBLE program control file to

modify the average divergence between sequences at the tips.

Other virus datasets. Finally, we performed experiments with dengue, influenza A, hepa-

titis B, and hepatitis C virus sequences. The dengue and influenza sequences were retrieved

from the National Center for Biotechnology Information (NCBI) Virus Variation sequence

database on August 10, 2017. The dengue virus sequences were accessed from https://www.

ncbi.nlm.nih.gov/genomes/VirusVariation/Database/nph-select.cgi?taxid=12637 with the

query options “Nucleotide”, “Full-length sequences only”, and “Collapse identical sequences”

for a total of 4893 sequences with an average length of 10585 bp. Influenza sequences were

accessed from https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=

genomeset with the query options “Genome sets: Complete only”, and “Type: A” for a total of

38215 sequences with an average length of 13455 bp. Hepatitis B sequences were retrieved

from the Hepatitis B Virus Database operated by the Institut de Biologie et Chimie des Pro-

teines (IBCP), accessible at https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset?seqtype=0, on

August 10, 2017 for a total of 5841 sequences with an average length of 3201 bp. Finally, hepati-

tis C sequences were retrieved from the Los Alamos (LANL) sequence database, accessible at

https://hcv.lanl.gov/components/sequence/HCV/search/searchi.html, on August 10, 2017,

using the query options “Excluding recombinants”, “Excluding ‘no genotype”’, “Genomic

region: complete genome”, and “Excluding problematic” for a total of 1923 sequences with an

average length of 9140 bp. After removal of small classes, our data comprised 4 subtypes of

dengue virus, 12 subtypes of hepatitis B, 6 subtypes of hepatitis C, and 56 subtypes of influenza

type A.

Results

Our subtype classification method has two main parameters that may be varied: namely, the

specific classifier to be used, and the value k of the length of the k-mers to count when produc-

ing feature vectors. We begin with the full set of full-length HIV-1 genomes from the LANL

database, and we perform a separate 10-fold cross-validation experiment for each of the fifteen

classifiers listed in the Methods section, and all values of k from 1 to 10, that is, 160 indepen-

dent experiments in total. For each value of k, we plot the highest accuracy obtained by any

classifier as well as the average running time over the classifiers, see Fig 1. We observe that

k = 6 achieves a good balance between classifier performance and accuracy, so at k = 6, we list

the accuracy obtained by each classifier and its corresponding running time averaged over five

runs, see Table 2. As can be seen, the SVM-based classifiers, multilayer perceptron, and logistic

regression achieve the highest accuracy, with the SVM-based classifiers achieving also the low-

est running time out of those.

Since it is typical to have only partial genome sequences available, we repeat the same

10-fold cross-validation at k = 6, with the linear SVM classifier, this time with the set of all pol
genes from the LANL database. We find that the accuracy changes from 96.49% (full-length

genomes) to 95.68% (pol gene sequences), indicating that the use of partial genomes does not

substantially reduce classification performance. Further, we expect that the inclusion of recom-

binant forms should lower accuracy, since it requires the classifier to accurately distinguish

them from their constituent ‘pure’ subtypes. To test this, we repeat the same 10-fold cross-vali-

dation at k = 6 and with the linear SVM classifier, with the set of all full-length genomes from

the LANL database, this time omitting the 17 classes of recombinant forms and leaving only
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the 9 classes of pure subtypes. We find that the accuracy increases from 96.49% (including

recombinants) to 99.64% (omitting recombiants), and in fact only 3 sequences are misclassi-

fied in the latter case.

The sequences present in the LANL database are curated to be representative of global

HIV-1 diversity, and therefore high classification accuracies on that dataset are, to some

extent, to be expected. In order to perform a more challenging benchmark on our algorithm,

we compute its accuracy on the eleven selected testing datasets of pol gene fragments from

Table 1, after training with the set of whole pol genes from the LANL 2010 web alignment.

Based on the previous performance measurements, we use the linear SVM classifier and k = 6.

We also perform the same accuracy measurement with four other state-of-the-art HIV

Fig 1. Highest accuracy score and running time averaged across all fifteen classifier algorithms, at different values

of k, for the full set of 6625 whole HIV-1 genomes from the LANL database.

https://doi.org/10.1371/journal.pone.0206409.g001

Table 2. Classification accuracy scores after 10-fold cross-validation and running times averaged over five runs for each of the fifteen classifiers at k = 6, for the full

set of 6625 whole HIV-1 genomes from the LANL database.

Classifier Accuracy Running time

Mean Standard deviation

cubic-svm 96.66% 59.7s 0.81s

quadratic-svm 96.59% 58.3s 0.91s

linear-svm 96.49% 57.7s 1.60s

multilayer-perceptron 95.49% 60.6s 0.94s

logistic-regression 95.32% 102.0s 0.92s

10-nearest-neighbors 93.97% 44.3s 0.68s

nearest-centroid-median 93.95% 34.0s 0.83s

nearest-centroid-mean 93.84% 33.7s 0.33s

decision-tree 93.53% 62.3s 1.03s

random-forest 93.07% 43.7s 0.77s

sgd 91.10% 37.4s 1.32s

gaussian-naive-bayes 87.75% 34.0s 0.80s

lda 77.76% 36.0s 1.37s

qda 75.13% 38.3s 0.48s

adaboost 64.85% 159.3s 1.21s

https://doi.org/10.1371/journal.pone.0206409.t002
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subtyping tools: CASTOR, COMET, SCUEAL, and REGA, and show the results in Table 3. In

sum, our method (KAMERIS) comes within a few percent of the best tools in all cases, and has

the highest average accuracy (both unweighted, and weighted by the number of sequences in

each set).

The training set we use from the LANL 2010 web alignment does not have a balanced num-

ber of sequences for its 15 classes of HIV-1 subtypes or CRFs—classes range in size from 20 to

799 sequences. The smallest training set classes represented in our test data are subtype G and

CRF 01B, each with 26 training sequences. To ensure that small training set classes do not neg-

atively impact accuracy, we compute accuracy on those classes alone, and find a classification

accuracy of 95.2% for subtype G and 100% for 01B, which is comparable to our accuracy on

the rest of the test dataset.

Running time is another important performance indicator, so we also compare the perfor-

mance of these five tools for the dataset of van Zyl et al. [95] and also for all datasets together

(see Table 4). We observe that our tool matches or outperforms the competing state-of-the-art.

Note that, for these comparison experiments, CASTOR, COMET, SCUEAL, and REGA were

run from their web-based interfaces, and therefore the exact specifications of the machines

running each programs could not be determined. For this reason, the running times presented

here should be taken as rough order-of-magnitude estimates only.

Overall, these experiments demonstrate our method is nearly identical in both accuracy

and running time to the top third-party tool, COMET. Our tool differs from COMET in that it

is open-source and freely available for commercial use, and is available in a standalone applica-

tion which can be run on any computer, while COMET is closed-source and freely available

for non-commercial research use only, and is publicly available only in a web-based system.

So far, we have only discussed supervised classification, and we have presented promising

results for our approach. However, supervised classification requires data with known labels,

Table 3. Classification accuracies for all tested HIV-1 subtyping tools, for each testing dataset; average accuracy both with and without weighting datasets by the

number of sequences they contain.

Source KAMERIS COMET CASTOR SCUEAL REGA

Nadai (2009) [86] 100.0% 100.0% 81.8% 92.4% 86.4%

Niculescu (2015) [87] 95.9% 96.9% 75.3% 94.8% 100.0%

Paraschiv (2017) [88] 91.9% 73.3%1 46.5% 68.6% 87.2%

Rhee (2017) [89] 94.0% 95.4% 0.4% 75.9% 12.8%1

Sukasem (2007) [90] 90.0% 91.0% 0.9% 64.3% 8.1%2

Eshleman (2001) [91] 88.5% 90.6% 4.2% 84.4% 90.6%

Ssemwanga (2012) [92] 88.3% 90.0% 0.0% 73.3% 95.0%

Wolf (2017) [93] 99.8% 99.8% 61.1% 99.3% 98.2%

TenoRes Study Group (2016) [94] 99.0% 99.0% 28.4% 99.0% 100.0%

van Zyl (2017) [95] 94.9% 93.2% 57.6% 93.2% 94.9%

Huang (2003) [96] 95.2% 97.6% 19.0% 81.0% 95.2%

Average (unweighted) 94.3% 93.3% 34.1% 84.2% 78.9%2

Average (weighted) 97.1% 96.9% 45.1% 91.2% 81.4%2

1 In this case, a substantial number of sequences that were classified as subtype A by REGA and our method were labeled unclassified subtypes (U) by COMET. In an

HIV-1 phylogeny, subtype U sequences tend to be assigned a basal position (near the root) within the subtype A clade, suggesting that these sequences may be

unrecognized variants or complex recombinants of subtype A.
2 These low accuracies are primarily caused by REGA misclassifying many CRF01 sequences as subtype A, and subtype A is mostly equivalent to CRF01 in the pol
region. If CRF01 and A were treated as equivalent, these accuracies would be 97.9% and 86.4% for the Rhee and Sukasem datasets, respectively, and unweighted and

weighted averages of 93.8% and 96.2%, respectively.

https://doi.org/10.1371/journal.pone.0206409.t003
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which can be problematic considering that the rapid rates of mutation and recombination of

viruses (particularly HIV-1) can lead to novel strains and recombinant forms emerging

quickly. Unsupervised data exploration tools can help address this problem. To demonstrate,

we take the set of all whole genomes from the LANL database and produce a MoDMap, visual-

izing their interrelationships, based on the Manhattan distance matrix obtained by computing

all pairs of k-mer frequency vectors (see Methods section), for 9 different pure subtypes or

groups (Fig 2), and just subtypes A, B, and C (Fig 3). As can be seen, based on these distances,

the points in the plots are grouped according to known subtypes, and indeed it can be seen

that subtypes A1 and A6 group together, and as well B and D group together, as could be

expected.

Synthetic data has been useful in the study of viral species such as HIV-1, because a

ground-truth classification is known for synthetic sequences without ambiguity. However, one

may wonder how well such synthetic sequences model natural ones. We attempt to measure

this by training a classifier on natural and synthetic HIV-1 sequence data—if natural and syn-

thetic sequences cannot be distinguished, one may conclude that the simulation is realistic.

For the ‘natural’ class we use the set of all pol genes from the LANL database, and for the ‘syn-

thetic’ class we use 1500 synthetic pol genes produced as detailed above (see ‘Synthetic data’ in

the Methods section), and we perform a 10-fold cross-validation at k = 6 and with the linear

SVM classifier. We obtain an accuracy of 100%, meaning that the classifier can distinguish nat-

ural from synthetic sequences with perfect accuracy. This suggests that synthetic sequence data

should be used with caution, since this result indicates it may not be perfectly representative of

natural sequence data—specifically, our result suggests there is some characteristic of the syn-

thetic sequences which differs from the natural sequences, which our method is able to recog-

nize and use. We explore this further by generating a MoDMap, as seen in Fig 4. Interestingly,

even though our supervised classifiers succeeded to discriminate between real and synthetic

sequences with an accuracy of 100%, the approach using distances between k-mer frequency

vectors results in the natural and synthetic sequences of specific subtypes grouping together,

indicating that the synthetic sequences have some features that relate them to the correspond-

ing natural sequences of the same subtype.

Discussion

The k-mer based supervised classification method we propose in this paper has several advan-

tages compared to other popular software packages for the classification of virus subtypes.

First, we have shown on several manually-curated data sets that k-mer classification can be

highly successful for rapid and accurate HIV-1 subtyping relative to the current state-of-the-

Table 4. Approximate running times for all tested subtyping tools, for the dataset of van Zyl et al. [95] and all

datasets listed in Table 3. The van Zyl dataset was chosen at random for this purpose.

Tool Running time for the van Zyl dataset Running time for datasets from Table 3

KAMERIS less than 2 seconds 16 seconds

COMET less than 2 seconds 14 seconds

CASTOR 3 seconds 46 seconds

SCUEAL1 18 minutes 8 hours

REGA1 31 minutes 19 hours

1 The REGA and SCUEAL web servers have limits of 1000 and 500 sequences per run, respectively. Thus, 3 batches of

sequences were needed for REGA, and 6 batches for SCUEAL to classify all sequences. COMET, CASTOR, and our

tool have no such limits.

https://doi.org/10.1371/journal.pone.0206409.t004
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art. Furthermore, releasing our method as an open-source software project confers significant

advantages with respect to data privacy, transparency and reproducibility. Other subtyping

algorithms such as REGA [104] and COMET [8] are usually accessed through a web applica-

tion, where HIV-1 sequence data is transmitted over the Internet to be processed on a remote

server. This arrangement is convenient for end-users because there is no requirement for

installing software other than a web browser. However, the act of transmitting HIV-1 sequence

data over a network may present a risk to data privacy and patient confidentiality—concerns

include web applications neglecting to use encryption protocols such as TLS, or servers

becoming compromised by malicious actors. As a concrete example, the webserver hosting the

first two major releases of the REGA subtyping algorithm [104] was recently compromised by

an unauthorized user (last access attempt on November 27, 2017). In contrast, our implemen-

tation is available as a standalone program, without any need to transmit sequence data to an

external server, eliminating those issues. In addition, our implementation is released under a

permissive open-source license (MIT). In contrast, REGA [9] and COMET [8] are proprietary

‘closed-source’ software, making it impossible to determine exactly how subtype predictions

are being generated from the input sequences.

Relying on a remote web server to process HIV-1 sequence data makes it difficult to deter-

mine which version of the software has been used to generate subtype classifications, and by

Fig 2. MoDMap of 4373 full-length HIV-1 genomes of 9 different pure subtypes or groups, at k = 6.

https://doi.org/10.1371/journal.pone.0206409.g002
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extension difficult to guarantee that classification results can be reproduced. There is growing

recognition that tracking the provenance (origin) of bioinformatic analytical outputs is a nec-

essary component of clinical practice. For example, the College of American Pathologists

recently amended laboratory guidelines on next-generation sequence (NGS) data processing

Fig 3. MoDMap of 4124 full-length HIV-1 genomes of subtypes A, B, and C, at k = 6.

https://doi.org/10.1371/journal.pone.0206409.g003

Fig 4. MoDMap of 9270 natural HIV-1 pol genes vs. 1500 synthetically generated HIV-1 pol genes of various subtypes. The same plot is colored

on the left by type (natural and synthetic) and on the right by HIV-1 subtype.

https://doi.org/10.1371/journal.pone.0206409.g004
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to require that: “the specific version(s) of the bioinformatics pipeline for clinical testing using

NGS data files are traceable for each patient report” [105]. In contrast to other tools, our stand-

alone package makes it easy to use exactly the desired version of the software and thus enables

precise reproducibility.

We now discuss some limitations of our approach. Like many machine learning

approaches, our method does not provide an accessible explanation as to why a DNA sequence

is classified a certain way, compared to a more traditional alignment-based method. In some

sense, the classifiers act more as a black box, without providing a rationale for their results.

Another issue is our requirement for a sizable, clean set of training data. As opposed to an

alignment-based method that could function with even a single curated reference genome per

class, machine learning requires several examples per training class, as discussed previously, to

properly train. Finally, one issue common to any HIV-1 subtyping tool is the fact that recom-

bination and rapid sequence divergence can make subtyping difficult, especially in cases where

the recombinant form was not known at the time of training. Other tools are capable of giving

a result of ‘no match’ to handle ambiguous cases, but our method always reports results from

the classes used for training.

To more clearly demonstrate this last issue, we generate a random sequence of length

10,000 with equal occurrence probabilities for A, C, G, and T, and we ask the five subtyping

tools evaluated in our study to predict its HIV-1 subtype. As expected, REGA gives a result of

‘unassigned’ and SCUEAL reports a failure to align with the reference. Our tool reports sub-

type ‘U’ with 100% confidence, CASTOR predicts HIV-1 group ‘O’ with 100% confidence, and

COMET reports SIVCPZ (simian immunodeficiency virus from chimpanzee) with 100% confi-

dence. These outcomes are consistent with the disproportionately large genetic distances that

separate HIV-1 group O and SIVCPZ from HIV-1 group M—a line drawn from a random

point in sequence space is more likely to intersect the branch relating either of these distant

taxa to group M. Similarly, branches leading to subtype U sequences tend to be longer and to

intersect the HIV-1 group M tree at a basal location. HIV-1 subtype U does not comprise a dis-

tinct clade. Rather, the LANL database labels sequences as ‘U’ when they belong to a lineage

not meeting the criteria required for a designation as a subtype [5]. However, practical but

anecdotal experience suggests subtype U sequences are typically basal. This artificial example

implies that real HIV-1 sequences that do not readily fit into any of the defined subtypes or cir-

culating recombinant forms may result in incorrect predictions with misleadingly high confi-

dence scores.

In spite of these limitations, our method not only matches or improves upon current HIV-

1 subtyping algorithms, but it should also be broadly applicable to any DNA sequence classifi-

cation problem, including other virus subtyping problems. To demonstrate this, we use the

same method (with k set to 6 and a linear SVM classifier) and 10-fold cross-validation to mea-

sure the accuracies for classifying dengue, hepatitis B, hepatitis C, and influenza type A virus

full-length genomes (described in the Datasets section) to their respective reference subtypes.

Overall, we obtain accuracies of 100% for dengue virus, 95.81% for hepatitis B virus, 100% for

hepatitis C virus, and 96.68% for influenza A virus. We also provide a MoDMap visualization

of the subtypes of hepatitis B, as seen in Fig 5. This plot displays not only clear separation

between subtypes but also structure within subtypes A and B, which would be an interesting

target for future study.

Because of the exponential growth of sequence databases, modern bioinformatics tools

increasingly must be capable of handling NGS sequence data and must be scalable enough to

manage huge sets of data. As well, researchers often demand the privacy, security, and repro-

ducibility characteristics an open-source, standalone, offline tool such as ours provides. How-

ever, there remain several areas for future work. Although our tool matches or exceeds the
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classification speed of the competing state-of-the-art, performance optimization was not a

focus of this study and we believe there is room to substantially improve running time even

further. Similarly, although we match or exceed the classification accuracy of the competing

state-of-the-art, different modern machine learning methods such as GeneVec [106] or deep

neural networks may permit us to achieve even higher accuracy on challenging datasets. As

well, given the rapid rate of mutation of many viruses, it would be highly useful for our tool to

be capable of giving a result of ‘no match’ with its training data. Further, since our software is

able to classify sequences quickly, we believe it should be capable of handling large NGS

sequence datasets, and we leave a careful study of this application to future work. Each of these

possibilities could make our method and software even more useful in the future.
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Fig 5. MoDMap of 5164 whole hepatitis B genomes of 6 different pure subtypes.

https://doi.org/10.1371/journal.pone.0206409.g005

An open-source k-mer based machine learning tool for fast and accurate subtyping of HIV-1 genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0206409 November 14, 2018 15 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0206409.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0206409.s002
https://doi.org/10.1371/journal.pone.0206409.g005
https://doi.org/10.1371/journal.pone.0206409


Acknowledgments

We wish to thank David Nguyen for his contributions to running preliminary datasets of sim-

ulated HIV sequence data sets through the web-based subtyping methods, Gurjit Randhawa

for helpful technical and implementation-related discussions, and Dr. Stephen Watt for sug-

gesting the name KAMERIS for this software.

Author Contributions

Conceptualization: Stephen Solis-Reyes, Lila Kari.

Data curation: Stephen Solis-Reyes, Mariano Avino, Art Poon.

Formal analysis: Stephen Solis-Reyes, Mariano Avino, Art Poon.

Investigation: Stephen Solis-Reyes.

Methodology: Stephen Solis-Reyes, Mariano Avino, Art Poon, Lila Kari.

Project administration: Lila Kari.

Software: Stephen Solis-Reyes.

Supervision: Lila Kari.

Validation: Stephen Solis-Reyes, Mariano Avino, Art Poon.

Visualization: Stephen Solis-Reyes.

Writing – original draft: Stephen Solis-Reyes, Art Poon.

Writing – review & editing: Stephen Solis-Reyes, Mariano Avino, Art Poon, Lila Kari.

References
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