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Skin direct contact with chemical or physical substances is predisposed to allergic contact
dermatitis (ACD), producing various allergic reactions, namely rash, blister, or itchy, in the
contacted skin area. ACD can be triggered by various extremely complicated adverse
outcome pathways (AOPs) remains to be causal for biosafety warrant. As such,
commercial products such as ointments or cosmetics can fulfill the topically safe
requirements in animal and non-animal models including allergy. Europe, nevertheless,
has banned animal tests for the safety evaluations of cosmetic ingredients since 2013,
followed by other countries. A variety of non-animal in vitro tests addressing different key
events of the AOP, the direct peptide reactivity assay (DPRA), KeratinoSens™, LuSens
and human cell line activation test h-CLAT and U-SENS™ have been developed and were
adopted in OECD test guideline to identify the skin sensitizers. Other methods, such as the
SENS-IS are not yet fully validated and regulatorily accepted. A broad spectrum of in silico
models, alternatively, to predict skin sensitization have emerged based on various animal
and non-animal data using assorted modeling schemes. In this article, we extensively
summarize a number of skin sensitization predictive models that can be used in the
biopharmaceutics and cosmeceuticals industries as well as their future perspectives, and
the underlined challenges are also discussed.
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INTRODUCTION

Skin is a protective barrier against the external environment to guard internal organs, bones, and
muscles. The skin is an organ of the integumentary system made of multiple layers containing
epidermis (surface layer), and dermis (deeper layer) (Rehfeld et al., 2017). The topical application and
transepidermal delivery of natural or synthesized chemicals are striking approaches for the discovery
and development of drugs and medicines by physicians and pharmacologists (Alkilani et al., 2015);
and for maintaining healthy skin in general by dermatologists (Kraft and Lynde, 2005; Spada et al.,
2018). Upon skin contacts with chemicals or substances that could be non-allergy or allergen caused
the hypersensitivity to the subject (Lee and Thomson, 1999). There are four types of skin
hypersensitivity, fundamentally, based on the immunologic mechanism that mediates the
disease, namely type I (immediate/IgE-related), in which the cutaneous skin test reaction reaches
the peak at 2 h; type II (antibody and complement related cytotoxicity); type III (antigen-antibody
complex mediated); and type IV or delayed type hypersensitivity (DTH) response, that can occur
within 48–72 h (Lee and Thomson, 1999; Posadas and Pichler, 2007). Notably, skin sensitization or
allergic contact dermatitis (ACD) is a type IV DTH or type IV allergy (Ouyang et al., 2014). ACD can
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substantially affect the life quality of patients with uncomfortable
symptoms of skin rash, blister, and/or swollen that could persist
for a lifetime in some cases (Strickland et al., 2016). In illness
observation, ACD has affected more than 20% of North
America’s and Western Europe’s population based on the data
collected from all age groups, and the contact allergy tends to be
more prevalent in younger children as the comparison with adults
(Thyssen et al., 2007).

The adverse outcome pathways (AOPs) of skin sensitization
are the sequential events from the initial skin exposure to
chemicals, followed by triggering the downstream cascade
pathways, which include induction and elicitation phases. The
chemical sensitization pathway (CSP) is initialized by the adduct
formation, viz. a covalent bond between skin proteins and
chemicals to subsequently form a full antigen (Enoch et al.,
2011). Moreover, skin sensitizers have the same
physicochemical properties as haptens, which are electrophilic
per se (Roberts and Lepoittevin, 1998) or lead to the formation of
free radicals (Gäfvert et al., 1994). In some cases, skin sensitizers
can be named as prehapten, which initially are not electrophilic or
radicals but can be activated through air exposure,
photoactivation, bacterial degradation on the skin surface
(Karlberg et al., 1992; Sköld et al., 2002) and skin sensitizers
also can be termed as prohapten, which can be triggered through
the metabolic pathway (Nilsson et al., 2005; Gerberick et al., 2008;
van Eijl et al., 2012). As such, those skin sensitizers may act as
electrophiles, whereas the skin protein functions as a nucleophile
in the process of adduction formation. More specifically, those
nucleophilic amino acids such as cysteine (thiols), histidine,
lysine (primary amines), methionine, and tyrosine within the
skin protein can interact or react with electrophilic hapten
(Ahlfors et al., 2003; Gerberick et al., 2004; Schwöbel et al.,
2011). This interaction with cysteine and/or lysine leads to the
formation of covalent bonds and production of the hapten‒
protein complex consequently processed by both epidermal
and dermal dendritic cells (DCs), which constitute the skin
immune system (Ochoa et al., 2008; Clausen and Stoitzner,
2015). Subsequently, the DC presents the part of this protein
complex (antigen) on major histocompatibility complex (MHC)
and activates naïve T lymphocyte in the lymph node (Martin
et al., 2010; Huppert et al., 2018; Johnson et al., 2020). In addition,
this can induce the differentiation and proliferation of T cells that,
in turn, will propagate the inflammatory response throughout the
whole body (Gefen et al., 2015). After the initial exposure, the
secondary exposure to the same allergen will initiate the
elicitation phase, in which the activated T cells are triggered to
secrete specific cytokines to attract inflammatory cells entering
into the epidermis of infected parts, causing rash, itchy, and
burning on the exposed skin surface. The detail of induction
and elicitation phases has been illustrated elsewhere (OECD,
2012). Markedly, the response in the elicitation phase of the
immune system is faster than that in the induction phase (OECD,
2012).

The complications of whiting-cosmetics have been
documented in recent years since the cosmetic ingredients are
not only a major concern in the beauty industry but also a critical
factor in human health. Some ingredients in brightening

cosmetics such as hydroquinone, corticosteroids, and mercury
can cause severe complications. For instance, chronic application
of hydroquinone-contained cosmetics can result in exogenous
ochronosis or “fish odor syndrome,” the accumulation of
mercury can lead to increased pigmentation, nail discoloration,
and ACD; and the aggregation of corticosteroids will produce
“steroid addiction syndrome” or induce acne on the anterior
chest (Olumide et al., 2008; Ladizinski et al., 2011; Mahé, 2014).
Cosmeceuticals is a burgeoning industry, in which cosmetic
products can exert therapeutic effects (Martin and Glaser,
2011). Vitamin, hydroxy acids, growth factors, peptides, and
botanicals, for example, are considered as the cosmeceutical
ingredients (Martin and Glaser, 2011). Some skincare products
also include ingredients with pharmaceutical properties as
exemplified by Oz.Or. Oil 30, which cannot only soften the
skin but also show the potential in antibacteria and
ameliorating dermal wound healing (Serio et al., 2017).
Sargafuran, which is extracted from marine brown alga, is a
promising compound to be used in skincare cosmetics for
preventing acne because of its antibacterial properties (Kamei
et al., 2009). In addition, Food and Drug Administration (FDA)
has already approved some antibiotics such as quinupristin-
dalfopristin, linezolid, and daptomycin for the treatment of
skin-structure infections (Schweiger and Weinberg, 2004).
According to FDA regulation, a product can be both a
cosmetic and a drug if it can meet the definitions of both
cosmetics and drugs. However, the category such as
“cosmeceuticals” has not been recognized by FDA. In contrast,
cosmeceuticals are a subclass of cosmetics in Europe and Japan,
and considered as a subclass of drugs in the UK (Pandey et al.,
2021). However, the criteria for classifying compounds or raw
materials from the same plant are various in different countries.
For instance, the raw materials of C. limon have been considered
as the natural ingredients to potentially threat human health by
the European Food Safety Authority (EFSA). However, the oil
and extracts from this species is classified as safe products by FDA
(Klimek-Szczykutowicz et al., 2020), suggesting that these criteria
are not universally applicable.

Skin sensitization is an increasingly important issue that can
be manifested by the number of publications about skin

FIGURE 1 | The number of publications searched by Google Scholar
and PubMed with the keyword “Skin sensitization.”
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sensitization as illustrated in Figure 1. It can be observed that the
number of published literature has gradually increased in recent
years, especially the dramatic increase after 2000. The
consumption and interest in the cosmetic market have
progressively increased by 5% every year and it is expected to
reach 31.75 billion US dollars by 2023 (Kumar, 2005; Orbis-
Research, 2018). The potential benefits and demand are still high
and the information about toxicity, physicochemical, and
bioactivity properties of the cosmetics ingredients need to be
promoted (Kumar, 2005; Panico et al., 2019), the growth of the
global cosmetics market is updated annually at http://www.
statista.com/statistics/297070/growth-rate-of-the-global-cosmetics-
market/.

SKIN SENSITIZATION ASSAY

Various tests have been devised to evaluate the potential of the
human skin sensitization of new substances and they can be
basically classified into human tests, animal tests, and non-animal
tests as enlisted in Table 1. The more detailed test information
will be discussed as follows.

Human Tests
Human tests for skin sensitization include human repeat insult
patch test (HRIPT) and human maximization test (HMT)
(Kligman, 1966; Kligman and Epstein, 1975; Marzulli and
Maibach, 1974). In both tests, the human skin reaction is
recorded after the secondary contact between a tested
substance and human skin. Generally, the response of the
tested substance is classified into 5 levels according to the
incidence of the positive response from test subjects in the
HMT system: weak (0–2/25), mild (3–7/25), moderate (8–13/
25), strong (14–20/25), or extreme sensitizer (21–25/25)
(Kligman, 1966). The HRIPT classification system is instituted
according to the grades of skin reactions: 1) erythema; 2)
erythema and induration; 3) vesiculation; and 4) bulla
formation and only the substances of grade 1 are qualified as
non-sensitizers (Marzulli and Maibach, 1974). To date, the
classification systems of skin sensitization in human tests are
not consistent and often depend on the subjective judgment of
experts (Gerberick et al., 2001; Roberts, 2018). In the classification
and labeling of chemicals of the globally harmonized system
(GHS), chemicals are classified as subcategory 1A or 1B if their
HRIPT or HMT values are ≤500 μg/cm2 or HRIPT or HMT
values are >500 μg/cm2, respectively. Both subcategories are

experimentally considered as skin sensitizers. Non sensitizers
are not classified in this classification system (ICCVAM, 2011;
United Nation, 2013). Nevertheless, the other classification
system has also been proposed, in which chemicals are
classified into six skin sensitization categories based on their
no observed effect level (NOEL) values of HRIPT as enlisted in
Table 2 (Basketter et al., 2014). Nowadays, human tests are only
implemented to confirm skin sensitization of test chemicals
under specific conditions and no maximum concentrations are
allowed to apply due to ethical issues (Kimber et al., 2001).

Animal Tests
Besides human tests, there are various animal tests have been
conducted to evaluate the potential of the human skin
sensitization for new substance, namely local lymph node
assay (LLNA), which depends on the nature of AOP key
events as listed in Table 1 (OECD, 2012), Guinea pig
maximization test (GPMT), and Buehler tests. Of various
animal assay systems, LLNA (OECD, 2010a; 2010b), which is
based on the extent of induced proliferative responses in draining
lymph nodes after the topical exposure of chemicals to mice
(stimulation index, SI), is the preferred animal test model and has
been adopted by various regulatory agencies (Cockshott et al.,
2006; Gerberick et al., 2007a). The LLNA system is designated to
measure the substance concentration when the lymphocyte
proliferation of the lymph node is three-fold higher than that
of the vehicle-treated controls, viz. SI S 3, and is defined as the
LLNA EC3 value. The risk potential of skin sensitizers is
categorized into various classes according to the measured
LLNA EC3 values as summarized in Table 3 (ICCVAM,
2011). The LLNA EC3 value has been converted from the
percentage to µg/cm2 since 2001 to develop the correlation
between LLNA EC3 and NOEL value from human tests,
namely HRIPT and HMT. It has been found that the EC3
value can be used to quantitatively estimate the skin
sensitization potency in human since EC3 values can be highly
correlated with NOELs (Gerberick et al., 2001) that also has been
confirmed by Api et al. (Api et al., 2015).

The GPMT method is another popular animal model, in
which intradermal injection and/or epidermal application were
employed in induction periods to expose guinea pig skin with the
test substances. The animals are repeatedly exposed to test
substances with a challenge dose after 10–14 days. The skin
reaction to the challenge exposure in the test animals is
determined by comparing it with the untreated control
animals (OECD, 1992). The skin sensitization potential of

TABLE 1 | Animal and non-animal tests to evaluate the potential of the human skin sensitization of new substance depending on key events in AOP (OECD, 2012).

Key event Function and focus Method References

1 The molecular interaction with skin proteins through cysteine and/or lysine residue DPRA, kDPRA, ADRA OECD (2015a), OECD (2020)
2 The inflammatory response through keratinocyte KeratinoSens™ OECD (2017), OECD (2018a)
3 The activation of dendritic cells h-CLAT OECD (2016b), OECD (2018c)

U-SENSTM

4 The proliferation of T cells LLNA OECD (2010a), OECD (2010b)

OECD: Organization for Economic Co-operation and Development (France, 1961).
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chemicals can be classified into various extents, namely extreme,
strong, moderate, or weak levels, depending on the induction
concentration and the incidence of subjects as listed in Table 4
(ICCVAM, 2011). The Buehler method is another test to use
guinea pig skin as a module. The only difference between GPMT
and Buehler test is the way of sample preparation in that the test
substance is mixed with Freund’s complete adjuvant (FCA) in the
GPMT test, whereas that step is absent in the non-adjuvant
Buehler method (OECD, 1992). Moreover, LLNA and GPMT
can be carried out in a synergistic fashion to evaluate skin
sensitization. More specifically, there is no need to carry out
the GPMT or Buehler test for further validation once the test
substance is defined as skin sensitization positive by LLNA.
Nevertheless, a substance is subjected to further evaluation by
GPMT or Buehler test in case it is qualified as skin sensitization
negative by LLNA (OECD, 1992).

The LLNA and GPMT skin sensitization models cannot
completely serve as a surrogate to predict skin sensitization
potential in human since they can only accurately predict 70%
of human tests in addition to the fact that LLNA and GMPT do
not always reach the same agreement. It has been shown that the
LLNA model can foretell human skin sensitization better than
GPMT in case of discordance between LLNA and GPMT assays
(Dean et al., 2001). As such, animal tests cannot completely

replace their human counterparts because of their limitations.
Surprisingly, it has been observed that one-third of strong
sensitizers in the human test were predicted to be weak
sensitizers by LLNA despite the fact that the LLNA test is
commonly recognized as the gold standard for the human
skin sensitization test (ICCVAM, 2011; Strickland et al., 2017;
Roberts and Api, 2018), indicating the discrepancy in both assay
systems. In addition, LLNA predictions can correlate with human
tests well as long as those sensitizers lie within the applicability
domain of the LLNA model. The inconsistent predictions,
nevertheless, are not due to randomness. More specifically, the
under-estimation of human skin sensitization potency by the
LLNA model can be principally attributed to the fact that the test
chemicals contain electrophilic aromatic Schiff bases or
impurities (Roberts and Api, 2018). Conversely, the LLNA
model is prone to over-estimating the potency when compared
with the human test if the test chemicals under LLNA conditions
will undergo autoxidation or have cutaneous pharmacological
potentials other than skin sensitization (Roberts and Api, 2018).
Furthermore, chemicals, namely pre- or pro-haptens, can be
falsely predicted (Roberts and Api, 2018). Moreover, animal
tests for skin sensitization that have been adopted for a long
time still comprised some controversial issues concerning their
effectiveness and ethical problems (Rollin, 2003). In 2017,
Predictive Toxicology Roadmap was established by FDA. In
this project, they evaluate new methods and technologies that
can expand the predictive capabilities of toxicology and reduce
the use of animal testing. With the same goals, the in vitro testing
methods have been evaluated by a Consortium comprising the
Institute for In vitro Sciences, Inc (IIVS) the Consumer
Healthcare Products Association (CHPA), and the PETA
International Science Consortium (PETA-ISC) to substitute
rabbit vaginal irritation (RVI) test (Costin et al., 2020). There
is a growing tendency, nevertheless, to use non-animal tests as an
alternative approach to assess skin sensitization (Doke and
Dhawale, 2015).

Non-animal Assays
Animal testing approaches for cosmetic products have been
banned due to animal rights and welfare by the 7th
amendment to the EU Cosmetics Directive in Europe since
2013 (European Union, 2003; European Commission, 2013a).
Notably, some non-animal testing methods have been developed

TABLE 2 | The skin sensitization categories based on the NOEL value of HRIPT.

Category Characteristics HRIPT NOEL value

1 High intrinsic skin sensitization potency Less than 25 μg/cm2

2 Less sensitizing than category 1, the contact with moderate concentration can trigger
1–10% positive induction of subjects

Between 25 and 500 μg/cm2

3 Substances known as contact allergens produce sensitization in 0.01–0.1% of those
exposed

Between 500 and 2,500 μg/cm2

4 Chemicals in this category require prolonged exposure to higher dose level to produce
sensitization and are rarely regarded as important clinical allergens

More than 2,500 μg/cm2

5 Very low intrinsic ability to cause skin sensitization. Even in the highly selected patient
groups, the incidence should not exceed 1%

The NOEL values are variable or absents, because of the inaccuracy of
determination of a threshold

6 Free from skin sensitization activity

TABLE 3 | The skin sensitization potency based on LLNA EC3 values.

Potency category Threshold (%)

Extreme EC3 < 0.1
Strong 0.1 ≤ EC3 <1
Moderate 1 ≤ EC3 <10
Weak 10 ≤ EC3 ≤100

TABLE 4 | The skin sensitization potential based on GPMT.

Induction concentration (%) GPMT incidence (%)

30 to <60 ≥60

<0.1 Strong Extreme
≥0.1 to <1 Moderate Strong
≥1 to <10 Weak Moderate
≥10 to ≤100 Weak Weak
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to resolve this challenge and approved by the European Union
Reference Laboratory for alternatives to animal testing (EURL
ECVAM) (European Commission, 2013a; European
Commission, 2013b). Nonetheless, non-animal test data may
still have limitations in predicting skin sensitization indeed.
For instance, those methods accepted by the Organization for
Economic Co-operation and Development (OECD) only focus
on one AOP key event or activation of some specific genes, such
depletion of cysteine and/or lysine-containing protein in Direct
Peptide Reactivity Assay (DPRA) (OECD, 2015a), CD86 and
CD54 overexpression in human cell line activation test (h-CLAT)
(OECD, 2018c), induction of nuclear factor-erythroid-2 related
factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1)-
antioxidant/electrophile response element (ARE) pathway in
KeratinoSens™ (OECD, 2015b), CD86 overexpression for
U-SENS™ test (OECD, 2016b), and the expressions of anti-
oxidation, inflammation, and cell migration genes in SENS-IS
test (Cottrez et al., 2016).

DPRA is a non-animal model focused on the hapten and
protein interaction due to skin exposure to chemical substances.
This method was first proposed by Gerberick and has been
further accepted by OECD since 2015 (Gerberick et al., 2004;
Gerberick et al., 2007b; OECD, 2015a), in which the synthesized
peptides such as cysteine (Ac-RFAACAA-COOH) and lysine
(Ac-RFAAKAA-COOH) (R: Arginine, F: Phenylalanine, A:
Alanine, C: Cysteine K: Lysine) are incubated with test
substances, followed by measuring the absorption peaks at
220 nm to determine the concentration of cysteine and lysine
after the reaction. Generally, skin sensitization can be divided into
4 classes, namely negative, positive with low, moderate, or high
reactivity level (OECD, 2015a). Nevertheless, DPRA can be
limited by solubility and complex mixture (Gerberick, 2016).
In addition, the accuracy of measurement results would be
hampered by the fact that chemicals could be co-eluted with
the peptide (Natsch et al., 2007; Natsch and Gfeller, 2008). Until
now, the DPRA has been improved by another version such as
amino acid derivative reactivity assay (ADRA) to prevent the co-
elution of test chemicals and nucleophilic agents (Fujita et al.,
2019; Wanibuchi et al., 2019; Imamura et al., 2021). This method
has been accepted by OECD (OECD, 2020). Another modified
DPRA called kinetic direct peptide reactivity assay (kDPRA), in
which several concentrations of tested compounds are incubated
with synthetic peptide for different incubation times, has been
accepted by OECD (OECD, 2020). The matrix of depletion values
and incubation times and concentrations are constructed to
measure the rate constant (log kmax). The test compounds are
further classified into GHS classification scales by their log kmax

values. (Natsch et al., 2020). The reproducibility between intra-
and inter-laboratories for this method achieved 96 and 88%,
respectively (Wareing et al., 2020).

The KeratinoSens™ method takes a different approach by
focusing on a second AOP key event (Table 1), namely the
inflammatory responses and gene expression associated with
specific cell signaling pathways such as ARE-dependent
pathways. Keap1 binds to the transcription factor Nrf2 in the
un-induced state that helps ubiquitin bind to Nrf2 by CuI2-
mediated ubiquitinylation, which, in turn, can degrade Nrf2 into

the proteasome (de Freitas Silva et al., 2018). However, Keap1
cannot bind to Nrf2 protein once the covalent bond is formed
between Keap1 and small molecules such as sensitizers, leading to
the accumulation of Nrf2 protein in the nucleus. The released
Nrf2 protein binds to ARE sequence in the promoter regions of
detoxification, antioxidant, and anti-inflammatory genes,
triggering the expression of target genes (de Freitas Silva et al.,
2018). The mechanism of Nrf2-ARE pathway activation was
illustrated in Figure 2 of de Fritas Silva et al. (de Freitas Silva
et al., 2018). Accordingly, the human keratinocytes HaCaT cells
are stably transfected with the selected plasmid, which contains
the ARE sequence, SV40 promoter, and luciferase gene (luc2) in
the KeratinoSens™ test (Emter et al., 2010; Steinberg, 2013). The
test chemicals are designated as sensitizers in the KeratinoSens™
test provided that they can produce the induction of luciferase
activity above 1.5 folds with respect to the negative control or
non-sensitizers otherwise (OECD, 2015b). The LuSens assay is
another method accepted by OECD and is developed based on
the same concept as KeratinoSens™ (Ramirez et al., 2014; OECD,
2018b).

The activation of DCs is the AOP key event investigated in the
h-CLAT method (Table 1). In the induction phase of skin
sensitization, the co-expression of CD86 and CD54 on the
Langerhans cells is used as the indicator of the antigen-
presenting process (Nuriya et al., 1996; Reiser and
Schneeberger, 1996; Tuschl et al., 2000). Thus, the expressions
of CD86 and CD54 on THP-1 cells, which are a human
monocytic leukemia cell line, are measured in the event when
THP-1 cells are exposed to sensitizers in the h-CLAT method
(Sakaguchi et al., 2006; Sakaguchi et al., 2009). The upregulation
of these markers indicates the occurrence of DCs activation and
the skin sensitization activity caused by the test chemical. Of note,
chemicals are further classified as sensitizers or non-sensitizers in
this test (OECD, 2018c). In addition, the U-SENS™ test method
for skin sensitization testing is based on the expression of CD86
cell surface marker on the U937 cells, which are a human
histiocytic lymphoma cell line (Piroird et al., 2015). Briefly, a
compound is considered to be a sensitizer when CD86 expression
in the U937 cell line is 1.5 fold higher than the untreated control
and non-sensitizer otherwise. It is of interest to note that this
method has been submitted to OECD and the drafted proposal
has been publicized on the OCEDwebsite (OECD, 2016b; OECD,
2018c). This method recently has been used to evaluate the role of
nanomaterials in skin sensitization (Bezerra et al., 2021).

SENS-IS is another non-animal method to measure the skin
sensitivity of chemicals using the commercially reconstituted
human skin (EpiSkin) (Netzlaff et al., 2005; Cottrez et al.,
2015), in which the expression levels of Redox and SENS-IS
genes are measured. The former includes 17 genes that contained
an ARE in their promoter (Cottrez et al., 2016), which are related
to the target genes modulated by the Nrf2-Keap1-ARE signaling
pathway, whereas the latter includes 21 genes, which are linked to
the activities of DCs and associated with inflammation, danger
signals, and cell migration. Those genes measured in the SENS-IS
group can be triggered by sensitizers but not under the control of
the Nrf2-Keap1-ARE pathway (Cottrez et al., 2015; Cottrez et al.,
2016). There are four chemical concentrations, namely 50, 10, 1,
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and 0.1%, applied onto the artificial skin, followed by collecting
the mRNA from the EpiSkin cells and analyzing the gene
expression using reverse transcriptase polymerase chain
reaction (RT-PCR). When the number of expressed genes is
more than 7 and less than 20 in both groups, the test
chemicals are defined as sensitizers and subsequently
categorized as weak, moderate, strong, or extreme sensitivity
depending on the chemical concentrations that, in fact, is
similar to the classification system adopted by LLNA. The test
chemical concentration will be lowered when there are 20 genes
expressed that are termed overexpression. Moreover, a chemical
is considered as negative in case of failures in all tested
concentrations (Cottrez et al., 2016). Until now, this method is
still under the validation process, which has been announced at
https://tsar.jrc.ec.europa.eu/.

Various research groups have published their assay data using
those above-mentioned methods and the results are summarized
in Table 5, which provides affluence of data source for building in
silico models. Until now, there are still many researchers
endeavoring to improve the accuracy of in vitro assay for
assessing the skin sensitization potential such as finding new
biomarkers for predicting skin sensitization (Hirota and Moro,
2006) or developing a novel assay like Genomic Allergen Rapid
Detection (GARD™) to define the skin sensitization activity by
only one assay (Roberts, 2018). GARD™ depends on the changes
of the gene expression when myeloid cells are exposed to the
chemicals (Johansson et al., 2013; Johansson et al., 2019;
Johansson et al., 2011; Roberts, 2018; Stevenson et al., 2019).
This method was validated by numerous laboratories with an
inter-laboratory reproducibility of 92.0% in 2019 (Johansson
et al., 2019), and has been under the peer-review process for
EURL ECVAM validation, which has been announced at https://
tsar.jrc.ec.europa.eu/. Furthermore, the conformal prediction has
been implemented into GARD™ protocol with an accuracy of
88%. In 2021, Masinja et al., nevertheless, used GARD™ to
predict the skin sensitization potential of agrochemical active
ingredients in total 7/12 GARD™ results concurred with
mammalian data, suggesting that GARD™ still needs to be
improved to validate the skin sensitization potential of not
only cosmetics, but also the other active ingredients (Masinja
et al., 2021). Another way is to modify or to improve the current
non-animal methods to further increase the accuracy. For
instance, the spectro-DPRA method using 5, 5-dithiobis-2-
nitrobenzoic acid, or fluorescamine™ as the detection reagent

was designed to investigate the unreacted peptide in 2014. It was
demonstrated that the accuracy of this method could increase up
to 91.5 and 94.9% when compared with LLNA and human data,
respectively (Cho et al., 2014; Cho et al., 2019).

Most of the non-animal tests such as U-SENS™, h-CLAT, and
KeratinoSens™ are qualitative per se, in which compounds are
divided into skin sensitization positive and negative, viz. a binary
classification fashion (OECD, 2015b; 2016b; 2018c), whereas
DPRA and SENS-IS are basically quantitative, in which the
levels of skin sensitization potential are determined (OECD,
2015a). Additionally, the non-animal tests such as DPRA,
h-CLAT, and KeratinoSen™ are routinely used as the
preliminary screening by Europe, whereas others such as
U-SENS™ and SENS-IS can be implemented to further
characterize the nature of skin sensitization (OECD, 2016b,
2019). The non-animal models for skin sensitization have been
adopted for a long time and the first non-animal DPRA model
has been accepted by OECD since 2015. However, not all
chemicals such as insoluble chemicals, pro-haptens, and
chemicals co-eluting with the model peptide can be assessed
by DPRA that may severely limit their applications. These
chemicals, nevertheless, can be evaluated by in silico models in
the preliminary phase (Urbisch et al., 2016). As such, in silico
models are expected to be a useful method for predicting skin
sensitization of novel chemicals in this aspect.

IN SILICO MODELS

Data Source
Europe has banned animal tests to verify the safety of cosmetic
products such as toxicity in repeated dose systems, skin
sensitization, reproductive toxicity, carcinogenicity, and
toxicokinetics since 2013 (European Commission, 2013a).
Alternatively, various non-animal tests, namely DPRA,
KeratinoSens™, and h-CLAT, have been derived and accepted
by OCED (vide supra). In addition, various skin sensitization data
have been published according to the collection of animal and
non-animal data, as well as chemical structure information are
listed in Table 5. Some online skin sensitization data sources,
which have collected the data and structural alerts, can be used to
build predictive models and are listed in Table 6. Of various skin
sensitization databases, SkinSensDB, which has collected the
animal and non-animal tests and contains 710 unique

TABLE 5 | Non-animal skin sensitization assay types and data sources.

Assay type Data sources

DPRA Bauch et al. (2011), Bauch et al. (2012), Gerberick et al. (2004), Gerberick et al. (2007b), Hoffmann et al. (2018), Jaworska
et al. (2013), Jaworska et al. (2011), Natsch et al. (2013), Nukada et al. (2013), Takenouchi et al. (2015), Urbisch et al. (2015)

h-CLAT Ashikaga et al. (2010), Sakaguchi et al. (2010), Bauch et al. (2011), Nukada et al. (2011), Bauch et al. (2012), Nukada et al.
(2013), Takenouchi et al. (2013), Takenouchi et al. (2015), Urbisch et al. (2015), Hoffmann et al. (2018)

KeratinoSens™ Emter et al. (2010), Ball et al. (2011), Bauch et al. (2011), Bauch et al. (2012), Jaworska et al. (2013), Natsch et al. (2013),
Urbisch et al. (2015), Hoffmann et al. (2018)

SENS-IS Cottrez et al. (2016), Hoffmann et al. (2018)
U-SENSTM Python et al. (2007), Bauch et al. (2011), Bauch et al. (2012), Jaworska et al. (2013), Natsch et al. (2013), Piroird et al. (2015),

Hoffmann et al. (2018)
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chemicals with 2,078, 467, 1,323, and 1,060 assay values for
peptide reactivity (DPRA), keratinocyte activation
(KeratinoSen™), dendritic cell activation (h-CLAT), and
T-cell activation (LLNA-EC3), respectively (Tung et al., 2019;
Wang et al., 2017), is freely accessible. The non-confidential
substance data, which have been submitted to European
chemicals agency (ECHA) under the Registration, Evaluation,
Authorization and Restriction of Chemicals (REACH)
regulation, are publicly available and free of charge. This
dataset contains many types of assays and study categories.
Another available source is Cosmetic ingredient database
(CosIng). This European Commission database includes the
information about cosmetic substances and ingredients
(Table 6). Another source is Chemical Evaluation and Risk
Estimation System (CERES), which is developed by FDA’s
Center for Food Safety and Nutrition. This database contains
toxicity data including the skin sensitization hazard and potency
(Ghosh et al., 2020).Various predictive models and packages to
predict skin sensitization have been published (Wilm et al.,
2018). Some models provide structure alerts based on the
analysis of chemical characteristics that are responsible for
skin sensitization (Sushko et al., 2011). ToxAlerts was
established in 2012 serving as a valuable data source for
model development to predict the chemical toxicity. Initially,
600 structural alerts for carcinogenicity, mutagenicity, skin
sensitization, acute aquatic toxicity, and potential
idiosyncratic drug toxicity were issued (Sushko et al., 2012),
and the number has increased to more than 3,000 structural
alerts to date. The Interagency Coordinating Committee on the
Validation of Alternative Methods (ICCVAM) is a permanent
committee of the National Toxicology Program (NTP) Division,
which is responsible for evaluating the toxic potential,
developing and validating the toxicology methods, collecting
the data to strengthen the scientific base for risk assessment.
ICCVAM has established a database for skin sensitization with
the collection of 1,060 chemicals for the LLNA test and 208
chemicals for the GPMT and Buehler tests (ICCVAM, 2011).
Vitic is a commercial toxicity database and information
management system developed by Lhasa, consisting of more
than 38,000 skin sensitization data for more than 10,000
structures. eChemPortal, which has been developed by
OECD, is a free public source and provides the chemical

characteristics of physical-chemical properties, environmental
fate and behavior, ecotoxicity, and toxicity. The chemical
information can be searched using chemical names and
numbers or GHS classifications.

Commercial Package
Numerous commercially available packages and/or models have
been published and are listed in Table 7. Computer automated
structure evaluation (case) Ultra program is a commercial
package to issue the structure alerts, in which, principally,
molecular structures are divided into various subunits and
those ones responsible for specific activities are identified and
termed biophore (Klopman, 1992). Moreover, different subunits
can give rise to different biophore activities. A subunit is termed
synergistic or biophobic if it could increase or decrease the
activity, respectively (Graham et al., 1996; Chakravarti et al.,
2012). As such, this package can predict the effective level of skin
sensitization for a given compound and has been validated by
predicting various adverse effects of drugs, namely
carcinogenicity, hepatotoxicity, cardiotoxicity, renal toxicity,
and reproductive toxicity. Saiakhov et al. have carried out a
pilot study using case Ultra to analyze other adverse effects,
including skin sensitization (Saiakhov et al., 2013).

A non-sensitizer might be converted into a sensitizer
through a biodegradation metabolism pathway (Jaworska
et al., 2002). CATABOL (http://oasis-lmc.org/products/models/
environmental-fate-and-ecotoxicity/catabol-301c.aspx) is an
online package that can simulate the metabolic pathways of
chemicals by predicting the abiotic molecular transformation
and enzyme-mediated reactions such as reductive, hydrolytic,
oxidative, redox, conjugative reactions, reactions with skin
protein, as well as predicting the chemical transformation
through spontaneous reactions, enzyme-catalyzed metabolism
reactions, and reactions with protein nucleophiles (Jaworska
et al., 2002). The tissue metabolism simulator (TIMES) model
based on the prediction from CATABOL consists of simulators:
1) using the microbial metabolism simulator to generate the
metabolic maps from the training samples; 2) evaluation of
skin sensitization potential in light of the metabolic maps and
structural alerts (Dimitrov et al., 2005). The TIMES model for
skin sensitization (TIMES-SS) package is commercially available
and the information about skin metabolism associated with skin

TABLE 6 | Online skin sensitization databases.

database Website

SkinSensDB http://cwtung.kmu.edu.tw/skinsensdb
Toxalert http://ochem.eu/alerts
National Toxicology Program https://ntp.niehs.nih.gov/whatwestudy/niceatm/test-method-evaluations/immunotoxicity/llna/index.htmlhttps://ntp.niehs.

nih.gov/iccvam/methods/immunotox/niceatm-llnadatabase-23dec2013.xls
Vitic https://www.lhasalimited.org/products/vitic.htm

https://www.lhasalimited.org/products/skin-sensitization-assessment-using-derek-nexus.htm
eChemPortal https://www.echemportal.org/echemportal/index.action
REACH https://iuclid6.echa.europa.eu/reach-study-results
CosIng https://ec.europa.eu/growth/sectors/cosmetics/cosing_en
CERES https://www.accessdata.fda.gov/scripts/fdatrack/view/track_project.cfm?program¼cfsan&id¼CFSANOFAS-Chemical-

Evaluation-and-Risk-Estimation-System
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sensitization is available online (http://oasis-lmc.org/products/
models/metabolism-simulators/skin-metabolism.aspx). The
training samples were excerpted from LLNA, GMPT, and
human datasets (Dimitrov et al., 2005; Mekenyan et al., 2012).
Ivanova et al. expanded the development of the kinetic
component into the TIMES-SS model in 2020. In this model,
they tried to implement the kinetic of biotic transformations to
predict the skin sensitization potential. The initial predictions
were consistent with the experimental data for those tested
compounds (Ivanova et al., 2020).

The skin sensitization activity of a chemical will also depend
on the transformation ability from prohapten into hapten in that
the sensitizers themselves are not electrophilic per se.
Nevertheless, they can undergo enzymatic or oxidative
processes to become electrophilic that, in turn, can facilitate
the interaction with skin protein, producing antigens
consequently (Aptula et al., 2005). Unlike the other packages,
Computer Aided Discovery and Redesign-Skin Sensitization
(CADRE-SS) is focused on such biological transformation and
is comprised of three modules to analyze the reaction in each step:
I) skin permeability; II) haptenation and hapten-activation
mechanisms, and III) conjugation with protein. The
interaction potential between chemicals and skin protein is
analyzed by module II using the Smiles ARbitary Target
Specification (SMARTS) pattern structure, and compounds are
subjected to further analysis by module III once the chemicals are
identified as potential haptens. The key event in this process is the
adduct formation between the chemical and the Keap1 protein,
which contains highly reactive cysteine and lysine amino acids
(Kostal and Voutchkova-Kostal, 2016).

SMARTS patterns have been mined by ToxTree (Enoch et al.,
2008) to identify the potential of skin sensitization. A series of
SMARTS patterns based on the previously identified mechanisms

of action have been identified, namely aromatic nucleophilic
substitution (SNAr), Schiff base formation (SB), Michael-type
addition (MA), aliphatic nucleophilic substitution (SN2), and
acylation (Ac) (Aptula et al., 2005), in which the covalent bond
can be formed between skin protein and sensitizer (Enoch et al.,
2008; Enoch et al., 2011). Totally, 104 structural alerts were issued
in 2011 (Enoch et al., 2011) and the most updated version is
commercially available at https://www.daylight.com/products/
toolkit.html through Daylight Toolkit.

Deductive estimation of risk from existing knowledge
(DEREK) is an expert knowledge system-based commercial
predictive package, in which the structure alerts are proposed
to predict the binding potential between electrophilic chemicals
and skin protein. Initially, only 40 structure-activity rules for skin
sensitization were issued in 1994 (Barratt et al., 1994), and that
number increased up to 70 in 2006 (Langton et al., 2006) from the
GPMT input data. The modified version of Derek Nexus was
released in 2017 using the LLNA EC3 value from over 650
compounds in the Lhasa EC3 dataset (https://www.
lhasalimited.org/products/skin-sensitization-assessment-using-
derek-nexus.htm) instead of GPMT, which was used in the
previous versions. This version features the qualitative
prediction for mammalian skin sensitization and the
quantitative EC3 prediction for skin sensitizers (Canipa et al.,
2017). The skin sensitization structure alerts in Derek Nexus
increased from 73 to 90 between 2014 and 2018 and the
performance was validated against a dataset over 2,500
chemicals with LLNA and/or GPMT data (Chilton et al., 2018).

Models Based on Animal Tests
Computer Assisted Evaluation of Industrial Chemical Substances
According to Regulations (CAESAR) was developed according to
the QSAR validation principles issued by OECD. This model was

TABLE 7 | The commercial package and models based on animal, non-animal tests, and mixed test type.

References Model

Commercial package
Klopman (1992) Case
Jaworska et al. (2002) CATABOL (http://oasis-lmc.org/products/models/environmental-fate-and-ecotoxicity/catabol-301c.aspx)
Dimitrov et al. (2005) TIMES-SS (http://oasis-lmc.org/products/models/metabolism-simulators/skin-metabolism.aspx)
Kostal and Voutchkova-Kostal (2016) CADRE-SS

Models based on animal tests
Enoch et al. (2008) ToxTree
Barratt et al. (1994), Langton et al. (2006) Derek Nexus
Wilm et al. (2018) CAESAR (http://www.caesar-project.eu/index.php?page�results&section�endpoint&ne�2)
Benfenati et al. (2013) VEGA (https://www.vegahub.eu/)
Toropova and Toropov (2017) CORAL (http://www.insilico.eu/coral)

Models based on non-animal tests
Otsubo et al. (2017) binary classifier based on KeratinoSens™ and h-CLAT
Asturiol et al. (2016) qualitative skin sensitization predictive model using DT by combining DPRA, KeratinoSens™, and h-CLAT
Roberts and Patlewicz (2018) Build the model based on DT by combining DPRA, h-CLAT

Models based on mix test type
Tung et al. (2018); Tung et al. (2019) SkinSensPred (https://cwtung.kmu.edu.tw/skinsensdb/predict)
Borba et al. (2020a), Braga et al. (2017) Pred-skin (http://predskin.labmol.com.br/)
Ohtake et al. (2018) model based on in silico Derek Nexus, in chemico DPRA, and in vitro h-CLAT
Zang et al. (2017) DPRA, h-CLAT, KeratinoSens™ results and six physicochemical properties of compounds
Wilm et al. (2020) Skin Doctor CP (https://nerdd.zbh.uni-hamburg.de/skinDoctorII/)
Borba et al. (2020a) https://stoptox.mml.unc.edu/
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built by the EU (Cassano et al., 2010; Wilm et al., 2018) and is
freely available (http://www.caesar-project.eu). CAESAR can be
used to develop QSAR models for five endpoints, namely skin
sensitization, carcinogenicity, mutagenicity, bioconcentration
factor, and developmental toxicity. The CAESAR model for
skin sensitization was derived based on 209 compounds
excerpted from a previous study (Gerberick et al., 2005) to
classify compounds into sensitizer or non-sensitizer (http://www.
caesar-project.eu/index.php?page�results&section�endpoint&ne�2).
Afterward, Virtual models for property Evaluation of chemicals
within a Global Architecture (VEGA) derived from CAESAR
model can predict skin sensitization based on the LLNA data.
This binary classifier, which is freely accessible, can be
downloaded at http://www.vega-qsar.eu (Benfenati et al., 2013)
and the latest version can be found at https://www.vegahub.eu/.
Fitzpatrick et al. compared the performance of VEGA, TIME-SS,
and Derek Nexus in skin sensitization by applying 1,249
substances from the eChemportal skin sensitization dataset
(http://www.echemportal.org/echemportal/index.action) and 515
substances from the Interagency Center for the Evaluation of
Alternative Toxicological Methods (NICEA™) LLNA database
(https://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/
immunotoxicity/index.html). The results showed that the accuracy of
any expert models was about 65%, especially with the
substances that were within the application domain of
TIME-SS, the accuracy could be reached to 79 and 82% for
both datasets (Fitzpatrick et al., 2018). This comparison, in
fact, is consistent with the observation made by Teubner et al.,
in which it has been demonstrated that TIME-SS executed
better than the others such as VEGA and DEREK (Teubner
et al., 2013). Another model developed by Istituto di Ricerche
Farmacologiche Mario Negri (IRCCS) and the Joint Research
Center (JRC) is available at https://www.vegahub.eu/. The
model is built based on decision trees using 8 descriptors,
which are listed at https://www.vegahub.eu/vegahub-dwn/
qmrf/QMRF_SKIN_JRC.pdf. The endpoint of this model is
skin sensitization on mice (LLNA). When applied to external
validation, this model can obtain the accuracy, specificity and
sensitivity of 71, 82 and 65%, respectively. All 75 in silico
models imbedded in VEGA have been implemented into the
OECD QSAR Toolbox.

The Correlation and Logic (CORAL) package has been used as
a tool for QSAR analyses (Toropov et al., 2013). Afterward, this
software was used to develop a tool to predict the skin
sensitization (Toropova and Toropov, 2017). Various QSAR
models were built based on 204 compounds with the local
lymph node assay results using the Monte Carlo technique.
The hybrid descriptors calculated via the representation of the
molecular structure by SMILES with molecular graph were used
to generate the models. The model is available at http://www.
insilico.eu/coral.

Very recently, the first ternary predictive model has been
developed by Wilm et al. termed Skin Doctor CP (available at:
https://nerdd.zbh.uni-hamburg.de/skinDoctorII/) based on the
LLNA database. The most distinguishing characteristic of this
model is that compounds are initially categorized into sensitizers
or non-sensitizers by the first classifier and the predicted

sensitizers are further grouped into weak to moderate
sensitizers and strong to extreme sensitizers by a second
classifier. The model showed the accuracies of 0.90 and 0.73 as
well as the efficiencies of 0.42 and 0.90 at the significance levels of
0.10 and 0.30, respectively. However, this ternary classifier did not
achieve good performance since the validity values were 0.70, 0.
58, and 0.63 for non-sensitizers, weak tomoderate sensitizers, and
strong to extreme sensitizers, respectively, at the significance level
of 0.30 (Wilm et al., 2020).

Models Based on Non-animal Tests
Unlike the other predictive models, which rely on a single data
type, some predictors make decisions based on multiple data
types. For instance, Otsubo et al. have built a binary classifier
based on KeratinoSens™ and h-CLAT, and chemicals are
designated as skin sensitizers if they have positive results by
either one of the assays and non-sensitizers otherwise. The
predictions produced the sensitivity values of 93.4 and 94.4%
as compared with the LLNA and human data, respectively
(Otsubo et al., 2017). After collecting data from three non-
animal assays, namely DPRA, KeratinoSens™, and h-CLAT,
this study was further extended to build a majority voting
system. Compounds were defined as sensitizers when at least
two positive responses were obtained from those three assays. The
accuracy obtained from this model was 90% when compared with
human data, whereas that resulted from LLNA alone was merely
about 80% as compared with the human data (Urbisch et al.,
2015). According to this, multiple data type models can execute
better than their single-data-type counterparts.

Asturiol et al. took a different approach to develop a
qualitative skin sensitization predictive model using
decision tree (DT) (Asturiol et al., 2016). The model was
derived by combining 3 non-animal test data types, namely
DPRA, KeratinoSens™, and h-CLAT. The accuracy of the
model was defined by comparing with the LLNA
classification (sensitizer/non-sensitizer). The model showed
93% accuracy, 98% sensitivity, and 85% specificity for 269
chemicals (Asturiol et al., 2016). A different approach was
taken to build various DTs based on non-animal test results, in
which compounds were classified as sensitizers when DPRA
gave rise to positive results. Further evaluation by h-CLAT was
carried out once compounds were considered as negative by
DPRA. Compounds were classified as skin sensitizers if
h-CLAT showed positive results, whereas compounds were
labeled as non-sensitizers otherwise (Roberts and Patlewicz,
2018). Additionally, various models were developed according
to binary combinations of those three non-animal tests,
namely DPRA, h-CLAT, and KeratinoSens™. It was found
that the combination of DPRA and h-CLAT performed best in
distinguishing sensitizers from non-sensitizers. More
importantly, it was observed that all of the models based on
combinations of non-animal tests usually performed better
than their counterparts based on a single test that, actually, is
consistent with the previous observation (vide supra) (Urbisch
et al., 2016; Otsubo et al., 2017), suggesting that predictive
models based on the single non-animal test are not sufficient to
comprehensively render the skin sensitization complicated
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process (Adler et al., 2011; Hartung et al., 2011; Wilm et al.,
2018; Madden et al., 2020).

Models Based on Mixed Test Types
Most of the published packages or models are binary classification
systems, viz. sensitizer vs. non-sensitizer, based on one or more
than one non-animal tests. Integrated approaches to testing and
assessment (IATA) has taken a different approach by combining
various animal tests, non-animal tests, and in silico models to
predict the latency of skin sensitization (OECD, 2016a). IATA
includes the models, which are flexible and non-formalized
judgment based, e.g. grouping and read-across or more
structured, rule based approaches such as Integrated Testing
Strategy (ITS) (OECD, 2016a). ITS can combine DPRA,
KeratinoSens™, and h-CLAT (Jaworska et al., 2015; Urbisch
et al., 2015), DPRA, SENS-IS and/or h-CLAT (Clouet et al.,
2017), two of 3 non-animal tests, namely DPRA,
KeratinoSens™, and h-CLAT, to generate the predictive model
(Otsubo et al., 2017) based on in chemico, in vitro, and in silico data
(Jaworska et al., 2011). It has been found that the models based on
this strategy showed better performance. For instance, this
approach was implemented to develop various models based on
the combinations of 2 or 3 non-animal datasets, namely DPRA,
KeratinoSens™, and h-CLAT and the built model with the
selection of 3 non-animal datasets displayed the highest
sensitivity and yet the lowest specificity as compared with its
counterparts with the combination of only 2 of 3 non-animal
datasets (Otsubo et al., 2017). In 2017, Douglas Connect Integrated
Testing Strategy (DC ITS) SkinSens was launched to access the
integrated testing strategy developed by Jaworska (Jaworska et al.,
2013). The latest updated version for DC ITS SkinSens is
SaferSkin™ (https://saferworldbydesign.com/saferskin/).

SkinSensPred, which is a skin sensitization predictive function,
was developed in 2019 based on SkinSensDB, is freely accessed at
https://cwtung.kmu.edu.tw/skinsensdb/predict (Tung et al., 2018;
Tung et al., 2019). This multitask learningmodel is based on three
AOP key events and human skin sensitization test using protein
binding (DPRA), keratinocyte activation, dendritic cell activation
to binarily classify results in the human test. This model can
analyze the application domain (AD) and structure alerts (SA) to
predict the human sensitization potential of a chemical. When
applied to novel chemicals within the defined AD, this model
could reach an accuracy of 84.3% (Tung et al., 2019). In addition,
a majority voting model (2 out of 3) (Urbisch et al., 2015) and a
DT model (Roberts and Patlewicz, 2018) can be implemented as
the read-across predictive methods.

In 2018, Del Bufalo et al. developed an alternative integrated
testing for skin sensitization using the combination of 3 in vitro
methods (DPRA, Keratinosens™, U-SENS™), two in silico tools
(TIMES-SS, TOXTREE) and physicochemical parameters
(volatility, pH). These data were run in 5 different classification
models (Boosting, Naive Bayes, support vector machine (SVM),
Sparse Partial Least Squares Discriminant Analysis, and Expert
Scoring). The validation results were used in the stacking meta-
model to evaluate the skin sensitization potential (Del Bufalo et al.,
2018). The predictions achieved the accuracies of 93 and 91% for
the training set and test set, respectively when compared with

LLNAhazard data. A larger data set was used to validate this model
in 2020 (Tourneix et al., 2020). The Defined Approach (version 5)
was used (Tourneix et al., 2020) to evaluate the skin sensitization
potential of 219 compounds.

Pred-skin, which is accessible at http://predskin.labmol.com.
br/, is a consensus Naïve Bayes model that employs multiple
QSAR models based on various human, LLNA, and non-animal
data to predict skin sensitization. This model exhibited good
performance in predicting human skin sensitization with
sensitivity (94%) and specificity (84%). When applied to 11
new potential sensitizers, which were not included in the
dataset, Pred-skin exerts an efficient approach to identify nine
sensitizers (Borba et al., 2020a; Braga et al., 2017).

Zang et al. have published an in silico model, which was
derived by combining the non-animal data, namely DPRA,
h-CLAT, and KeratinoSens™, and six physicochemical
properties, namely octanol/water partition coefficient, water
solubility, vapor pressure, melting point, boiling point, and
molecular weight, as the descriptors to predict LLNA and
human outcomes (Zang et al., 2017). Compounds were
classified into sensitizers or nonsensitizers in this model, and
the sensitizers were further divided into 1A (strong) or 1B (weak)
sensitizer subcategories based on the GHS. The model achieved
the accuracy of 88% for the prediction of LLNA outcomes and
81% prediction for human test outcomes (Zang et al., 2017).

Ohtake et al. have published a predictive model based on
highly heterogeneous data, namely in silico Derek Nexus, in
chemico DPRA, and in vitro h-CLAT, in which the results of
DPRA and h-CLAT were scaled between 0 and 3, and the
outcomes from Derek Nexus were reduced between 0 and 1,
and the final total score was generated by summing those scores.
A compound is defined as a strong sensitizer when its total score
is larger than 7, and a weak sensitizer when its total score is
between 2 and 6 (Ohtake et al., 2018). The unique characteristic of
this model is the fact that the skin sensitizers are further divided
into the strong and weak ones in this model despite the fact that
this multiple classification system is not the same as the animal or
human test classification. However, only nine isocyanates were
included and the prediction results indicated that this model
underestimated the skin sensitization potential when compared
with LLNA data.

In 2020, Silva et al. used the different combinations of in vitro
(human information), in chemico (DPRA), and/or in silico (the
formation descriptor calculated by the TIMES-SS) data to build
the models, which can predict the skin sensitization potential.
The results showed that the combination of in vitro, in chemico,
and in silico achieved the best prediction results. Moreover, the
models reached an accuracy of 100% in differentiating sensitizers
from non-sensitizers. When the same model was, it exhibited the
accuracies of 98.8 and 97.5% accuracy when applied to the
compounds based on GHS classification (3-level scales) and
human data (6-level scales), respectively (Silva et al., 2020).

Machine Learning-Based Models
Currently, a variety of simulation approach DT, artificial neural
network (ANN), support vector machine (SVM), AdaBoost, the
iterative least squares linear discriminant (TILSQ), logistic
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regression (LR), and K-step yard sampling (KY) method (U.S.
Patent No. 7725413) (Kohtarou, 2010), consensus methods,
Bayesian networks have been adopted to build various skin
sensitization predictive models. The detail of some machine
learning schemes has been described and illustrated by a review
paper of Tarca et al. and the assessment of some defined
approaches in skin sensitization prediction was evaluated by
Kleinstreuer et al. (Tarca et al., 2007; Kleinstreuer et al., 2018).

The SH test is designed to measure changes in cell surface
thiols on hapten-treated cells and used to develop the first version
of ANN-based iSENS to predict skin sensitization with the
combination of h-CLAT data (Suzuki et al., 2009; Hirota et al.,
2013). The second version was released afterward using the
combination of the ARE assay data and n-octanol‒water
partition coefficient (log p) value (Natsch and Emter, 2008;
Tsujita-Inoue et al., 2014). Further extended versions of the
ANN model were based on various combinations of h-CLAT,
DPRA, KeratinoSens™, and SH test (Hirota et al., 2015). It has
been observed that the performance of an ANN model actually
depended on the combination of data types. For instance, the
ANN model based on the combination of h-CLAT and DPRA
showed a better correlation with LLNA than other combinations
such as DPRA and ARE assay or the SH test and ARE assay. The
predictive models based on three descriptors such as the selection
of h-CLAT, DPRA, and ARE assay or h-CLAT, SH test, and ARE
assay produced higher correlation coefficients, viz. r values, and
smaller prediction errors than their two-data-type counterparts
(Hirota et al., 2015).

More recently, Macmillan and Chilton have combined Derek
Nexus and non-animal KeratinoSens™, h-CLAT, DPRA, and
U-SENS™ tests to develop a DT model. The derived DT model
showed great performance with 73 and 76% accuracy of LLNA
and human data, respectively, depending on the GHS
classification (Macmillan and Chilton, 2019). A variety of
machine learning-based schemes, namely ANN, SVM,
AdaBoost, and TILSQ, were employed to build skin
sensitization predictive models based on linear and non-linear
discriminant analyses of 291 samples. It was found that SVM and
AdaBoost models based on 32 descriptors to encode the 2-D and
3-D structural characteristics showed the highest performance
with 100% accuracy of negative and positive (Sato et al., 2009).
This investigation was further extended by including more
samples (593 compounds) and adopting a novel KY scheme
(Sato et al., 2012). Unlike any binary classification models,
compounds were allotted to negative, positive, and gray zones
through multiple steps in this study. Compounds in the gray
zone, which was a confusing area, were repeatedly deposited into
the positive and negative zones until no compound was left, the
strategy was illustrated by Sato et al. in 2012. All 593 compounds
were classified impeccably in 3 steps (Sato et al., 2012).

Strickland et al. have adopted the LR and SVM schemes to
develop predictive models based on non-animal tests, namely
DPRA, h-CLAT, and KeratinoSens™ using 6 physicochemical
properties, namely log p, water solubility, vapor pressure, melting
point, boiling point, and molecular weight. It was found that log p
was the most pivotal factor in determining skin sensitization
among various physicochemical properties that was further

assured by Gleeson et al. (Gleeson and Gleeson, 2020). Of
various combinations of non-animal test data, models that
included the combination of DPRA and h-CLAT produced the
highest accuracy (Strickland et al., 2017). Pre- and pro-hapten
sensitizers, which need to go through chemical transformation
through air exposure (Karlberg et al., 1992; Sköld et al., 2002) or
metabolism pathway (Nilsson et al., 2005; van Eijl et al., 2012)
prior to the sensitization process, hinder the accuracy of current
in vitro assays. Accordingly, a novel tri-culture assay system,
which includes MUTZ-3-derived Langerhans cells, HaCaT
keratinocytes, and primary dermal fibroblasts, and then
measures the secretion levels of cytokines after these cells are
exposed to test compounds, viz. sensitizer or non-sensitizer, has
been proposed. Numerous SVMmodels were developed based on
the stimulation indices (SI) of 27 human cytokines, namely IL-1β,
IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13,
IL-15, IL-17, eotaxin, basic FGF, G-CSF, GM-CSF, IFN-γ, IP-10,
MCAF, MIP-1α, MIP-β, PDGF-BB, RANTES, TNF-α, and VEGF
to identify the most significant cytokines associated with skin
sensitization. It was observed that the SVM model based on the
top three ranking biomarkers, namely IL-8, MIP-1β, and GM-
CSF, in tri-culture assay showed the highest performance with the
prediction accuracy of 91%, and the detection of pre- and pro-
hapten was improved accordingly (Lee et al., 2018).

Matsumura et al. perfomed a study using QSAR-like deep
neural network (DNN) and light gradient boosting machine
(LightGBM) to evaluate the potential of skin sensitization.
Physical and structural properties of chemicals and the skin
sensitizer/non-sensitizers based on the classification of GHS
were used as input variables. The results showed that the dual-
input LightGBM model (74%) and dual-DNN model (72%) were
moderately accurate when compared with the traditional
approaches (Matsumura, 2020).

In addition, other algorithms and methods have been adopted
to improve the classification performance. For instance, Abdallh
et al used binary crow search algorithm (BCSA) that was initially
proposed by Askarzadeh in 2016 (Askarzadeh, 2016) to select the
most relevant descriptors in the model development. The results
gained the classification accuracy for the compound into
sensitizer/non-sensitizer.

FUTURE PERSPECTIVES

The dermatology researched has shifted into a new paradigm
after the introduction of artificial intelligence. Most of the
applications involve in image analysis, but also include the
analyses of the physiochemical properties of substances
(Gomolin et al., 2020). Various applications in toxicity and
environmental hazard endpoints, for instance, indicate that the
great diversity of QSAR models (Chinen and Malloy, 2020). Data
quality plays a critical role in model development and it is almost
impossible to build a sound in silico model based on
contaminated or impure data, especially for the quantitative
predictive models (Cherkasov et al., 2014). The accuracy of a
virtual model depends on the data quality, the lack of instruction
of how to report and publish the toxicogenomic studies can
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hinder the usage of data in building the computational models
(FitzGerald, 2020). There are some strategies to build an in silico
model. The first strategy is to collect a large number of
experimental data, extended the data coverage, and the use of
big data approach. Another more effective way to build a model
relied on deeply understanding the biological mechanism to
predict the biochemical processes and the bioactivity of the
novel compounds. The model based on mechanism does not
need a large amount of training set, but it needs highly accurate
experimental data (Kostal and Voutchkova-Kostal, 2020).
Accordingly, it is of necessity to implement data curation
prior to model development by removing those assay data
obtained from impurity or mixture to maintain data integrity.

In 2020, Golden et al. carried out an investigation, which
compared the accuracy of eight in silico models (PredSkin,
Toxtree, QSAR Toolbox, Danish QSAR database, CAESAR,
REACHAcross™, TIMES-S and Derek Nexus) against human
data sets. Most of the models showed the accuracies of 70–80% on
human data sets, suggesting that in silico models can be a
convenient and inexpensive tool to define the skin
sensitization in human (Golden et al., 2021). There is no
doubt that an in silico model to predict skin sensitization
based on human data will be more realistic and much needed.
However, the scarcity in consistent human data in the public
domain has created an unsurmountable hurdle for creating a
sound predictive model due to their small amount of available
data and limited structural diversity (Cherkasov et al., 2014). The
relatively ample amount of LLNA data makes it a better
alternative since the LLNA predictions can well correlate with
the human tests in most of the cases and it has been commonly
recognized as the gold standard for the human skin sensitization.
However, the LLNA model is inevitably susceptible to some
chemotypes, suggesting that it is of necessity to develop
different predictive models for different chemotypes to
accommodate the variations in skin sensitization mechanism.
Some problems remain unresolved when the test compounds
have consisted of more than one chemotype or when the test
compounds lie outside of the applicability domain of the derived
model. With the effort to improve the accuracy of skin
sensitization tests, Leontaridou et al. identified the borderline
range (BR) around the classification threshold of DPRA, LuSens,
h-CLAT and LLNA. The substances with the test results fell into
the BR and another available test method was required to depict
the positive/negative outcome (Leontaridou et al., 2017).

The applications of animal tests on cosmetics products have
been prohibited in Europe since 2013 (European Commission,
2013a) and lately, some countries also have accepted the OECD
non-animal method to test the skin sensitization (Strickland et al.,
2019). Nevertheless, animal tests, especially GMPT and LLNA,
are still available and required by numerous countries such as
Canada, China, Brazil, Japan, and the United States (Daniel et al.,
2018). Additionally, the applications of animal tests for pesticides,
plant protection products, pharmaceuticals, household products,
art materials, industrial chemicals, medical devices, and
workplace chemicals are needed and still acceptable in many
industries, even in Europe (Daniel et al., 2018). These data
provide valuable resources for building some in silico models

to assess the covert of skin sensitization. In addition, the skin
sensitization QSAR models can be applied to not only cosmetic
ingredients but also the compound, which can impact the
ecosystems such as dye pollution, the effect of personal care
products on aquatic species, or plasticizers (Arulanandam et al.,
2021; Funar-Timofei and Ilia, 2020; Khan et al., 2020) as well as
the pharmacokinetics profiles of low molecular weight oligo-
hydroxyalkanoates (Roman et al., 2020), suggesting that the skin
sensitization models has a wide range of applications. To date,
most of the published skin sensitization models are qualitative
predictions, viz. binary classification of sensitizers or non-
sensitizers. Nevertheless, it has been observed that a
quaternary predictive model would execute better than its
ternary counterpart, which, in turn, performed better than a
binary one in the case of drug-induced liver injury (DILI)
prediction (Weng and Leong, 2020). Accordingly, it is
plausible to expect a multiple-class qualitative model to predict
skin sensitization can function better than a two-class one.
Predictive models based on a single type of assay data can
only take into account one single pathway, suggesting that no
single non-animal test can comprehensively render the whole
complex skin sensitization process (Adler et al., 2011; Hartung
et al., 2011). Additionally, some cosmetic or commercial products
have currently contained sensitizers (Robinson et al., 2000)
despite the fact that they do not trigger adverse reactions in
the induction and elicitation phases when the applied doses are
low. In addition, the application volume of those cosmetic
products that are in direct and persistent contact with skin,
e.g. cream or foundation, are different from those that can be
washed or rinsed off, e.g. shampoo or body lotion. The differences
in exposure dose between these groups can be up to 30 folds
(Fewings and Menné, 1999; Frosch et al., 1995; Robinson et al.,
2000). Therefore, qualitative in silico or non-animal models have
hindered applications for those weak or moderate sensitizers in
pharmaceuticals or cosmeceuticals markets, more importantly, a
quantitative prediction model can be truly useful. To solve this
problem, the package SpheraCosmolife, which is implemented in
VEGAHUB, can process various ingredients in a product, has
been derived recently. It can predict the mutagenicity,
genotoxicity, and skin sensitization based on the concentration
and the product type, namely lotion, shampoo, shower gel, etc,
recorded in the internal database (Regulation (EC) No. 1223/2009
of the European Parliament and of the Council of 30 November
2009 on cosmetic products). This software is available at https://
www.vegahub.eu/download/sphera-cosmolife-download/and is
implemented in VEGA. However, some challenges still remain
since they cannot predict the skin sensitization caused by metals
(Biswas et al., 2020).

Based on the principles published by the International
Cooperation on Cosmetic Regulation (ICCR), Gilmour et al.
displayed next generation risk assessment (NGRA) framework
for skin sensitizers in 2020, which can be illustrated in Figure 1 of
their publication (Gilmour et al., 2020). According to four
elements of risk assessment, which included consumer
exposure, hazard identification, hazard characterization and
establishment of a dose response, that they presented a
workflow assembled three tires and integrated all relevant
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information using a weight of evidence approach to predict a
chemical to be a skin sensitizer or non-sensitizer (Gilmour et al.,
2020).

The number of in silicomodels to predict skin sensitization has
increased for the past few years. Those models have been built
based on in vivo, in vitro, in chemico, and/or in silico data.
Johnson et al. defined the rules and principles to develop the
effective in silico skin sensitization models to facilitate the
implementation and acceptance of in silico approaches based
on the skin sensitization mechanism and the strengths/
limitations of each experimental methods. The standardization
of this hazard assessment framework has further strengthened the
use and application of in silico tools in agencies and industries
(Johnson et al., 2020).

With the effort to collect the available web portal to predict 6
of acute toxicity tests, namely acute oral toxicity, acute dermal
toxicity, acute inhalation toxicity, skin irritation and corrosion,
eye irritation and corrosion, and skin sensitization), Borba et al.
developed a package called Systemic and Topical chemical
Toxicity (STopTox), which is available at https://stoptox.mml.
unc.edu/ (Borba et al., 2020b).

CONCLUSION

In vitro skin sensitization tests alone cannot replace human and
animal tests because they only focus on one single pathway in
AOP. In silico approach, conversely, has more advantages than
in vitro tests since it can take into account more than one AOP
key event by combining various in chemico, in vitro, and in vivo

data simultaneously. To date, most of the published in silico
models only classify chemicals into sensitizers or non-sensitizer.
This binary classification system has severely limited the
applications of weak or moderate sensitizers in commercial
products. Multiple-class in silico models can be greatly useful
in practical applications as exemplified by the DILI study (vide
supra) and quantitative ones will be even better. With the effort to
develop the quantitative models, some in silicomodels have been
generated recently, and yet they inevitability suffer from major
limitations, suggesting that these quantitative models still need to
be improved to be more accurate and have a wider range of
applications in evaluating the skin sensitization potential. The
development of robust and accurate in silico models for skin
sensitization prediction is still a long and winding path ahead of
the molecular modeling community.
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