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Abstract  
The application of autologous fat grafting in reconstructive surgery is commonly used to improve 
functional form. This review aims to provide an overview of the scientific evidence on the biology of 
adipose tissue, the role of adipose-derived stem cells, and the indications of adipose tissue grafting 
in peripheral nerve surgery. Adipose tissue is easily accessible through the lower abdomen and inner 
thighs. Non-vascularized adipose tissue grafting does not support oxidative and ischemic stress, 
resulting in variable survival of adipocytes within the first 24 hours. Enrichment of adipose tissue 
with a stromal vascular fraction is purported to increase the number of adipose-derived stem cells 
and is postulated to augment the long-term stability of adipose tissue grafts. Basic science nerve 
research suggests an increase in nerve regeneration and nerve revascularization, and a decrease in 
nerve fibrosis after the addition of adipose-derived stem cells or adipose tissue. In clinical studies, 
the use of autologous lipofilling is mostly applied to secondary carpal tunnel release revisions with 
promising results. Since the use of adipose-derived stem cells in peripheral nerve reconstruction 
is relatively new, more studies are needed to explore safety and long-term effects on peripheral 
nerve regeneration. The Food and Drug Administration stipulates that adipose-derived stem cell 
transplantation should be minimally manipulated, enzyme-free, and used in the same surgical 
procedure, e.g. adipose tissue grafts that contain native adipose-derived stem cells or stromal 
vascular fraction. Future research may be shifted towards the use of tissue-engineered adipose tissue 
to create a supportive microenvironment for autologous graft survival. Shelf-ready alternatives could 
be enhanced with adipose-derived stem cells or growth factors and eliminate the need for adipose 
tissue harvest. 
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Introduction 
Adipose tissue harvesting and grafting have taken a greater role in clinical 
practice over the past few decades. Adipose tissue grafting techniques 
have rapidly evolved while advancing reconstructive options to restore 
functional and aesthetic form in reconstructive surgery. Lipofilling is often 
used to improve volume or contour, but is associated with the unpredictable 
resorption of the adipose tissue. This reduction in adipose volume is partly 
attributed to the insufficient vascularization of the transplanted tissue 
and may be overcome by pedicled adipofascial flaps (Nguyen et al., 1990). 
Perforator-based adipofascial flaps are particularly useful in small-to-medium-
sized soft-tissue defects that are unsuitable for skin grafting alone (Ozakpinar 
et al., 2013). In peripheral nerve surgery, the use of platelet-rich plasma 
(PRP) in the sites of nerve injury may promote tissue healing and relief of 
neuropathic pain (El Khoury et al., 2017). 

Adipose tissue has many advantages; it is easy to harvest, inexpensive, 
biocompatible, has potential for integration, and is regarded as an abundant 
source of multipotent stem cells (di Summa et al., 2011). The stromal vascular 
fraction (SVF) of subcutaneous adipose tissue contains adipose-derived stem 
cells (ASC). These cells share similarities with mesenchymal stromal cells 
isolated from the bone marrow and differentiate into multiple cell lineages 
such as adipocytes, chondrocytes, osteoblasts, and myocytes (Bunnell et al., 
2008). ASCs secrete growth factors, which provide the potential of cell-based 
therapy and tissue engineering for reconstructive and nerve surgery (Bacakova 
et al., 2018; Travnickova and Bacakova, 2018). Although its clinical applications 
are still developing, scientific pre-clinical studies have demonstrated 
promising results. In this review, the scientific evidence on the role of ASCs 
within adipose tissue will be explored. Moreover, the application of adipose 
tissue and ASCs in nerve surgery and other applications will be detailed, and 
their indications in animal models and clinical studies will be described. 

Search Strategy and Selection Criteria 
Literature search was performed using PubMed, MEDLINE, Cochrane, Web 

of Science, and Google Scholar databases using the following combination of 
keywords: “adipose-derived stem cells” OR “cell-based therapy” OR “platelet-
rich plasma” OR “adipose-tissue grafting” OR “stromal vascular fraction” AND 
“nerve regeneration” OR “nerve graft” OR “nerve transplantation” OR “nerve 
reconstruction” until July 2021. The results were further screened by title and 
abstract to only present studies in peripheral nerve injuries in both animals 
and humans. Other inclusion criteria were articles (i) written in English, (ii) 
published in the last 35 years, and (iii) that had available abstracts. Articles 
describing the use of ASCs in aesthetic surgery were excluded. 

Grafting of Adipose Tissue 
The first report of adipose tissue surgery dates back to 1893 when Neuber 
transferred multiple small fat grafts to fill a facial scar depression (Neuber, 
1893). Adipose tissue grafting is now commonly used in soft-tissue 
reconstruction in conditions such as irradiation wounds, aesthetic surgery, 
breast reconstruction, burns, and trauma defects (Pu et al., 2015a). Although 
it has low immunogenicity to the host and is easily obtainable, it is currently 
limited by the unpredictability of resorption (Pu et al., 2015b; Zhou et al., 
2016). While many previously believed that grafted adipocytes survive in 
the recipient site (Smahel, 1986; Billings and May, 1989; Cortese et al., 
2000), newer studies by Eto et al. (2012) suggest that a large proportion of 
adipocytes in a non-vascularized fat graft are unlikely to survive even when 
the graft is placed in a good recipient bed. The non-vascularized nature 
of the graft does not support the oxidative and ischemic stress, resulting 
in necrosis of some of the adipocytes within the first 24 hours (Eto et al., 
2011, 2012; Mashiko and Yoshimura, 2015). In the following days, survival 
is based on plasmatic imbibition and inosculation, and extensive infiltration 
of inflammatory cells occurs. Angiogenesis occurs and small graft vessels 
join local host vessels. If no revascularization occurs, fat degeneration and 
necrosis with scarring and oil cyst formation ensue with varying degrees of 
macrophage-mediated replacement of fat (Kato et al., 2014). Phagocytosis 
of adipocytes by macrophages and its resorption may take weeks to months, 
therefore the grafted adipose tissue maintains its original size for at least 
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the first four weeks (Mashiko and Yoshimura, 2015). Often the inflammation 
decreases and the fat graft stabilizes (Kato et al., 2014). Whether or not these 
cells undergo replacement in the following months is currently a topic of 
debate (Eto et al., 2012; Kato et al., 2014; Mashiko and Yoshimura, 2015) since 
many studies have determined adipocyte viability solely by their morphology 
(Carpaneda and Ribeiro, 1993). Because of the large size of the adipocyte, 
being 50 to 150 μm, histologic sections (3 to 10 μm) cannot capture a single 
adipocyte including all its nuclei in one section to evaluate cell viability (Eto 
et al., 2012). Therefore, the determination of adipose tissue viability by 
standard histology is limited. The survival of adipose tissue is believed to be 
volume-dependent. The greater the volume is injected, the higher chances of 
necrosis, secondary to the decreased plasmatic diffusion of the surrounding 
host tissue. This has led to current research techniques that focus on purifying 
adipose tissue or maximizing the number of viable adipocytes prior to grafting 
(Carpaneda and Ribeiro, 1993; Boschert et al., 2002; Crawford et al., 2010).

Isolation and Harvesting of Adipose-Derived 
Stem Cells  
Adipose graft survival may be influenced by various factors, such as age, 
donor harvest site, harvesting and processing technique, body mass index, 
and other variables (Geissler et al., 2014). ASCs demonstrate reduced 
angiogenic differentiation, proliferation, migration, viability, and an altered 
and inflammatory transcriptome in obese or overweight lineages compared 
to lean (Vyas et al., 2019).  Donor sites to harvest high concentrations of 
ASCs and SVF are commonly the lower abdomen and inner thighs. These 
areas provide an ease of surgical access which is associated with minimal 
morbidity (Padoin et al., 2008; Li et al., 2013; Tsekouras et al., 2017). There 
are many adipose harvest techniques which include vacuum suction, syringe 
suction, or surgical excision (Tan et al., 2016; Fontes et al., 2018). Common 
to all techniques is the goal of minimizing adipocyte traumatic damage 
while increasing the survival of adipose tissue. The choice of technique 
is dependent on the volume required. Syringe aspiration is the preferred 
technique to maintain the viability and to maximize the cellular yield of ASCs, 
compared to conventional liposuction. This method can be applied when 
small volumes of fat, less than 100 mL, are required. When large volumes are 
needed, low negative-pressure lipoaspiration is preferred over conventional 
streamlined liposuction devices, to minimize trauma and improve the yield of 
ASCs. When collecting, the use of larger cannulas may reduce cellular rupture 
and preserve the native tissue architecture (Campbell et al., 1987). Moreover, 
wet and dry aspiration can be performed. Wet aspiration uses a tumescent 
solution containing lidocaine (0.01–0.04%, to maintain adipocyte viability) and 
a variable concentration of epinephrine injected at the donor site in a ratio 
of 1:1 or greater (Keck et al., 2010). This causes hydrodissection and enlarges 
the target fat layer, which facilitates the ease of aspiration with decreased 
pain, ecchymosis, and lower shear stress resulting in improved graft survival. 
Dry aspiration directly aspirates fat without the injection of any solution and 
is associated with more blood loss, ecchymosis, and postoperative pain (Illouz 
et al., 1989; Kakagia and Pallua, 2014; Kasem et al., 2015).  

ASCs are isolated from whole fat or lipoaspirated fat and undergo a 
number of processing steps, including sedimentation, filtration, washing, 
centrifugation (e.g., with a force of 1200 × g for 3 minutes), and collagenase 
digestion to obtain the SVF (Zuk et al., 2002). After centrifugation, three 
layers are separated: the top layer contains lipids and debris from adipocyte 
rupture; the second consists of adipose tissue; the third layer is the aqueous 
layer containing blood and wetting solutions, and the SVF pellet is formed  
(Coleman, 2006; Condé-Green et al., 2010; Wilson et al., 2011; Tuin et 
al., 2016; Figure 1). SVF comprised 10% ASCs and yields a heterogeneous 
population of cells with distinct surface marker phenotypes (Shukla et al., 
2020). The most commonly reported positive markers of ASCs are CD90, 
CD44, CD29, CD105, CD13, CD73, CD166, CD10, CD49e, and CD59, while 
the most commonly found negative markers are CD31, CD45, CD14, CD11b, 
CD34, CD19, CD56, and CD146 (Mildmay-White and Khan, 2017). A sub 
classification of markers includes the exhibition of a CD90+, CD31–, and CD45– 
cell surface marker profile (Gronthos et al., 2001; Johal et al., 2015). An 
overview of markers to identify mesenchymal stem cells (MSC) according to 
their tissue of origin is presented in Table 1 (Uder et al., 2018). ASCs have 
many homeostatic functions (Figure 2). ASCs regulate the extracellular matrix 
(ECM) to support tissue structure, provide the potential for angiogenesis, and 
produce cytokines that play a role in regeneration (Cherubino et al., 2011). 

Fat processing is required since the lipoaspirate also contains collagen fibers, 
blood, and debris, which can cause inflammation at the recipient site. Injection 
of these non-fat components can cause degradation of the grafted fat and 
an erroneous impression of the volume of correction (Mojallal and Foyatier, 
2004). Centrifugation speeds higher than 1200 × g may damage the structural 
integrity of the adipose tissue, resulting in increased necrosis and apoptosis 
of cells, increased fluid and oil portions, and decreased injectable tissue 
volume. Damaged cells may also result in decreased adipogenic differentiation 
capacity and tubule formation, indicating a diminished function of cells 
(Simonacci et al., 2017). Small-gauge needles, adapted to the recipient site, 
are argued to reduce trauma and consequently reduce the risks of bleeding 
and poor graft oxygen diffusion (Kakagia and Pallua, 2014). Fat injection in 
multiple small aliquots is preferred over single sessions using larger volumes 
to increase plasmatic diffusion and revascularization (Simonacci et al., 2017). 
Due to limitations associated with isolation and expansion procedures of 
purified ASCs, there is a preference to enrich autologous fat grafts with SVF. 
Cell-assisted lipotransfer (CAL), which uses autologous fat grafting enriched 

Table 1 ｜ Summary of mesenchymal stem cell (MSC) sources and cell surface markers

Origin of MSCs Expressed in MSCs Not expressed in MSCs

Adipose tissue CD90, CD44, CD29,  CD105, CD13, 
CD73, CD166, CD10, CD49e, CD59

CD31, CD45, CD14, CD11b, 
CD34, CD19, CD56, CD146

Bone marrow CD90, CD105, CD73 CD45, CD14, CD34
Dental pulp CD90, CD44, CD29, CD105 CD45, CD14, CD34
Peripheral blood CD90, CD44, CD105 CD45, CD133
Skin CD90, CD44, CD105, CD73, CD166 CD45, CD34
Differences between species
CD29, CD40, CD44 Expressed across all species.
CD45 Not expressed, across all species.
CD19 Only not expressed in humans.
CD49e, CD59 Only expressed in humans.
CD90 Expressed in humans, pigs and rats. Less expressed in horses and 

sheep. Not expressed in mice. 
CD166 Only expressed in humans, rats and sheep.

An overview of cell surface markers in different tissues is presented. A summary of 
differences between species is also given, comparing humans to horses, sheep, pigs, rats, 
and mice (Uder et al., 2018).  

with lipoaspirated SVF, has been proven to augment the eventual volume and 
long-term stability of fat grafts. Applying CAL results in higher survival rates 
and reduction of repeat procedures compared to non-enriched fat grafting 
(Yoshimura et al., 2008a, b). CAL only benefits fat survival rates in small 
volumes of fat grafting, which are less than 100 mL (Laloze et al., 2018). 

Platelet-Rich Plasma
PRP is a concentrate of platelet proteins and contains many growth factors, 
including epidermal growth factor, insulin-like growth factor-1, platelet-
derived growth factor, transforming growth factor-β 1 and 2, thrombospondin 
and vascular endothelial growth factor. PRP increases the expression of 
type I collagen to accelerate wound healing (Cho et al., 2012). PRP is blood-
derived and is typically obtained by centrifugation of whole blood to obtain 
five to seven times the concentration of autologous platelets suspended 
in a small volume of plasma. Centrifugation separates the platelets from 
red blood cells and leukocytes and allows the collection of the buffy coat 
(Cervelli et al., 2009; Conese et al., 2020). PRP is suggested to be a promising 
approach to enhance the applications of ASCs as it promotes the proliferation 
of endothelial cells and angiogenesis (Liao et al., 2014). In vitro and in vivo 
studies have proven that PRP and ASCs act synergistically when combined, 
resulting in better volume fat retention than when used independently. In a 
rat sciatic crush injury model, PRP was found to play a role in enhancing nerve 
regeneration (Emel et al., 2011). Moreover, PRP promotes axon growth in 
spinal cord tissues through mechanisms associated with insulin-like growth 
factor-1 and vascular endothelial growth factor (Takeuchi et al., 2012). 

To date, no clear consensus exists on the beneficial effects of PRP when used 
independently compared to ASCs only, or ASCs and PRP combined (Vyas et 
al., 2020b). Optimal platelet concentration and preparation methods must 
be determined so that the results of studies can be compared. Despite 
the potential beneficial effects of PRP in reconstructive applications with 
minimal side effects, the use of PRP has been constrained due to the limited 
availability of clinical studies (Reddy et al., 2018). Future studies are needed 
to evaluate preparation and fat reimplantation techniques in larger clinical 
trials. 

Pre-Clinical Evidence for the Use of 
Adipose-Derived Stem Cells 
Paracrine properties of adipose-derived stem cells 
Detailed in vivo monitoring provides us insights into the fate of transplanted 
cells, including their distribution, differentiation, and longevity over time. 
Various techniques are available to label cells by direct or indirect methods 
(Srivastava and Bulte, 2014). Luciferase-based non-invasive bioluminescence 
imaging is an indirect method, which allows real-time in vivo monitoring 
of location and proliferation of luciferase-expressing MSCs. Using this 
technique, it was found that labeled MSCs could be detected for up to 29 
days when seeded on nerve allografts (Rbia et al., 2019). When influenced 
by surrounding tissues, ASCs have the ability to enhance the expression of 
various growth factors (e.g., angiogenic and neurotrophic growth factors) 
(Rehman et al., 2004; Zhao et al., 2011; Fan et al., 2014; Mathot et al., 
2020; Yi et al., 2020). The stem cell secretome, i.e., the paracrine factors 
secreted by stem cells and utilized for inter-cell communication, is activated 
under stressful conditions, such as hypoxia. This mechanism of action has 
been proven by pre-incubation of stem cells under stressful conditions and 
is called the “paracrine hypothesis” (Tompkins et al., 2018). The survival of 
grafted ASCs is promoted in acute ischemic and inflammatory environments 
by differentiation into e.g. endothelial cells and vascular smooth muscle cells 
(Nagata et al., 2016), which is also explained by the paracrine effects. The 
paracrine effect also explains the long-term efficacy of MSCs, which extends 
beyond the survival time of these cells. Many studies have highlighted the role 
of acute localized tissue inflammation, which leads to hypoxia and triggers 
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Other applications of adipose-derived stem cells 
ASCs have been previously shown to differentiate into different cell types 
including cells of the mesenchymal lineage. Their use is promising in full-
thickness scar improvement, scar reduction, and wound healing (Cherubino et 
al., 2011). In animal models, scars injected with ASCs resulted in a reduction 
of surface area and improvements of color compared to control (Yun et al., 
2012; Spiekman et al., 2017). ASCs promote fibroblast proliferation by direct 
cell-to-cell contact and secretory-induced paracrine activation of growth 
factors, resulting in acceleration of re-epithelization of wounds (Kim et al., 
2007). Post-radiation-induced dermatitis is a clinically relevant problem and 
suggested to be the result of epidermal thickening and irregular deposition 
of collagen in the dermis. Previous studies have shown that treatment with 
lipofilling decreases SMAD3 protein levels, resulting in the reduction of 
radiation-induced dermatitis (Sultan et al., 2011; Garza et al., 2014). SMAD3 
is a pro-fibrotic protein and plays a role in the transforming growth factor-
β pathway. Besides the mesodermal lineages (i.e., osteoblast, chondrocyte, 
and adipocyte lineage) it is hypothesized that adipose-derived MSCs can 
also differentiate into other cell types such as endothelial cells or neurons. 
Although the differentiation of these cells into endothelial cells has not 
robustly been demonstrated yet, we cannot exclude this theory (Laloze et al., 
2021). Myofibroblasts in fibrotic diseases are hypothesized to be originating 
from several sources, including from phenotypic differentiation of fibrocytes 
and the transition of endothelial cells (EndoMT pathway), often regulated by 
transforming growth factor-β (Wang et al., 2016; Huang and Ogawa, 2020). 
The differentiation of epithelial cells to myofibroblasts is associated with 
mechanical stress on the wound and inflammation. A schematic overview of 
the EndoMT pathway theory is presented in Figure 3. 

ASCs may also expedite wound healing, particularly in difficult healing 
wounds (Lee et al., 2011; Lam et al., 2013; Uysal et al., 2014; Zonari et al., 
2015). Moreover, ASCs are found to decrease fibrotic areas by decreasing 
elastin deposition (Castiglione et al., 2013). Gene expression profiles of pro-
fibrotic markers were found to decrease, while vascular endothelial growth 
factor, a pro-angiogenic factor, increased (Uysal et al., 2014). ASCs have also 
been applied to irregularly contoured burn wounds and are found to enhance 
revascularization, accelerate wound closure, and reduce scar formation 
(Dong et al., 2020). Thus, treatment of wounds or scars with ASCs in animal 
models has been shown to reduce scar tissue and enhance wound healing by 
promoting angiogenesis. 

Clinical Applications  
Many clinical studies corroborate with the Eto’s pre-clinical evidence (Eto et 
al., 2012) and also demonstrate that patients receiving higher volumes of 
injected fat maintained greater total volume retention (Choi et al., 2013). 
However, this is challenged by the study of Small and colleagues (Small et 
al., 2014), which suggests that the volume of the injected fat did not play a 
significant role in the retention of volume after reconstructive breast surgery 
(Small et al., 2014). The enrichment of adipose tissue with lipoaspirated 
SVF is proposed to increase the number of ASCs and is believed to augment 
the long-term stability of adipose tissue grafts (Tan et al., 2016). Clinical 
application of non-vascularized adipose tissue grafting in peripheral nerve 
surgery includes the treatment of recurrent or persistent symptoms after 
primary carpal tunnel release, which can be caused by the incomplete release 
and abundant scarring (Tung and Mackinnon, 2007; Jones et al., 2012). 
Tissue interposition flaps, such as the radial artery fascial flap, perforator-
based radial forearm fascial flap, thenar or hypothenar fat flap, have 
been opted to cover nerve fibers in case of scarring disorders, but require 
technically demanding procedures (Krześniak and Noszczyk, 2015). Krześniak 
and colleagues performed secondary carpal tunnel release revisions using 
an open approach combined with autologous lipofilling into the scarred 
transverse carpal ligament and adjacent subdermal tissue, antebrachial facia, 
and surrounding subdermal areas. Thickened epineurium was released, 
and lipofilling was injected under and on top of the nerve, but not into the 
nerve fibers (Krześniak and Noszczyk, 2015). This minimally invasive and 
rapid addition has been proven to reduce pathologic fibrosis and decrease 
a tendency towards excessive collagen production. These findings were 
corroborated after treatment of 2nd to 5th recurrent carpal tunnel syndrome 
by extensive neurolysis followed by perineural lipografting, with a longer 
follow-up time (mean of 30 months) (Gostelie et al., 2020). Moreover, it may 
stimulate the regeneration and elasticity of the skin and adjacent tissues, and 
significantly reduce recurrent symptoms of carpal tunnel syndrome (Coleman, 
2006; Mojallal et al., 2009; Khouri et al., 2013; Krześniak and Noszczyk, 2015). 
Thus, depositing adipose tissue directly around the nerve is hypothesized to 
stimulate nerve fiber regeneration (Krześniak and Noszczyk, 2015). 

While pre-clinical studies seem promising, the application of ASCs in clinical 
practice was initially challenged due to the possibility of ASCs contributing 
to accelerated tumor growth and recurrence in reconstructive surgery 
(Wei et al., 2015). Adipose tissue grafting has been often used following 
oncological mastectomy and combined with autologous flap reconstruction 
of the breast to create symmetry (Shukla et al., 2020). Various in vitro studies 
have suggested that adipocytes and ASCs can affect the breast cancer 
microenvironment and promote breast cancer growth and metastasis, 
which proposes concerns regarding the use of ASC enriched fat grafting in 
reconstructive surgery after breast cancer. Nevertheless, in clinical practice, 
the safety has been closely studied and it has been proven that fat grafting 
does not increase the local tumor recurrence risk in breast cancer patients 
(Vyas et al., 2020a). Furthermore, the use of enzymatic dissociation of adipose 
tissue has not yet been approved by the Food and Drug Administration 

the promotion of angiogenesis (Koliaraki et al., 2020). There is a complex 
interplay between immune cells, ASCs and the paracrine environment. As 
ASCs are greatly influenced by their paracrine environment, the paracrine 
secretome varies in different tissues and is dependent on the specific need 
for regeneration in that area. While acute inflammation is beneficial for 
angiogenesis, chronic or unresolved inflammation results in the failure of 
tissue repair mechanisms (Figure 3). This leads to further activation of ASCs 
and the increased production of extracellular matrix and fibrosis. Although 
this process is reversible in some cases, its exact mechanism remains unclear 
(Koliaraki et al., 2020). 

Peripheral nerve injuries and reconstruction
Traumatic injuries to peripheral nerves are commonly present after hand 
trauma and require the use of a nerve graft when tension-free neurorrhaphy 
is not possible. The use of nerve autografts is considered the gold standard to 
bridge these large defects. Regeneration is often suboptimal with incomplete 
target reinnervation, which could be attributed to axonal degeneration and 
fibrotic scar formation (Ngeow, 2010). 

Conduits
Di Summa and colleagues evaluated the delivery of ASCs to fibrin conduits 
prepared from fibrin glue (Tisseel®) to reconstruct 10-mm sciatic nerve 
defects in rats (Di Summa et al., 2018). Twelve weeks post-operatively, the 
histological analysis found lower levels of collagen infiltration in the distal 
nerve stump in the conduits seeded with the ASCs group when compared 
to the untreated nerve conduit group. This same pattern was also found 
for the myelinated area of the middle and distal nerve areas, which was 
greatly improved by the addition of ASCs. Carriel et al. (2013) also confirmed 
these findings when ASCs were delivered to nerve conduits. Moreover, the 
extracellular matrix was also more abundant and better organized around 
regenerated nerve tissues with ASC conduits than those without (Carriel 
et al., 2013). Immunohistochemical staining against growth-associated 
protein-43 and neurofilament can be used to evaluate the proportion of 
axons in different stages of regeneration to indicate the degree of peripheral 
nerve regeneration. Conduits filled with MSC-containing hydrogel are found 
to increase these markers in a rat sciatic nerve defect model (Carriel et al., 
2017). The delivery of ASC enhanced outcomes of nerve conduits is found 
to be comparable to autograft reconstruction (Di Summa et al., 2018). 
Interestingly, the increase in axon regeneration was also found when SVF 
was added to conduits (Suganuma et al., 2013). When directly comparing 
SVF to ASCs, it was found that both treatment groups significantly improved 
histologic and physiologic parameters compared to empty conduit controls 
(Shimizu et al., 2018). It is suggested that treatment with SVF is as effective 
as the delivery of ASCs to enhance nerve regeneration. However, SVF is more 
translatable to clinical practice (Shimizu et al., 2018). 

Nerve autografts
When nerve allografts are augmented with ASCs in a rat sciatic nerve defect 
model, this results in the increase of neuronal survival, axonal regeneration, 
and myelination (Masgutov et al., 2018). Saller and colleagues found similar 
findings when wrapping 20 mm autografts with ASC-loaded hydrogels in rats 
(Saller et al., 2018).

Nerve allografts
In a different rat sciatic nerve defect model, the delivery of stem cells to 
nerve allograft as well as wrapping nerve allograft in a pedicled adipofascial 
flap resulted in increased revascularization of the nerve (Mathot et al., 
2020). When combining stem cell delivery with an adipofascial flap, this 
resulted in a synergic effect and enhanced revascularization (Saffari et al., 
2020). Evidence suggests that ASCs have the best potential when used as 
additives in peripheral nerve regeneration (Hundepool et al., 2014). Delivery 
of independent ASCs or surgical angiogenesis (i.e., wrapping a pedicled 
adipofascial flap around the nerve) to nerve allograft also leads to improved 
nerve regeneration (Mathot, 2021; Mathot et al., 2021; Saffari et al., 2021b). 
The ASCs in the pedicled adipofascial flap exert various growth factors and 
modulate the local microenvironment of the nerve to diminish fibrosis  (Saffari 
et al., 2021b). It is suggested that a correlation exists between remyelination 
and anti-fibrotic activity (Di Summa et al., 2018), which is the result of the 
paracrine secretome of ASCs (Suganuma et al., 2013). 

ASCs could be delivered to the nerve by a number of methods, including 
intravenous injection, intramuscular injection, intra-neural injection, or 
dynamic seeding (Saffari et al., 2021a). Each method is associated with its 
own advantages and limitations. Dynamic seeding combines cells and nerve 
segments in a tube, which will be placed on a rotator for 12–24 hours. This 
non-invasive process allows cells to adhere to the outer surface of the nerve 
(Rbia et al., 2018). Intra-neural microinjection delivers a high quantity of cells 
directly to the site of the inner and middle nerve zones, however, results in an 
unpredictable cell distribution and reduction of stem cell viability after needle 
passage due to pressure build-up (Saffari et al., 2021a). The incorporation of 
stem cells in a gel is non-invasive and potentially more clinically translatable; 
however, evaluation on the efficacy and survival of cells using this method 
has been ongoing in pre-clinical research. A schematic overview of novel 
experimental techniques to add stem cells to the nerve is provided in Figure 4. 
Controversy remains on the optimal method of delivery, but in general, slow 
injection results in lower shear stress and greater fat graft viability (Zhang et 
al., 2020; Saffari et al., 2021a).
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Figure 4 ｜ Experimental stem cell delivery methods to the nerve.  
Different methods to deliver stem cells to the nerve are presented in this schematic 
overview. These techniques include the delivery of cells by dynamic seeding (A), 
intraneural injection of cells (B), and suspension of cells in a gel to be delivered to 
the nerve (C). Used with permission of Mayo Foundation for Medical Education and 
Research. All rights reserved.

Figure 3 ｜ Mechanisms that drive fibrocyte and endothelial cell activation towards 
myofibroblasts. 
Activated myofibroblasts are important mediators of wound healing. During tissue injury, 
fibroblasts can differentiate into myofibroblasts. This process is mainly driven by hypoxia 
and could be decreased by angiogenesis. In specific conditions, it is hypothesized that 
myofibroblasts can also arise from endothelial cells via endothelial to mesenchymal 
transition (EndoMT). Myofibroblasts follow several different cell fates and can participate 
in tissue remodeling beyond repair, leading to scar formation. Scar formation, or fibrosis, 
is characterized by excessive extracellular matrix (ECM) synthesis, collagen deposition, 
and contraction. Adipose-derived stem cells are found to increase angiogenesis and 
decrease collagen, which prevents fibrosis. Copyrighted, used, and reprinted with 
permission of Saffari et al. (2021b); all rights reserved. 

Figure 1 ｜ Enrichment of lipoaspirated adipose tissue by cell-assisted lipotransfer 
(CAL). 
After centrifugation of the lipoaspirated fat, three layers are separated; the first contains 
oil and debris; the second contains adipose tissue; the third is the aqueous layer 
containing blood and wetting solutions used during anesthesia, and the stromal vascular 
fraction (SVF) pellet is formed. The SVF pallet is added to the lipoaspirated fat to enhance 
the yield of adipose-derived stem cells (ADSCs). Copyrighted, used, and reprinted with 
permission of Fontes and colleagues; all rights reserved (Fontes et al., 2018).

Figure 2 ｜ Schematic overview of the homeostatic roles of adipose-derived 
mesenchymal stem cells (ASC). 
ASCs repair injured tissue by producing proteins and molecules that have various 
functions. They regulate the extracellular matrix to support tissue structure and integrity, 
support normal blood vessel function and enhance angiogenesis, inhibit scar formation, 
regulate immune homeostasis in primary and secondary lymphoid organs and in tissues, 
and decrease the cytotoxic activity of natural killer (NK) cells and reduce T-lymphocyte 
cells. Moreover, ASCs can stimulate tissue regeneration and repair and replace injured 
tissue after peripheral nerve injuries. MSC: Mesenchymal stem cells. Modified from 
(Mathot et al., 2019), used with permission of Mayo Foundation for Medical Education 
and Research. All rights reserved.

in clinical practice. To overcome this limitation, ASCs that can be used are 
required to be minimally manipulated, enzyme-free, and used in the same 
surgical procedure, e.g. adipose tissue grafts that contain native ASCs or 
SVF (Dehdashtian et al., 2020; Zhang et al., 2020). The Celution System 
could be used to harvest adipose tissue and extract ASCs within 1.5 hours 
using a Celase® processing enzyme reagent. This system is currently being 
investigated in clinical trials (Fraser et al., 2014). Large clinical cohorts with 
longer follow-ups are needed to affirm the safety of the application of CAL in 
patients with malignancy and until consensus has been reached, close follow-
up is necessary (Fang et al., 2021). Since the use of ASCs in peripheral nerve 
reconstruction is relatively new, more studies are needed to explore safety 
and long-term effects on peripheral nerve regeneration. 

Future of Adipose Tissue Grafting
Improved understanding of variables contributing to adipose graft survival will 
optimize grafting procedures, making them safer and more effective. Tissue 
engineering relies on regenerative cells or growth factors that are delivered 
using an appropriate scaffold for grafting and support (Kessler and Grande, 
2008). ASCs combined with an ECM that includes various growth factors could 
be used for a variety of implications to sustain volume. Wang and colleagues 
used decellularized human adipose tissue ECM from incised fat tissues and 
combined this with human ASCs to create a graft construct. This construct 
was subcutaneously injected and compared to the injection of fresh fat grafts 
containing ASCs in a nude rat model. The graft constructs were found to be 
well vascularized and without rejection or inflammation. Although the graft 
construct did not show improved vascularity compared to fresh fat injection, 

it may serve as a platform to integrate cells and multiple growth factors as 
the next step for adipose tissue engineering (Wang et al., 2013). Future 
studies may also focus on the optimization of the recipient site to assist tissue 
engraftment and long-term survival of adipose tissue (Heit et al., 2012). 

RENUVA® (Musculoskeletal Transplant Foundation, Edison, NJ, USA; https://
www.mtfbiologics.org/our-products/detail/renuva) is a commercially available 
human-derived allograft adipose matrix (AAM) and used as an off-the-shelf 
alternative for autologous fat transfer to restore adipose volumes in the 
body. This matrix is processed as such that it preserves the ECM containing 
collagens and growth factors that are derived from adipose tissue, while 
not inducing allorejection. It has been adopted in clinical studies and used 
for a variety of applications (Shahin et al., 2017). Giatsidis and colleagues 
developed a shelf-ready AAM, which is derived from human cadavers. AAM 
was subcutaneously injected on the left dorsum of mice to evaluate volume 
retention over time. It was found that AAM grafts retained volume over time 
and similarly promoted angiogenesis in surrounding recipient tissues. This 
matrix could be used to create a vascularized, pro-adipogenic environment to 
enhance volume sustention of the grafted tissue and promote adipogenesis 
through an inflammation-mediated process (Giatsidis et al., 2019). In line with 
the effect of acute inflammation on angiogenesis, this study also reported 
inflammation to be a major inductive factor for adipogenesis (Lancerotto et 
al., 2013; Lujan-Hernandez et al., 2016; Giatsidis et al., 2019). In humans, 
AAM grafts are comparable to pre-clinical evidence and found to remodel 
perilipin-positive adipocytes after six months, with no severe adverse events 
reported (Kokai et al., 2020). Future studies are needed to evaluate the use 
of AAM grafts in peripheral nerve reconstruction. Other future implications 
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may include the use of ASC-derived exosomes. Exosomes are a subtype 
of extracellular vesicles released from cell types and contain a range of 
growth factors. A recent study demonstrated that the local administration of 
exosomes improved nerve regeneration in a reverse sciatic nerve autograft 
rat model (Ikumi et al., 2021). Exosomes hold promise for peripheral nerve 
reconstruction, as these vesicles contain fewer membrane-bound proteins 
and may be available off-the-shelf (Shukla et al., 2020; Saffari et al., 2021a). 

Conclusions  
Fat grafting is a safe and dynamic procedure used by surgeons for a variety 
of indications. Current practice for autologous fat grafting for soft tissue 
reconstruction or augmentation has been limited by variability in long-term 
graft retention. Research suggests that SVF and ASCs may improve fat graft 
survival, largely through angiogenic properties and reduction of inflammation 
and fibrosis. Basic science nerve research suggests an increase in nerve 
regeneration and nerve revascularization, and a decrease in nerve fibrosis 
after the addition of ASCs or adipose tissue. In clinical studies, the use of 
autologous lipofilling is mostly applied to secondary carpal tunnel release 
revisions with promising results. Since the use of ASCs in peripheral nerve 
reconstruction is relatively new, more studies are needed to explore safety 
and long-term effects on peripheral nerve regeneration. Furthermore, the 
use of enzymatic dissociation of adipose tissue has not yet been approved 
by the Food and Drug Administration in clinical practice. To overcome this 
limitation, ASCs can be used that are minimally manipulated, enzyme-free, 
and used in the same surgical procedure, e.g. adipose tissue grafts that 
contain native ASCs or SVF. Future research may be shifted towards the use of 
tissue-engineered adipose tissue to create a supportive microenvironment for 
autologous graft survival. High-quality clinical trials to demonstrate safety and 
efficacy are required to further guide the development of protocols for clinical 
practice.
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