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ABSTRACT
A majority of cellular proteins function as part of multimeric complexes of two or more subunits. Multimer formation requires interactions
between protein surfaces that lead to closed structures, such as dimers and tetramers. If proteins interact in an open-ended way, uncontrolled
growth of fibrils can occur, which is likely to be detrimental in most cases. We present a statistical physics model that allows aggregation
of proteins as either closed dimers or open fibrils of all lengths. We use pairwise amino-acid contact energies to calculate the energies of
interacting protein surfaces. The probabilities of all possible aggregate configurations can be calculated for any given sequence of surface
amino acids. We link the statistical physics model to a population genetics model that describes the evolution of the surface residues. When
proteins evolve neutrally, without selection for or against multimer formation, we find that a majority of proteins remain as monomers at
moderate concentrations, but strong dimer-forming or fibril-forming sequences are also possible. If selection is applied in favor of dimers or
in favor of fibrils, then it is easy to select either dimer-forming or fibril-forming sequences. It is also possible to select for oriented fibrils with
protein subunits all aligned in the same direction. We measure the propensities of amino acids to occur at interfaces relative to noninteracting
surfaces and show that the propensities in our model are strongly correlated with those that have been measured in real protein structures.
We also show that there are significant differences between amino acid frequencies at isologous and heterologous interfaces in our model, and
we observe that similar effects occur in real protein structures.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5086042

I. INTRODUCTION

Many features of cellular biology are governed by the actions
and interactions of proteins, and an understanding of their evolu-
tion is crucial to understand the evolution of life itself. An impor-
tant property of proteins is the formation of complexes consisting
of two or more subunits, with 30%–50% forming homo-oligomers
composed of identical monomers.1 Homodimers constitute the
majority (41%) of oligomeric proteins of known structure.2 Two
identical proteins can aggregate in a closed way, with isologous
(i.e., head-to-head) interfaces, or in an open way, with heterolo-
gous (i.e., head-to-tail) interfaces. If open, they have the possibility

of forming infinite fibrils. Amyloid fibrils, formed by normally
soluble proteins that assemble to form open insoluble fibers, are
resistant to degradation, and their formation can accompany a vari-
ety of human diseases, including Alzheimer’s disease, type-2 dia-
betes, and spongiform encephalopathies.3 Given the importance of
homo-oligomers in the cellular repertoire, from mediating gene
expression to functioning as enzymes, ion channels, and recep-
tors,4 it is important to understand the competition between these
different ways of assembling. More generally, mutations of amino
acids at protein-protein interfaces are known to have large effects
on human health because they affect the formation of protein
complexes.5
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Previous theoretical works have modeled protein fibrillogene-
sis based on mass action kinetics6 and thermodynamics of peptide
solutions including formation of protofilament intermediates.7,8 In
this work, we present a simple model that allows both the physical
and the evolutionary aspects of protein aggregation to be addressed.
Our approach is similar to other previous works9,10 in adopting a
transfer matrix approach to obtain the equilibrium concentrations
of oligomers of different lengths as a function of the free energies of
interaction between proteins.

The novelty of our work is that it connects the statistical
physics of protein aggregation to the evolution of higher-order pro-
tein structure by using population genetics theory to calculate the
expected frequency of each protein in the ensemble of sequences
generated by mutation and natural selection. We consider cases
where the fitness is independent of whether the protein aggregates
and cases where fitness is a function of structure, including selection
for the formation of dimers and selection both for and against the
formation of fibrils.

Our model considers a protein with two possible interacting
surfaces, labeled A and B. There are two possible isologous inter-
faces (AA and BB) and one heterologous interface (AB). The ener-
gies of these interfaces depend on the amino acids on the two sur-
faces, as described in Sec. II. The model allows for the formation
of closed dimers, which occur when one or the other of the isol-
ogous interfaces is strongly attractive and the other interfaces are
weak. It also allows for the formation of fibrils with proteins ori-
ented in the same direction in cases where the heterologous inter-
face is strong or fibrils with proteins aligned in alternating direc-
tions in cases where both isologous interfaces are strong. Using the
transfer matrix method given in Sec. III, it is possible to calculate
the probabilities Pn that a protein is found in an assembly of n
units. These probabilities depend on the values of the three interface
energies.

The multimeric states of proteins are sometimes observed to
change rapidly on an evolutionary time scale.11,12 This may be an
indication of selection for or against multimers or may simply be a
result of neutral evolution. Within our model, it is possible to ask
how likely dimer and fibril structures are to form under neutral evo-
lution. We include selection in the model using the strong-selection
weak-mutation approximation,13 which allows the expected fre-
quencies of sequences in the presence of selection to be calculated
from their frequencies under neutral evolution. We use a Monte
Carlo Markov chain method (Sec. IV) to generate a set of repre-
sentative protein sequences with frequencies given by evolutionary
theory.

Thus, our model provides a simple way of linking evolutionary
observations to the underlying statistical physics of protein aggre-
gation. Within this framework, we consider probabilities of forma-
tion of dimers and fibrils, both under neutral evolution and under
the action of several different kinds of selection. The model also
predicts that the frequencies of amino acids at strongly binding
interfaces are significantly different from their frequencies under
the mutation process alone and from their frequencies at nonin-
teracting, exposed surfaces. Furthermore, the frequencies of amino
acids at isologous and heterologous interfaces are found to differ
from one another. These predictions are compared with observa-
tions of amino acid frequencies at interfaces in databases of real
proteins.

II. CALCULATION OF INTERFACE ENERGIES

We consider two opposing faces of the protein, denoted A and
B, as potential binding surfaces (as shown in Fig. 1). There are two
possible isologous interfaces (AA and BB) and one heterologous
interface (AB). The energies of the three interfaces EAA, EBB, and
EAB depend on the sequences of residues on the surfaces. Nonsur-
face residues play no role in this model. A surface is modeled as a
4 × 4 array of amino acids. The energy of an interface is modeled as
the sum of the 16 pairwise interactions between amino acids that are
formed when two surfaces are brought together (see Fig. 1). We con-
sider four possible 90○ rotations of two surfaces. The three energies
EAA, EBB, and EAB are defined to be the lowest of the four energies
that arise from the four possible rotations.

The square array of 16 amino acids is used for convenience
because we require a simple model for which energies can be
calculated for hundreds of thousands of protein sequences dur-
ing evolutionary simulations. However, the fact that we consider
the lowest energy of the multiple rotations of the two surfaces
is an important feature of the model. When two identical pro-
teins form an isologous interface, each pairwise interaction between
the two surfaces is present twice. This means that the variance
of the energy of the interface is twice what it would be for an
interface between two independent proteins with the same num-
ber of amino acid contacts. The relevant interaction energy con-
trolling binding of two proteins is the lowest energy of the rota-
tional configurations possible when they are brought into contact.
As the distribution of energies is broader for homodimers than
heterodimers, the lowest energy tends to be lower.14,15 This con-
tributes to the excess of interactions between identical proteins and
between closely related paralogs that are observed in the analysis of
protein-protein interaction networks.16,17 This factor is relevant here
because we wish to consider relative probabilities of aggregation of
multimer proteins in configurations that can involve either isolo-
gous or heterologous interfaces. If we simplified our model further
by allowing only one rotational configuration, we would lose this
effect.

As we wish to distinguish strongly and weakly interacting sur-
faces, it is useful to define the A surface such that the AA interface
is stronger than the BB interface, i.e., EAA ≤ EBB (negative energies
denote favorable interactions). For each amino acid sequence con-
sidered, we simply relabel the A and B surfaces if necessary so that
this condition is true.

We use a simple model of pairwise contact energies because
we wish to study evolution of large numbers of protein sequences
using a model where the fitness depends on the energies of the sur-
face interactions (as described in Sec. III). Thus, it is necessary to
be able to evaluate the surface energies of any given sequence very
rapidly, which could not be done if a more realistic, three dimen-
sional model of a protein surface was used (for example, as in
Refs. 18–20). Although pairwise amino acid potentials leave out
many details (e.g., water and ion-mediated interactions, local flex-
ibility of proteins, and the atomic structure of each residue), they
have proved to be useful in many ways. The frequently cited early
work of Miyazawa and Jernigan21 used the frequencies of contacts
between amino acid pairs in globular protein structures to construct
an effective pair potential matrix. This matrix has continued to be
used in many applications such as coarse-grained simulations of
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FIG. 1. Model of a protein with two
opposing surfaces, A and B, which may
interact, shown as blue and red, respec-
tively. There are 16 amino acids on each
surface. Interface energy is determined
by the sum of the energies of the 16
pairwise contacts that are formed when
the two surfaces are brought together,
as indicated by arrows. (a) An AA inter-
face is shown with the two proteins in the
same rotational configuration. (b) An AA
interface in which one protein has been
rotated by 90○. The energy EAA of the AA
interface is defined as the lowest energy
of the four possible rotations. (c) When
proteins aggregate in different configura-
tions, the energy of the multimer is given
by the sum of the energies of all the
interfaces in the multimer structure.

protein complexes22,23 and is also used as a basis of recent structural
models of rates of amino acid substitutions.24–26

Interactions between a solvent and amino acids were not
included originally,21 but Betancourt and Thirumalai27 showed that
this could be accounted for by shifting the elements relative to the
amino acid threonine. The original matrix would not be suitable
for our study here because all the energies are negative, meaning all
random surfaces would be attractive. This is not true in the trans-
formed matrix, which has both positive and negative elements. The
transformed matrix, Bij, is shown in Table I of the supplementary
material. It captures the fact that the interactions between pairs
of hydrophobic amino acids are substantially negative and those
between hydrophobic and polar or between two polar residues
are on-average weaker and can be either positive or negative. It
also captures specific features such as attractions and repulsions
between charged amino acids. As a concrete example, this matrix
has been successfully used in a study of protein folding in the GroEL
cavity.28

It should also be noted that the Bij matrix we use is derived
from contact frequencies within globular protein structures, not
from specific frequencies of amino acids at surfaces and inter-
faces. It is therefore essentially independent of data on interface

propensities. We will show here that use of this energy matrix in our
model leads to useful predictions on interface propensities that cor-
relate with experimental observations. These predictions are non-
circular, whereas they would be if we had used statistical potentials
derived from surface data.

III. CALCULATION OF AGGREGATION PROBABILITIES
For any given sequence of surface residues, we calculate the

interface energies as in Sec. II. We then use the interface energies to
calculate the probabilities of protein-protein interactions. We con-
sider a solution of a single kind of protein with total concentration �
moles per unit volume. We determine the equilibrium concentration
of monomers c and of aggregates of n subunits, Cn, in the following
way.

For each of the three types of interface ij ∈ {AA, AB, BB}, we
define

aij =
1
ω

e−βEij , (1)

where ω is the number of possible orientational configurations of
one protein relative to its neighbor. For the simple cubic lattice
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considered here, ω = 24, which is the number of possible orienta-
tions of a cubic object on a cubic lattice. In the calculations below,
the statistical weight of an interface of type ij is given by aijc/c0, where
c0 = 1M is the reference concentration.

The concentrations of the different possible aggregates can be
calculated by considering formation of chains that grow from one
end only. If chains grow from both ends or if chains can aggre-
gate with other chains (rather than just chains with monomers), this
does not alter the equilibrium frequencies of the different aggre-
gates. Therefore, we give the simplest case of the calculation here,
which allows for the growth of one monomer at a time from one end
only.

Letting Cn(A) and Cn(B) denote the equilibrium concentrations
of a chain of length n, with the A or the B face exposed at the grow-
ing end, the equilibrium concentrations can be calculated using a
transfer matrix method,

(Cn(A)
Cn(B)) = (c/c0)(aAB aBB

aAA aAB
)(Cn−1(A)

Cn−1(B)). (2)

We define C1(A) = C1(B) = c/2 so that the sum of the two orienta-
tions is equal to the total free monomer concentration, c. The eigen-
values of the transfer matrix, a, are given by λ± = aAB ±

√
aAAaBB,

and from these, the abundance of chains of length n, given by
Cn = Cn(A) + Cn(B), can be obtained as

Cn

c0
= ( c

c0
)

n
[A+λn−1

+ − A−λn−1
− ], (3)

where

A± =
aAA + aBB ± 2

√
aAAaBB

4
√

aAAaBB
. (4)

For example, it is easily verified from Eq. (3) that for n = 2, the
dimer concentration is

C2

c0
= 1

2
( c

c0
)

2
(aAA + 2aAB + aBB), (5)

where the terms for the two dimer configurations with isologous
interfaces and the two orientations of the dimer with the heterol-
ogous interface can be clearly seen.

The concentration of monomers, c, can now be determined.
The concentration of proteins in clusters of size n is given by
�n = nCn. The total protein subunit concentration is � =∑n�n. This
sum gives an equation from which the free monomer concentration,
c, can be calculated,

�
c0

= A+(c/c0)
(1 − λ+ c/c0)2 −

A−(c/c0)
(1 − λ− c/c0)2 . (6)

There is always a single solution to Eq. (6) in the physical range
where 0 < c < �.

The probability of a subunit being present in an n-mer is
Pn = �n/�. The fractions of proteins present as monomers and
dimers are P1 and P2. We refer to all aggregates of 3 or more units
as fibrils; hence, the fraction of proteins in fibrils is Pfib = ∑n≥3Pn.
In some cases, we wish to distinguish closed dimers with the strong
AA interface from other dimers. The fraction of proteins in closed
dimers is

P∗2 = P2
aAA

aAA + aBB + 2aAB
. (7)

Likewise, in other cases, we wish to distinguish oriented fibrils con-
taining only AB interfaces from general fibrils containing mixtures
of all three types of interface. The concentration of proteins in
oriented fibrils of length n is

�ori
n = ncna(n−1)

AB
c0(n−1) , (8)

and the fraction of proteins in oriented fibrils is

Pori =
1
�∑n≥3

�ori
n . (9)

IV. EVOLUTIONARY COMPUTATIONS
We now consider the evolution of proteins whose interactions

are described by the statistical physics model above. We consider
a population of individuals, each with a gene for the protein in
question. The fitness of an individual is a function of the protein
sequence. If mutation is weak in comparison to selection, as we will
assume below, there is a dominant variant of the protein in the pop-
ulation at any one time, and occasionally, a new variant spreads
through the population and replaces the old one. We would like to
calculate the long-term steady state frequencies of sequences in the
ensemble of sequences generated by this evolutionary process.

We consider protein sequences evolving under a mutational
model in which the rate of mutation from amino acid i to j is
rij = uπj, where u is a rate constant and πj is the steady state frequency
of amino acid j under the mutational process. For simplicity, we deal
with mutations at the level of the protein sequence and do not con-
sider the underlying DNA. In the neutral case, protein sequences
evolve under the influence of mutation, and there is no selection.
Let f mut

k be the steady state frequency of sequence k under mutation.
We consider the simplest case where all 20 amino acids have equal
frequency (πj = 0.05 for all j). Hence, there are 2032 possible amino
acid sequences, each with steady state frequency f mut

k = (0.05)32.
We define the fitness of a sequence as w = 1 + s, where positive

and negative values of the selection coefficient, s, denote advanta-
geous or deleterious sequences and s = 0 for neutral variants. For any
amino acid sequence, we assume that s is a function of the multimer
configuration probabilities Pn for that sequence. We consider several
choices of fitness functions: (i) a neutral case, where s = 0 for every
sequence; (ii) positive selection in favor of dimer formation, where
s = σP∗2 ; (iii) selection against fibril formation, where s = −σPf ib; (iv)
selection in favor of fibril formation, where s = σPf ib; and (v) selec-
tion in favor of oriented fibrils containing only AB interfaces, where
s = σPori. In all these cases, σ is a positive constant that determines
the strength of selection.

In order to calculate the steady state frequencies of sequences in
the presence of selection as well as mutation, we assume that muta-
tions are rare enough so that only one mutation is segregating at a
time in the same gene. This is a common approximation in popula-
tion genetics that allows analytical progress in a simple way. In this
approximation, the stationary frequency of a sequence k under the
influence of selection is weighted by a factor e2Nes(k) relative to the
case with no selection,29,30 where s(k) is the selection coefficient for
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this sequence and Ne is the effective population size. The frequency
of sequence k under selection and mutation is

f sel
k = f mut

k e2Nes(k)

∑j f mut
j e2Nes( j) . (10)

The practical issue with Eq. (10) is the exponential number
of sequences in the sum. It is not possible to exhaustively consider
all 2032 sequences. We therefore use a Markov Chain Monte Carlo
(MCMC) sampling method that generates a large sample of repre-
sentative protein sequences such that the probability of any sequence
arising in the sample is proportional to its steady state frequency.
The average properties of the full ensemble are closely approxi-
mated by the simple mean of the properties of the sequences in the
sample.

The MCMC simulations begin with a random sequence of 32
amino acids. We then generate a descendant sequence via repli-
cation with mutation. The probability that an amino acid i in the
parent is replaced by j in the descendant is rij. The probability that
the amino acid remains unchanged is rii = 1 − ∑jrij. The value of
u is not critical as it does not influence steady state frequencies. We
found u = 0.05 to allow efficient exploration of the sequence space.
If there is no selection, then every descendant sequence is accepted
into the sample, and the method generates a sample with frequen-
cies proportional to f mut

k . If selection is acting, we accept or reject
the descendant according to its fitness. Let the current sequence be
k1 and the descendant be k2, and let the selection coefficients for
these sequences be s(k1) and s(k2). The difference in fitness between
the sequences is ∆s = s(k2) − s(k1). To ensure that the frequency
of any sequence k in the sample is proportional to f mut

k e2Nes(k), as
is required, the ratio of acceptance of mutations that increase and
decrease fitness must be e2Ne∆s. Our MCMC algorithm does this in
the simplest way: it accepts the new sequence with probability 1 if
∆s is positive and with probability e2Ne∆s if ∆s is negative. If the new
sequence is rejected, a second copy of the old sequence goes into
the sample. This method is equivalent to the Metropolis algorithm
used for Boltzmann-weighted sampling in physics. We also note that
a similar method of evolutionary simulation was used in another
model of protein evolution31 in which the fitness of a sequence
depends on its folding ability and its affinity to another target
model.

V. PHENOTYPE DISTRIBUTIONS
The two most useful quantities to summarize the phenotype of

a sequence are the frequency of AA dimers, P∗2 , and the frequency
of fibrils, Pf ib. Figure 2(a) shows the distribution of a sample of
sequences generated by the MCMC evolutionary simulation in the
neutral case with a total concentration of � = 0.01M. The MCMC
routine ran for 300 000 generations, and the first 5000 generations
were discarded to allow for equilibration. As all sequences have equal
frequency under this mutational model when there is no selection,
the sequences generated are simply random amino acid sequences.
The figure shows that sequences are spread over a broad range of
P∗2 and Pf ib. Sequences close to the origin (where P∗2 and Pf ib are
close to zero) exist mostly as monomers (P1 is close to 1). Sequences
in the bottom right corner are mostly dimers. Sequences in the top
corner are mostly fibrils. It can be seen, however, that strong fib-
ril formers are rare under neutral evolution at this concentration.

FIG. 2. Phenotype distribution in the space P∗2 vs Pfib for samples of sequences
arising under evolution using the MCMC method. (a) Neutral, (b) selection for
dimers (Neσ = 25), and (c) selection for fibrils (Neσ = 25). For each of these plots,
the red symbol denotes the mean value of P∗2 and Pfib for all the sequences in the
sample.

Thus, no points are found very close to the top corner in Fig. 2(a).
The mean values of these probabilities for all sequences in the sam-
ple are ⟨P∗2 ⟩ = 0.04 and ⟨Pf ib⟩ = 0.003. Thus, typical sequences are
usually monomers.
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TABLE I. Energies of the three interfaces for example sequences A-F discussed in
Figs. 3 and 4.

Sequence Description EAA/kT EBB/kT EAB/kT

A Monomer −2.68 −2.32 −2.80
B Dimer-former −12.06 −3.14 −5.25
C Strong dimer-former −15.82 −0.60 −2.80
D Fibril former −9.08 −8.67 −5.68
E Strong fibril-former −12.28 −12.06 −12.01
F Oriented fibril-former −4.53 −4.52 −8.18

Figures 2(b) and 2(c) show the way the phenotype distribu-
tion shifts when selection is applied for dimers and for fibrils. When
selection is applied for dimers, the distribution shifts close to the bot-
tom right corner, with ⟨P∗2 ⟩ = 0.89 and ⟨Pf ib⟩ = 0.01. When selection
is applied for fibrils, the distribution shifts close to the top corner,
with ⟨P∗2 ⟩ = 0.04 and ⟨Pf ib⟩ = 0.90. This means that sequences that
are either very strong fibril-formers or very strong dimer-formers
are possible in this model and that they arise easily when selec-
tion favors them. Nevertheless, they are relatively rare compared to
the large number of random sequences with weaker interface inter-
actions, so they do not arise frequently in the mixture of random
sequences generated under neutral evolution.

To illustrate the range of behaviors shown by individual
sequences, we chose the six example sequences A–F described in
Table I. For each of these sequences, the distribution of n-mer
probabilities, Pn, is shown in Fig. 3 at concentration � = 0.01M.
This value is consistent with cellular concentrations of the enzymes
that are present at the highest quantities in cells as these are the

ones for which aggregation is most relevant. Various mechanisms
of subcellular protein localization would additionally enhance their
concentrations.32–34

The probabilities Pn change significantly as the concentration
is varied. The changes with concentration can be illustrated as tra-
jectories in the P∗2 vs Pf ib triangle. Figure 4 shows the trajectories for
sequences A–F as the concentration is increased from 10−6M to 1M.
All sequences begin at the origin (all monomers) for low concen-
tration and eventually move toward the fibril corner for very high
concentration. Dimer-forming sequences approach the dimer cor-
ner at intermediate concentrations. The concentration � = 0.01M,
which was used in Fig. 3, is shown as red diamonds in Fig. 4. Extreme
concentrations higher than this are included in order to illustrate
the predictions of the model. The highest concentration point is 1M,
shown as purple triangles.

Sequence A is a typical sequence chosen randomly from the
sample generated by the neutral simulation [Fig. 2(a)]. The ener-
gies of all three interfaces are weak; hence, this sequence is almost
entirely monomers at � = 0.01M [see Fig. 3(a)]. The trajectory does
not move close to the dimer corner at any concentration, and it is
still not close to the fibril corner, even at � = 1M.

Sequence B is a dimer-former found in the neutral sample. It is
the sequence with the highest P∗2 in Fig. 2(a). This sequence is mostly
a dimer at � = 0.01M [see Fig. 3(b)] and gradually becomes a fibril at
concentrations higher than this. Sequence B forms dimers because
the AA interface is strong. EAA is much lower than the other two
energies (see Table I).

Sequence C is a strong dimer-former found in the sample gen-
erated under selection for dimer formation [Fig. 2(b)]. It is almost
entirely a dimer at the reference concentration and remains very
close to the dimer corner even at � = 1M. The AA interface is even
stronger than for sequence B.

FIG. 3. Histograms of Pn for six example sequences illustrating different behaviors at � = 0.01M. Panels (a)–(f) refer to the six sequences described in Table I.
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FIG. 4. Plot showing trajectories in the space P∗2 vs Pfib for the six sequences A–F
in Table I. The concentration varies from � = 10−6M to 1M, with the reference
concentration � = 0.01M labeled as red diamonds and the highest concentration
� = 1M labeled as purple triangles.

Sequence D is a fibril-former found in the neutral sample.
All three interface energies are fairly strong. This sequence has
Pf ib = 0.61 at � = 0.01M, which is the highest in Fig. 2(a), and
the distribution of Pn has significant weight at larger n. Sequence
E is a strong fibril-former found in the sample of sequences selected
for fibril formation [Fig. 2(c)]. All three interface energies are very
strong. This sequence has Pf ib close to 1 already at � = 0.01M.

Sequence F is a fairly strong fibril-former found in the neutral
sample, which has Pf ib = 0.44 at � = 0.01M. It differs from the other
fibril-formers (D and E) in that the heterologous interface energy
EAB is much lower than the others. This means that it forms mostly
oriented fibrils. The frequency of closed AA dimers, P∗2 , is very low
at all concentrations; hence, the trajectory in Fig. 4 moves almost
along the Pf ib axis.

VI. PROPERTIES OF PROTEIN INTERFACES
Figure 5 shows the mean energies of the three possible inter-

faces for random sequences evolving neutrally (shown as horizontal
lines) and compares these with the mean energies for sequences gen-
erated under four different kinds of selection (shown as points). It
can be seen that for neutral evolution, EAA is significantly lower than
EBB even though the sequences are random. This occurs by defini-
tion because we have labeled surfaces A and B for each sequence
such that A forms the stronger interface of the two. The heterol-
ogous interface energy EAB is intermediate between the two isolo-
gous interface energies. All three energies are negative because the
mean interaction energy of random amino acid pairs (from the Bij
matrix in Table I of the supplementary material) is slightly nega-
tive: ⟨Bij⟩ = −0.057. The mean energy for an interface of 16 ran-
dom pairs is therefore −0.912. The average energies of the three
kinds of interface under neutral evolution are all lower than this

FIG. 5. Comparison of the mean energies of the three possible interfaces for
random sequences evolving neutrally (shown as horizontal lines) with sequences
generated under four different kinds of selection (shown as points). The blue line
and circles EAA; the red line and squares EBB; the black line and stars EAB.

because we consider four rotations of the two surfaces, as shown
in Fig. 1, and take the lowest of these to define the energy of the
interface.

Figure 5 illustrates the way the energies of the interfaces change
when selection is applied. In the case of selection for dimers, EAA
decreases substantially with respect to the neutral case, as we would
expect, because we are selecting for sequences with high P∗2 . It can
be seen that EBB actually increases slightly with respect to the neu-
tral case. It is important that the BB interface should remain weak
because if both AA and BB interfaces become strong, the sequence
will form fibrils with proteins in alternating directions.

The second column in Fig. 5 illustrates the case of selection
against fibrils. We were interested in this case because we expect that
uncontrolled fibril formation should be harmful to the cell. Selection
against fibrils eliminates the rare sequences with high Pf ib from the
neutral phenotype distribution, but since these sequences are rare
and since the mean value of Pf ib in the neutral case is already very
low, selection against fibrils has only a small effect on the mean ener-
gies of the interfaces. It can be seen that all three energies increase
slightly with respect to their neutral values, making all kinds of
multimers and fibrils less frequent.

There are some proteins whose function requires fibril forma-
tion, such as actin and tubulin. Therefore, we also considered the
case when selection acts for fibrils. In this case, all three interface
energies become much lower than the neutral values. It can be seen
that EAA and EBB decrease more than EAB, meaning that the orienta-
tion of proteins in these fibrils will be rather random, but there will
be relatively few heterologous interfaces. In Sec. III, we defined Pori,
the fraction of proteins in oriented fibrils. For the case where selec-
tion is for fibrils of all kinds, we find ⟨Pori⟩ is only 0.05, even though
⟨Pf ib⟩, which includes fibrils with proteins in all possible arrange-
ments, is 0.90. By contrast, the fourth case in Fig. 5 shows selection
for oriented fibrils only. In this case, EAB decreases much more than
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FIG. 6. Relative amino acid frequencies
at the A surface (pA, blue) and the B
surface (pB, red) for neutrally evolving
proteins. The frequencies are not equal
on the two surfaces because the A and
B surfaces have been defined as the
stronger and weaker of the two, respec-
tively.

EAA and EBB. Hence, most interfaces will be heterologous. In this
case, we find ⟨Pf ib⟩ is also 0.90, but ⟨Pori⟩ is 0.87, meaning that almost
all the fibrils are oriented.

Taken together, these results show that this model of protein
interfaces is quite versatile. It allows selection for both increased and
decreased strength of interfaces, and it allows separate selection for
either heterologous interfaces (as in the case of dimers) or isologous
interfaces (as in the case of oriented fibrils).

VII. INTERFACE PROPENSITIES OF AMINO ACIDS
Our model allows us to study the way that the frequencies of

amino acids at interfaces vary with respect to the frequencies that
would be expected under random mutation. The propensities of the
amino acids to occur at interfaces have been measured in real pro-
teins (Jones and Thornton35 and Levy et al.36). In this section, we
show that our 20-amino acid model generates interface propensities
that are similar to these.

We generated 2 × 107 random sequences of amino acids on the
A and B surfaces. We calculated EAA and EBB, and where necessary,
we relabelled the A and B surfaces so that A is the stronger interface.
We measured the frequencies pA and pB of amino acids on each sur-
face, relative to the expected frequency under neutral mutations, πi
= 0.05. These are shown in Fig. 6, and the data are given in Table
II of the supplementary material. When we compare pairs of inter-
faces in this way and distinguish the stronger from the weaker, the
frequencies of amino acids on the two surfaces are different, even
though the average frequency on both surfaces has to be equal for all
amino acids. Hence, in the figure, we see that pA can be significantly
higher or lower than pB for many of the amino acids, even though
the average of pA and pB has to be 1 for every amino acid.

From these probabilities, we define an interface propensity for
each amino acid as

Sint = ln(pA/pB). (11)

This score is positive for amino acids that have increased frequency
at strong interfaces and negative for those that have decreased
frequency.

The Sint scores are related to the energies in the Bij matrix, as
shown in Fig. 7(a). We define Bself as the self-interaction energy
of the amino acid (the diagonal element Bii of the matrix) and
Bave as the mean of the interaction of one amino acid with the 20
possible partners. The more negative the Bself and Bave, the higher
the interface propensity. The data are given in Table II of the

supplementary material. The correlation coefficients r and the p
values for the t-test of correlation are given in the caption and
in Table III of the supplementary material. These correlations are
highly significant, and the correlation with Bave is stronger than with
Bself , as can be seen graphically in Fig. 7(a).

The Sint scores are also related to two previous scales of inter-
face propensities measured from protein structure data. In Table
II of the supplementary material, ln(RIP) is the “relative interface
propensity” from Ref. 35, and “stickiness” is the interface propen-
sity scale from Ref. 36. Both of these scales are derived from the
observed frequencies of amino acids at protein-protein interfaces
relative to their frequencies at noninteracting surfaces. The score
from our model, obtained from the relative frequencies at the A and
B surfaces, is directly comparable to these. Figure 7(b) shows that
there is a strong positive correlation between Sint and the two other

FIG. 7. (a) Correlation of Sint with the self-energy Bself and the average energy
Bave of the Bij matrix. (b) Correlation of Sint with propensities measured in protein
data sets. The correlation coefficients and significance values for these plots are
Bself , r = −0.836, p = 4.4 × 10−6; Bave, r = −0.966, p = 5.2 × 10−12; ln(RIP),
r = 0.850, p = 2.1 × 10−6; and stickiness, r = 0.797, p = 2.6 × 10−5.
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interface propensities. The correlation coefficients and t-test param-
eters are given in Table III of the supplementary material, show-
ing that there is a highly significant correlation between all three
scores.

This observation tells us that the Bij matrix contains detailed
information about the strengths of interactions between the different
amino acids that is sufficient to quantitatively predict which amino
acids increase or decrease in frequency at interfaces. It also tells us
something about why this occurs. Since surface amino acids interact
with other copies of themselves and with all possible other amino
acids at the interface, those which have the most negative Bself and
Bave increase the most in frequency at the strongly binding interface.

Figure 8 and Table IV of the supplementary material show
the frequencies of amino acids at surfaces A and B in the sets of
sequences generated by the MCMC sampling method when selec-
tion is present. Selection for dimers [as in Fig. 8(a)] accentuates
the difference between the A and B surfaces that is already seen
in the neutral case (Fig. 6). In the dimer case, the hydrophobic
amino acids on the left are very much more frequent on the dimer-
forming A interface than on the noninteracting B interface, whereas
the hydrophilic amino acids on the right are much more frequent on
the noninteracting B interface.

In the case of selection for fibrils, both AA and BB interfaces
become strong. Thus, pA and pB both show a decreasing trend from
left to right in Fig. 8(b), and there is not much difference between
pA and pB. The case of selection against fibrils is shown in Table IV
of the supplementary material. The frequencies do not change very
much from the neutral case because most sequences have a low fibril
forming probability, as we saw previously.

Figure 8(c) compares the pA frequencies in the case of selection
for dimers with the pA frequencies in the case of selection for ori-
ented fibrils. In the dimer case, we select for isologous AA interfaces,
whereas in the case of oriented fibrils, we select for heterologous AB
interfaces. A comparison of these two shows that amino acids dif-
fer significantly in frequency between isologous and heterologous
interfaces. In particular, it can be seen that Cys is more frequent
at isologous interfaces and the charged amino acids (Arg, Lys, Glu,
and Asp) are more frequent at heterologous interfaces. From this,
we define a propensity for amino acids at isologous vs heterologous
interfaces as

Siso = ln(pA(dimers)/pA(oriented fibrils)). (12)

This propensity is the highest for Cys and the most negative for the
charged amino acids (see Table IV of the supplementary material).

FIG. 8. (a) Relative amino acid frequen-
cies at the A surface (pA, blue) and the
B surface (pB, red) in the case of selec-
tion for dimers. (b) Same in the case
of selection for fibrils. (c) Relative amino
acid frequencies at the A surface of isol-
ogous interfaces in dimers (blue) and the
A surface of heterologous interfaces in
oriented fibrils (green).
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This effect occurs because amino acids in isologous interfaces
have a significant probability of interacting with the copy of them-
selves on the other side of the interface, whereas amino acids in
heterologous interfaces only interact with themselves if there is an
independently evolved amino acid of the same kind on the other sur-
face. We define the difference between average and self-energies as
∆B = Bave − Bself . We expect amino acids with positive ∆B to
be favored at isologous interfaces, and vice versa. Figure 9(a)
shows that there is a highly significant correlation of Siso and ∆B.
The significance values are given in the caption and in Table III of
the supplementary material. From the Bij matrix in Table I of the
supplementary material, it can be seen that Cys has a particularly
low value of Bself , presumably reflecting the presence of disulphide
bridges in the data from which the Bij matrix was derived. This
results in a large positive ∆B for Cys. The charged amino acids have
positive values of Bself , presumably due to repulsions between like
charges. This results in negative ∆B for the charged amino acids.

It can be seen in Fig. 1(b) that when there is a 90○ rotation of
one protein with respect to the other, four of the 16 amino acids
(numbered 1, 6, 11, and 16) form pairwise contacts with themselves.
The same happens in the 270○ rotation but does not happen in the
0○ and 180○ rotations. Although some of these details are particular
to the square lattice we are using, the point that amino acids in isol-
ogous interfaces can interact with copies of themselves is still true in
real proteins where there is no square lattice. For example, the same
effect occurs in the circular patch model used in Refs. 14 and 15.
Therefore, it is reasonable to ask whether the systematic difference
in amino acid frequencies between isologous and heterologous inter-
faces that we observe in our model also arises in real proteins. To

FIG. 9. (a) Correlation of the difference between average and self-energies
∆B = Bave − Bself with the isologous vs heterologous interface propensity, Siso.
(b) Correlation of the relative enrichment of amino acids in isologous vs heterolo-
gous interfaces, ln(REI), found in analysis of real protein complex structures with
Siso obtained from our model. The correlation coefficients and significance val-
ues for these plots are ∆B, r = 0.897, p = 8.7 × 10−8; and ln(REI), r = 0.615,
p = 3.9 × 10−3.

address this, we performed a systematic analysis of the amino acid
residues present in the homomeric interfaces of real protein complex
structures present in the Protein Data Bank.

Starting from a snapshot of all of the structures in the
Protein Data Bank (9-26-2018), all protein residues present
in homomeric interfaces were identified as those burying any
solvent-accessible surface area with an identical polypeptide chain.
Incomplete residues missing any nonhydrogen atoms from the side
chain were excluded. Isologous interfaces were classified as those
where the correlation between the residue-specific buried surface
areas for each subunit in an interacting pair was >0.7, as defined pre-
viously.42 Since the dataset of interface residues initially contained
data from many proteins with closely related or identical sequences,
we used the PISCES protein sequence culling server43 to remove
chains with 90% or greater similarity. This resulted in a total number
of 932 536 interface residues from 18 777 nonredundant chains. The
total number of occurrences of each amino acid was then counted
for isologous and heterologous interfaces, and the proportion was
calculated by dividing by the total number of residues at each type of
interface. Relative enrichment at isologous interfaces, REI, was cal-
culated by dividing the proportion of each amino acid at isologous
interfaces by the proportion at heterologous interfaces (see Table IV
of the supplementary material).

Interestingly, we observe a significant correlation between Siso
and ln(REI) [see Table III of the supplementary material and
Fig. 9(b)], thus validating the utility of our simplified model and
demonstrating its power in capturing genuine sequence differences
between the different types of interfaces. The deviations between
our model and the pattern observed in real structures could be due
to a number of factors. In particular, there are likely to be system-
atic differences in the functions of homo-oligomers with isologous
vs heterologous interfaces as there is a strong association between
symmetry and function.4 For example, transmembrane channels will
be enriched in heterologous interfaces due to their strong associa-
tion with higher-order cyclic symmetry. Thus, if the interfaces of
transmembrane proteins tend to differ in amino acid composition
compared to other proteins, this could add a degree of bias.

VIII. DISCUSSION AND CONCLUSIONS
This work presents a first attempt at a theoretical description of

the evolution of multimers and fibrils. The pairwise contact-energy
matrix that we used is a simple way of defining interface energies that
does not account for the three dimensional structure of surfaces. It
was not optimized in any way for the present model. We are there-
fore very satisfied that several features of the interface propensities
and the isologous/heterologous propensities are quite close to those
seen in real proteins.

The inevitable presence of hydrophobic residues means that
all proteins will be aggregation prone to some extent. Hydrophobic
residues in the interior are necessary for proper folding of proteins,
and hydrophobic residues on the surface can lead to formation of
functional multimeric states. While uncontrolled protein aggrega-
tion has been shown to be associated with an increasing number
of pathological conditions, including human diseases, due to loss of
normal function or gain in toxic activity, fibril formation can also
serve functional roles in cases such as adhesion and biofilm for-
mation in bacteria37 and defense against micro-organisms.38 Cells
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employ a range of strategies to control aggregation at both the
sequence levels (for example, through modulation of aggregation-
prone regions or protein stability) and at the cellular level (for
example, through compartmentalization and modulation of protein
abundance).39

With the interaction energies used here, we find that strongly
aggregating proteins will be rare under neutral evolution at concen-
trations that are likely to arise in the cell. This conclusion needs to
be treated with caution because of the simplicity of the interaction
energy rules. We have only considered solutions of a single kind of
protein. It may be possible to extend the model to consider mix-
tures of many kinds of proteins in the future. It should also be noted
that there is a parameter ω for rotational entropy in Eq. (1) that is
not known with certainty. Lower values of ω would lead to higher
probabilities of aggregation at any given concentration. Also, we
have arbitrarily chosen surfaces with 16 amino acids. Increasing or
decreasing the number of interacting amino acids in a patch would
increase or decrease the strength of interactions, which would also
affect the frequency of strongly aggregating proteins expected under
neutral evolution.

A further caveat is that the evolutionary calculations were done
under the approximation that a single mutation is segregating in the
sequence at once, which is not always true. This could be improved
using full-scale population genetics simulations in the future. It
would also be possible to consider evolution at the DNA level and
determine the protein sequence by translation of the gene. This
would allow us to consider cases where the steady state frequencies
of the amino acids in the proteins and the four nucleotides in the
genes are biased by mutation.

Future extensions of this work include developing this model
to consider other multimer structures, such as cyclic and dihedral
tetramers, by allowing more than two sticky faces on each protein
or by considering proteins with two sticky faces at an angle of 90○
to one another. An important aim will be to predict the relative
frequencies of multimers of different symmetries and different num-
bers of subunits, as is tabulated in the “periodic table” classification
of the protein structure database.40 Furthermore, as our model is
able to predict the way the multimer structures will change when
mutations are made to the surface residues, we will be able to study
evolution of multimer structures over time in a family of related
species and compare this with studies of structural evolution.41 The
present approach therefore introduces a method from which a wide
range of new developments will be possible for the study of the
evolution of higher order protein structure.

SUPPLEMENTARY MATERIAL

The supplementary material file Supplementary Tables.xlsx
contains the data in the four supplementary tables. The file Sup-
plementary Table Descriptions.docx contains descriptions of these
tables.
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