
����������
�������

Citation: Muck, R.A.; Hudson, A.N.;

Honn, K.A.; Gaddameedhi, S.; Van

Dongen, H.P.A. Working around the

Clock: Is a Person’s Endogenous

Circadian Timing for Optimal

Neurobehavioral Functioning

Inherently Task-Dependent?

Clocks&Sleep 2022, 4, 23–36. https://

doi.org/10.3390/clockssleep4010005

Received: 28 December 2021

Accepted: 3 February 2022

Published: 11 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Working around the Clock: Is a Person’s Endogenous Circadian
Timing for Optimal Neurobehavioral Functioning Inherently
Task-Dependent?
Rachael A. Muck 1,2,†, Amanda N. Hudson 1,2,†, Kimberly A. Honn 1,2, Shobhan Gaddameedhi 3,4

and Hans P. A. Van Dongen 1,2,*

1 Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA;
rachael.muck@wsu.edu (R.A.M.); amanda.hudson@wsu.edu (A.N.H.); kimberly.honn@wsu.edu (K.A.H.)

2 Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine,
Washington State University, Spokane, WA 99202, USA

3 Department of Biological Sciences and Toxicology Program, North Carolina State University,
Raleigh, NC 27695, USA; sgaddam4@ncsu.edu

4 Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
* Correspondence: hvd@wsu.edu; Tel.: +1-509-358-7755
† These authors contributed equally to this work.

Abstract: Neurobehavioral task performance is modulated by the circadian and homeostatic pro-
cesses of sleep/wake regulation. Biomathematical modeling of the temporal dynamics of these
processes and their interaction allows for prospective prediction of performance impairment in
shift-workers and provides a basis for fatigue risk management in 24/7 operations. It has been re-
ported, however, that the impact of the circadian rhythm—and in particular its timing—is inherently
task-dependent, which would have profound implications for our understanding of the temporal
dynamics of neurobehavioral functioning and the accuracy of biomathematical model predictions.
We investigated this issue in a laboratory study designed to unambiguously dissociate the influences
of the circadian and homeostatic processes on neurobehavioral performance, as measured during
a constant routine protocol preceded by three days on either a simulated night shift or a simulated
day shift schedule. Neurobehavioral functions were measured every 2 h using three functionally
distinct assays: a digit symbol substitution test, a psychomotor vigilance test, and the Karolinska
Sleepiness Scale. After dissociating the circadian and homeostatic influences and accounting for
inter-individual variability, peak circadian performance occurred in the late biological afternoon (in
the “wake maintenance zone”) for all three neurobehavioral assays. Our results are incongruent with
the idea of inherent task-dependent differences in the endogenous circadian impact on performance.
Rather, our results suggest that neurobehavioral functions are under top-down circadian control,
consistent with the way they are accounted for in extant biomathematical models.

Keywords: cognitive throughput; constant routine; inter-individual differences; simulated shift-work;
sleep/wake homeostasis; subjective sleepiness; vigilant attention

1. Introduction

Neurobehavioral functioning is strongly influenced by the two processes of sleep/wake
regulation: a homeostatic process (“Process S”), which degrades neurobehavioral func-
tioning over time awake and restores it during sleep; and a circadian process (“Process
C”), which cycles between promoting and depressing neurobehavioral functioning across
time of day [1,2]. The combined effect of these two processes governs changes in waking
neurobehavioral functioning over time, such that day shift-workers tend to exhibit stable,
near-optimal performance through the workday [3,4], whereas night shift-workers typi-
cally experience a steady decline of performance through the night [5,6]. Inter-individual
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differences in the contributions of the two processes notwithstanding [7,8], these dynamics
are well understood [9,10] and have led to the development of biomathematical models
predicting neurobehavioral performance across a wide range of sleep/wake/work scenar-
ios [11,12]. Such biomathematical models can be used to prospectively predict performance
impairment in shift-workers [13,14] and may be implemented in 24/7 operations as a tool
for fatigue risk management [15,16].

The importance of circadian rhythms for neurobehavioral performance has long been
recognized [17–19]. It has been observed, however, that the circadian rhythmicity of neu-
robehavioral functioning may be task-dependent. Early studies reported that under condi-
tions of sleep deprivation and forced desynchrony, the timing of optimal functioning varies
across tasks [20,21]. For example, performance on complex cognitive tasks (e.g., verbal
reasoning) was found to peak in the late morning [22,23], whereas simple perceptual-motor
task performance was optimal in the late afternoon [24]. These differences suggested the
involvement of multiple, distinct underlying brain oscillators [25,26] and led researchers
to conclude that “it is as incorrect to speak of a single performance rhythm as it is to
speak of single physiological rhythm” [26] (p. 544). Furthermore, functional magnetic
resonance imaging (fMRI) data from a recent sleep deprivation study, captured during
a sustained attention test administered multiple times over the circadian cycle, showed
variation in the phase of circadian rhythmicity between brain regions. According to the
investigators, this “rules out a global task-independent circadian influence and suggests the
influence of a local, region-specific, task-dependent circadian signal” [27] (p. 690). However,
when performance was investigated under constant routine (CR) conditions, differences
in the circadian rhythms of performance between short-term memory and calculation
performance tasks and subjective alertness [28] as well as between serial search, verbal
reasoning, manual dexterity, and visual vigilance tasks [29] were largely absent. As Monk
and colleagues observed, their CR study “confirmed the suggestion made by Johnson et al.
(1992) that inter-task differences, which may result in differences in time of peak and trough
under a normal nychthemeral routine, can fail to do so when the sleep/wake cycle is
suspended, and endogenous circadian rhythms are ‘unmasked’ using a constant conditions
protocol” [29] (p. 14). These strictly controlled laboratory studies challenged the concept
of task-dependent circadian rhythms in neurobehavioral functioning; yet, subsequent
publications on the topic have led to renewed interest in the idea [30–33].

In studies investigating task-dependent variation in the timing of circadian rhythmic-
ity in neurobehavioral functioning, the influence of the circadian process (time of day)
needs to be dissociated from the influence of the homeostatic process (time awake) [34].
Because during periods of wakefulness, when neurobehavioral functioning is measured,
time of day and time awake change hand in hand, disentangling the circadian (rhythmic)
and homeostatic (trending) processes involved must be done post hoc. This is mathemati-
cally and statistically complicated and prone to misestimation of rhythm parameters [35].
The problem is compounded by the task-dependence of vulnerability to neurobehavioral
impairment due to sleep loss [36,37], which may be mediated by use-dependent, pathway-
specific degradation of neuronal processing [38] and implies that there are task-specific
differences in the impact of the homeostatic process [39]. These issues can be overcome
by explicitly accounting for inter-individual variability during data analysis [7] but, to
date, that approach has not been applied to the evaluation of putative task differences
tied to circadian rhythmicity. Various other potential confounds further cast doubt on
the reliability of reports of task-specificity in the timing of circadian rhythms [34]. That
is, different performance tasks are differentially susceptible to phenomena that can mask
circadian rhythmicity, including practice effects [40], performance strategy changes [41],
and temporal changes in speed/accuracy trade-offs [42]. These masking effects could cre-
ate the appearance of task-dependent differences in the effect of circadian rhythmicity on
neurobehavioral functioning even when no such differences are endogenously produced.

Here, we addressed these issues by means of a simulated shift-work protocol with
randomization to either a day shift condition or a 12 h offset night shift condition, followed
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by a CR protocol, during a 7-day/6-night laboratory study. The CR protocol served to
measure neurobehavioral functioning, at 2 h intervals, under strictly controlled conditions,
and to expose the endogenous circadian rhythmicity [43]. The neurobehavioral assays we
used were functionally distinct [36,40], suitable for repeated administration, and not subject
to masking from practice, strategy changes, or dynamically shifting speed/accuracy trade-
offs. The test battery included a psychomotor vigilance test (PVT) [44], a computerized
digit symbol substitution test (DSST) [45], and the Karolinska Sleepiness Scale (KSS) [46].
The two conditions of the simulated shift-work protocol that preceded the CR protocol
maximized variability in circadian alignment and optimized the mathematical/statistical
disentanglement of the effects of the circadian and homeostatic processes on task perfor-
mance. With mixed-effects regression methodology developed specifically to account for
differences between individuals [47], we investigated whether the effect of the circadian
process on neurobehavioral functioning is, in fact, fundamentally task-dependent.

2. Materials and Methods
2.1. Subjects

Fourteen healthy adults (10 men and 4 women), ranging in age from 22 to 34 years
(mean ± SD: 25.8 ± 3.2 years), participated in a highly controlled laboratory study. They
were physically and psychologically healthy as determined by physical exam, history, and
questionnaires. Subjects were normal sleepers with no sleep or circadian disorders as
verified with questionnaires and baseline polysomnography, were neither extreme morning
types nor extreme evening types as assessed by questionnaire [48], reported no shift-work
in the prior three months, and did not travel across time zones during the month prior to
participation. They reported habitual sleep durations between 6 h and 10 h per night and
wake-up times between 06:00 and 09:00.

During the seven days before the laboratory study, subjects maintained their habitual
sleep/wake schedule, without napping, as verified with wrist actigraphy, sleep diaries,
and call-ins of bedtimes and waketimes on a time-stamped voice recorder. During the
seven days prior and while in the laboratory, subjects refrained from caffeine and alcohol
intake, smoking, and drug use (except oral contraceptives), as verified with breathalyzer
and urine tests. The study was approved by the Institutional Review Board of Washington
State University. Subjects gave written, informed consent and were paid for their time.

2.2. Experimental Design

Subjects completed a 7-day/6-night in-laboratory study, which was designed as shown
in Figure 1. Following a baseline day and night (8 h sleep opportunity: 22:00–06:00), subjects
were randomized to one of two conditions (seven subjects each): three days of a simulated
day shift schedule with 8 h nighttime sleep opportunities (22:00–06:00); or a daytime nap
(14:00–18:00) followed by three days of a simulated night shift schedule with 8 h daytime
sleep opportunities (10:00–18:00). In both conditions, light exposure during wakefulness
was low (<50 lux). Immediately after the last sleep opportunity of the three-day simulated
day or night shift schedule, subjects underwent a 24 h CR protocol, during which they
stayed awake under continuous behavioral monitoring, ate a small isocaloric snack every
hour, and maintained a semi-recumbent posture under constant dim light (<50 lux) and
fixed ambient temperature (21 ± 1 ◦C). The study ended with a recovery period, after
which subjects left the laboratory.

Sleep periods were recorded polysomnographically and scored visually using standard
criteria promulgated by the American Academy of Sleep Medicine [49]. Sleep findings
for this study have been documented previously [50]; here, the sleep records were used to
assess the timing of final awakening before the start of the CR protocol (mean ± SD for the
day shift condition: 05:59 ± 1 min, for the night shift condition: 17:53 ± 16 min).
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Figure 1. Schematic of the study design, showing the simulated day shift condition (top) and the 
simulated night shift condition (bottom). In each panel, time of day progresses from left to right, 
and days progress from top to bottom. Black bars indicate sleep opportunities; yellow bars indi-
cate scheduled wakefulness. The 24 h waking period of the constant routine (CR) protocol that 
followed three days of simulated day or night shift schedule is shown in blue. Dots denote neuro-
behavioral test bouts; red dots indicate the test bouts used for analysis. 

Sleep periods were recorded polysomnographically and scored visually using stand-
ard criteria promulgated by the American Academy of Sleep Medicine [49]. Sleep findings 
for this study have been documented previously [50]; here, the sleep records were used to 
assess the timing of final awakening before the start of the CR protocol (mean ± SD for the 
day shift condition: 05:59 ± 1 min, for the night shift condition: 17:53 ± 16 min). 

During the CR protocol, blood was collected at intervals of 1–3 h through an intrave-
nous catheter. Blood samples were used to measure circulating melatonin (radioimmuno-
assay IB88111, IBL), and the dim light melatonin onset (DLMO) was assessed as a marker 
of the timing of the endogenous circadian pacemaker as described previously [51]. For 
one subject in the simulated night shift condition, the subject-specific DLMO could not be 
assessed reliably, because the individual’s melatonin concentration did not reach the 10 
pg/ml threshold used to define DLMO [51]. As our statistical approach involved using 
subject-specific circadian time based on DLMO (see below), this subject was removed 
from the data set as a whole, leaving data from a total of thirteen subjects (n = 7 in the day 
shift condition and n = 6 in the night shift condition) for analyses. 

2.3. Neurobehavioral Assays 
Throughout periods of wakefulness during the study, including the CR protocol, 

subjects completed three neurobehavioral assays every 2 h (Figure 1): the KSS, DSST, and 
PVT. The KSS was administered both before and after the DSST, which was followed by 
the PVT. 

The KSS is a self-report scale of subjective sleepiness [52] with response options rang-
ing from 1 (extremely alert) to 9 (very sleepy, fighting to stay awake). Scores on the two 
KSS administrations in each test bout were averaged to yield one KSS outcome measure. 
The KSS is highly sensitive to circadian rhythmicity [46] and functionally distinct from the 
DSST and PVT both within [45] and between [36] individuals. 

The DSST requires subjects to match digit and symbol stimulus pairs as quickly as 
they can while prioritizing accuracy [53]. In the 3 min computerized version used here 
[45], a key is displayed at the top of the screen, indicating a series of different symbols 
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Figure 1. Schematic of the study design, showing the simulated day shift condition (top) and the
simulated night shift condition (bottom). In each panel, time of day progresses from left to right,
and days progress from top to bottom. Black bars indicate sleep opportunities; yellow bars indicate
scheduled wakefulness. The 24 h waking period of the constant routine (CR) protocol that followed
three days of simulated day or night shift schedule is shown in blue. Dots denote neurobehavioral
test bouts; red dots indicate the test bouts used for analysis.

During the CR protocol, blood was collected at intervals of 1–3 h through an intra-
venous catheter. Blood samples were used to measure circulating melatonin (radioim-
munoassay IB88111, IBL), and the dim light melatonin onset (DLMO) was assessed as a
marker of the timing of the endogenous circadian pacemaker as described previously [51].
For one subject in the simulated night shift condition, the subject-specific DLMO could not
be assessed reliably, because the individual’s melatonin concentration did not reach the
10 pg/ml threshold used to define DLMO [51]. As our statistical approach involved using
subject-specific circadian time based on DLMO (see below), this subject was removed from
the data set as a whole, leaving data from a total of thirteen subjects (n = 7 in the day shift
condition and n = 6 in the night shift condition) for analyses.

2.3. Neurobehavioral Assays

Throughout periods of wakefulness during the study, including the CR protocol,
subjects completed three neurobehavioral assays every 2 h (Figure 1): the KSS, DSST, and
PVT. The KSS was administered both before and after the DSST, which was followed by
the PVT.

The KSS is a self-report scale of subjective sleepiness [52] with response options
ranging from 1 (extremely alert) to 9 (very sleepy, fighting to stay awake). Scores on the two
KSS administrations in each test bout were averaged to yield one KSS outcome measure.
The KSS is highly sensitive to circadian rhythmicity [46] and functionally distinct from the
DSST and PVT both within [45] and between [36] individuals.

The DSST requires subjects to match digit and symbol stimulus pairs as quickly as
they can while prioritizing accuracy [53]. In the 3 min computerized version used here [45],
a key is displayed at the top of the screen, indicating a series of different symbols (e.g., star,
plus sign) paired with the digits 1–9. In the center of the screen, a symbol is presented,
and the subject must type the corresponding digit using the number keys at the top of
the keyboard. After each response, the symbol in the center is replaced with a new one;
subjects determine the pacing of the task by the speed of their responses. The key remains
the same throughout the task duration, but the pairings vary between test bouts. Cognitive
throughput (number of correct responses) was used as the outcome measure of interest.
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The DSST is highly sensitive to circadian rhythmicity [34]. The task shows a minor but
persistent practice effect [45]; however, at the start of the CR protocol the practice effect
would have approached asymptote as, by that time, subjects had already performed the
task more than two dozen times across the simulated shift work days. The components of
cognition involved in the DSST are partially distinct from those involved in the PVT [40],
and DSST performance has been shown to be functionally distinct from PVT performance
both within [45] and between [36] individuals.

The PVT is a 10 min computer-paced, one-choice reaction time task requiring subjects
to respond as fast as possible to a stimulus presented as a rolling millisecond counter that
appears in random 2–10 s intervals [54]. Rather than the conventionally used number of
lapses of attention [55], which exhibits a floor effect, an index of the fidelity of information
processing (log-transformed signal-to-noise ratio; LSNR) was used as the outcome measure
of interest [56]. The PVT does not show any meaningful practice effects [45], but is highly
sensitive to circadian rhythmicity [34].

To account for any idiosyncratic differences between subjects in basal neurobehavioral
functioning, outcome measures were expressed relative to the baseline average, calculated
using the second through fourth test bouts on day two (at 08:15, 09:20, and 12:00), leaving
enough time after the first in-laboratory sleep opportunity to dissipate sleep inertia [57]
and preceding the daytime nap at the start of the simulated night shift condition. Dif-
ference scores for the DSST were inverted so that larger values corresponded to greater
neurobehavioral impairment for all three assays.

2.4. Statistical Methods

Our statistical approach is illustrated in Figure 2. It is based on the equations for the
two-process model [58] and our earlier work on the estimation of the contributions of the
homeostatic and circadian processes to neurobehavioral impairment during continuous
wakefulness [7]. As was shown, the temporal dynamics of performance yj across a period
of wakefulness for a given task j can be described with the following regression model:

yj(ta, tc) = β jS(ta)− γjC(tc) + κj + ε j(tc), (1)

where S and C represent the homeostatic and circadian processes, respectively; βj and γj are
task-specific scaling factors for processes S and C, respectively; κj is a task-specific intercept;
ta denotes time awake (waking time since final awakening immediately before the start of
the CR protocol); tc denotes circadian time (time of day expressed relative to DLMO); and
εj is residual variance assumed to be normally distributed over time with zero mean and
task-specific variance σj

2.
For a given individual i, the two-process model equation for the homeostatic process

S during wakefulness [58] can be shown to be written as [7]:

Si(ta,i) = (S0,i − 1)e−ta,i/τw + 1, (2)

where τw = 18.2 h is the previously estimated time constant of homeostatic build-up
during wakefulness [58]; ta,i is the subject-specific time awake (depending on the timing
of the individual’s final awakening); and S0,i is the initial subject-specific state of the
homeostatic process at the start of the waking period. Note that because our study had
a between-subjects design with different individuals assigned to the day versus night
shift condition, S0,i is automatically condition-specific (and thereby accounts for any sleep-
related differences between conditions). Taking the homeostatic process and the intercept
in the model together, we can write:

β jS(ta,i) + κj = β j((S0,i − 1)e−ta,i/τw + 1) + κj = BjeHi e−ta,i/τw + Kj, (3)

where Bj is a task-specific scaling factor, Hi is a subject-specific scaling coefficient thereof,
and Kj is a task-specific intercept.



Clocks&Sleep 2022, 4 28
Clocks&Sleep 2022, 4, FOR PEER REVIEW  6 
 

Clocks&Sleep 2022, 4, Firstpage–Lastpage. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/clockssleep 

 
Figure 2. Schematic of the statistical approach. We modeled the effects of the circadian process C 
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illustrated here with four example (hypothetical) individuals (arbitrarily numbered 1–4) for a 
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CR protocol that followed the simulated day shift condition (left panel) and the simulated night 
shift condition (right panel). The statistical model included task-specific scaling factors for pro-
cesses C and S and a task-specific intercept (not shown). We accounted for individual differences 
by expressing C in subject-specific circadian time, relative to individual DLMO (green vertical 
lines), and S in subject-specific time awake, relative to individual time of final awakening (gray-
black vertical lines), and by estimating individualized initial state for process S at final awakening. 
Importantly, we also estimated individualized phase angles φij (purple-pink horizontal lines), de-
noting subject-specific circadian timing of the upward zero crossing (intersection with dotted hori-
zontal line) of the effect of process C on performance for neurobehavioral task j. We compared the 
means of these phase angles over all subjects between our three distinct neurobehavioral tasks to 
address the question whether the endogenous circadian timing for optimal functioning was inher-
ently task-dependent. 

For a given individual i, the two-process model equation for the homeostatic process 
S during wakefulness [58] can be shown to be written as [7]: 

,1)1()( wa, /
,0a, +−= − τit
iii eStS  (2)

where τw = 18.2 h is the previously estimated time constant of homeostatic build-up dur-
ing wakefulness [58]; ta,i is the subject-specific time awake (depending on the timing of the 
individual’s final awakening); and S0,i is the initial subject-specific state of the homeostatic 
process at the start of the waking period. Note that because our study had a between-
subjects design with different individuals assigned to the day versus night shift condition, 
S0,i is automatically condition-specific (and thereby accounts for any sleep-related differ-
ences between conditions). Taking the homeostatic process and the intercept in the model 
together, we can write: 

,)1)1(()( wa,wa, //
,0a, j

tH
jj

t
ijjij KeeBeStS iii +=++−=+ −− ττ κβκβ  (3)

where Bj is a task-specific scaling factor, Hi is a subject-specific scaling coefficient thereof, 
and Kj is a task-specific intercept. 

Further, the subject-specific and (potentially) task-dependent endogenous circadian 
process C is given by [58]: 

Figure 2. Schematic of the statistical approach. We modeled the effects of the circadian process C
(orange-red curves) and the homeostatic process S (blue curves) on neurobehavioral functioning,
illustrated here with four example (hypothetical) individuals (arbitrarily numbered 1–4) for a given
neurobehavioral task j, plotted against clock time over the 24 h period of wakefulness of the CR
protocol that followed the simulated day shift condition (left panel) and the simulated night shift
condition (right panel). The statistical model included task-specific scaling factors for processes C and
S and a task-specific intercept (not shown). We accounted for individual differences by expressing
C in subject-specific circadian time, relative to individual DLMO (green vertical lines), and S in
subject-specific time awake, relative to individual time of final awakening (gray-black vertical lines),
and by estimating individualized initial state for process S at final awakening. Importantly, we also
estimated individualized phase angles ϕij (purple-pink horizontal lines), denoting subject-specific
circadian timing of the upward zero crossing (intersection with dotted horizontal line) of the effect of
process C on performance for neurobehavioral task j. We compared the means of these phase angles
over all subjects between our three distinct neurobehavioral tasks to address the question whether
the endogenous circadian timing for optimal functioning was inherently task-dependent.

Further, the subject-specific and (potentially) task-dependent endogenous circadian
process C is given by [58]:

Cij(tc,i) = A
5

∑
m=1

am sin(2mπ(tc,i − φij)/24), (4)

where the A and am coefficients are previously assessed constants [58]; tc,i is the subject-
specific circadian time (depending on the timing of the individual’s DLMO); and ϕij is a
subject-specific and (potentially) task-dependent phase angle (i.e., circadian timing of the
upward zero crossing of process C relative to the subject-specific DLMO). Note again that
because our study had a between-subjects design, ϕij is automatically condition-specific.

Putting these pieces together, the temporal dynamics of performance yij across a period
of wakefulness for a given individual i and given task j can be modeled as follows:

yij(ta,i, tc,i) = BjeHi e−ta,i/τw − Gj

5

∑
m=1

am sin(2mπ(tc,i − φij)/24) + Kj + εij(tc,i), (5)
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where Gj is a task-specific scaling factor for the circadian process; and εij is error variance
assumed to be normally distributed over subjects and time with zero mean and task-
specific variance σj

2. For the k = 3 different neurobehavioral assays considered in our study,
this regression equation has k + 1 = 4 subject-specific parameters, namely ϕij (j = 1, . . . , k)
and Hi. These can be modeled by independent, normally distributed random effects
with parameter-specific mean Φj and zero and parameter-specific variance ωj

2 and v2,
respectively. (Note that the normal distribution of Hi makes the overall scaling of the
homeostatic process log-normally distributed over subjects.)

To allow for direct comparisons between neurobehavioral assays within the same
regression model, we normalized the data yij for each of the assays using the task-specific
grand mean and standard deviation. We then fitted the model to the overall data set of
the three assays combined using non-linear mixed-effects regression [47] implemented in
SAS 9.4 (SAS Institute Inc., Cary, NC, USA). Contrasts were included to compare parameter
estimates among the assays, with the comparison between the mean phase angles Φj being
of primary interest.

3. Results

Following the three days of simulated night shift, compared to simulated day shift,
there was a modest delay of 87 min (±45 min SE; t11 = 1.92, p = 0.082) in the circadian
process as estimated by the timing of the DLMO, which occurred at 23:01 (±95 min SD)
in the night shift condition versus 21:34 (±68 min SD) in the day shift condition. Our
DLMO data are consistent with natural variability in circadian phase [59,60] and prior
observations of limited circadian phase shifting in night shift protocols under dim light
conditions [61]. Because the homeostatic process is a function of time awake and not time
of day (and vice versa for the circadian process), it follows that the simulated night shift
condition produced an average shift of 10.6 h in the alignment of the homeostatic process
relative to the circadian process during the subsequent 24 h CR protocol. This considerable
dispersion confirmed the effectiveness of the study protocol and helped to optimize the
statistical analysis and parameter estimation of the circadian process. To verify that the
statistical model of Equation (5) was well-parameterized for investigating endogenous
circadian rhythmicity, we checked the parameter correlation matrix and made sure all
estimated parameters (other than the intrinsically correlated homeostatic parameters Bj
and Kj) had low pairwise correlations. They were between −0.37 and 0.36, confirming
excellent parameter estimability.

Figure 3 shows the temporal profiles of the three neurobehavioral outcomes as ob-
served during the 24 h CR protocol following the simulated day and night shift protocols
(left and right panels, respectively), plotted against circadian time (i.e., relative to DLMO).
The statistical model curves in the day shift condition (left panels) show the expected profile
of low neurobehavioral impairment during the first ~16 h of wakefulness constituting the
biological day, followed by a steady increase of impairment into the biological night [3].
Likewise, the statistical model curves in the night shift condition (right panels) show the
expected profile of steadily increasing impairment through the biological night and into
the subsequent biological day, followed by a partial (circadian-mediated) rebound toward
the end of the biological day [4].

Figure 4 shows the endogenous circadian rhythm contribution to the temporal profiles
of each of the three neurobehavioral outcomes during the 24 h CR protocol following the
simulated day and night shift conditions, as estimated using Equation (4) as embedded in
the statistical model of Equation (5). The magnitude of the contribution of the circadian
process, to be interpreted relative to the homeostatic process, was smaller for the DSST than
for the KSS and PVT (F2,9 = 5.61, p = 0.026). However, even though the statistical model
was fit with task-specific and condition-specific parameters and also accounted for inter-
individual differences, the timing of the effect of the circadian process on neurobehavioral
functioning, relative to subject-specific DLMO, was consistent between the day and night
shift conditions for all three neurobehavioral functioning outcomes. This was corroborated
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by comparisons of the subject-specific ϕij estimates, i.e., the empirical Bayes estimates (EBEs)
for the task-specific random effects on the circadian phase angles relative to subject-specific
DLMO in the statistical model of Equation (5). There were no significant differences between
conditions in the EBEs for the KSS (F1,11 = 0.01, p = 0.90), DSST (F1,11 = 0.83, p = 0.38), and
PVT (F1,11 = 0.37, p = 0.56), indicating no systematic shifting between conditions in the
timing of the circadian contribution, relative to DLMO, to neurobehavioral functioning.
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Figure 3. Temporal profiles of neurobehavioral functioning during the 24 h CR protocol. The graphs
show means (±SE) for KSS (top), DSST (middle), and PVT (bottom), expressed relative to baseline
(BL) and plotted against mean circadian time (i.e., relative to DLMO), for the simulated day shift
condition (left) and the simulated night shift condition (right). Curves represent the mean (accounting
for inter-individual differences) of the fitted statistical model of Equation (5). Upwards indicates
worse neurobehavioral functioning in all panels.

As such, the peak times of the endogenous circadian contribution to neurobehavioral
functioning varied little between the neurobehavioral outcomes, and there was substantial
overlap among the 95% confidence intervals (Figure 4). Notably, there was no significant
effect of task on the timing of the circadian peaks relative to DLMO (F2,9 = 1.45, p = 0.28).
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Figure 4. Endogenous circadian rhythm contributions to neurobehavioral functioning during the 24 h
CR protocol. The graphs show the mean (accounting for inter-individual differences) of the circadian
component of the fitted statistical model of Equation (5), plotted against circadian time (i.e., relative
to DLMO) on the bottom axes and against corresponding mean clock time on the top axes. Curves
represent the endogenous circadian rhythm influence on each of the three neurobehavioral outcomes
after normalization (i.e., as z scores, to make them comparable in vertical scale) for the simulated day
shift condition (left) and the simulated night shift condition (right) using the same color scheme as
in Figure 3. Upwards indicates greater circadian drive (corresponding with better neurobehavioral
functioning). The secondary bump in the KSS curve in the simulated night shift condition (around
14 h after DLMO) is a result of convolution of the subject-specific circadian rhythm contributions
encompassed in the mean. Dots and whiskers represent the task-specific circadian peaks and their
95% confidence intervals. Note the relatively tight clustering of the peaks, regardless of condition, in
the late biological afternoon (approximately 16–20 h after DLMO).

4. Discussion

This study provides proof of principle for our approach to investigating whether
the circadian rhythmicity of neurobehavioral functioning is task-dependent, addressing
limitations of earlier research on this topic. In contrast with previous reports that circadian
rhythms peak in the morning or afternoon depending on the task at hand [21,26,30],
we found no evidence of a task-based dissociation in optimal circadian timing for three
functionally distinct neurobehavioral outcomes. During a 24 h CR protocol, preceded
by either a three-day simulated day shift schedule or a three-day simulated night shift
schedule, circadian peak times clustered approximately 16–20 h after DLMO—consistent
with the height of endogenous circadian drive for alert wakefulness during the “wake
maintenance zone” [62] in the late afternoon [63–65]. Differences in circadian peak times
between the neurobehavioral functions we measured were within the margin of error and
no greater than our 2 h sampling interval (Figure 4). Thus, we found no evidence that the
circadian timing for optimal neurobehavioral functioning is inherently task-dependent.

By randomizing subjects to either a day shift condition with normal alignment of
the homeostatic and circadian processes, or a night shift condition with nearly opposite
(i.e., more than 10.5 h shifted) alignment of the homeostatic and circadian processes, we
created favorable empirical conditions [66,67] for dissociating the contributions of these
two biological processes to neurobehavioral functioning as measured in the strictly con-
trolled setting of the subsequent CR protocol. By also accounting for inter-individual
differences in the statistical analysis [47], we further optimized our ability to isolate the
circadian component of the temporal dynamics of neurobehavioral functioning [7]. Ad-
ditionally, by selecting well-characterized [40,44,46] and functionally distinct [36,40] neu-
robehavioral assays, we avoided a range of measurement confounds encountered in the
literature (e.g., practice effects, strategy changes, and dynamic speed/accuracy trade-offs)
and enhanced our ability to detect task-dependent differences in circadian timing if such
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differences were present. Thus, our failure to detect differences in the circadian peaks of
the three neurobehavioral assays is not an artifact of insufficient statistical power from
inadequate sample size—although arguably a larger sample would have enhanced our
ability to demonstrate even smaller differences—but rather indicates that with regard to
timing, these assays were not affected differentially by endogenous circadian rhythmicity.

A limitation of our study is that the sample consisted of healthy young adults only
and was predominately male. Age and sex differences in circadian rhythms have been
reported [68,69], and whether those might interact with inter-task differences remains
unknown. Importantly, another limitation is the small number of different assays we de-
ployed. The imperative of repeated testing and the need for rest breaks to avoid cumulative
time-on-task effects, as well as time windows needed for blood sampling and hourly snacks
during the CR protocol, meant that only three assays could be included in the test battery.

Further research into task-dependence of the endogenous circadian impact on perfor-
mance should incorporate other neurobehavioral functions, but selecting the right assays
is not a straightforward matter. The so-called “task impurity problem” implies that any
neurobehavioral task involves a number of interrelated cognitive processes that must be
dissociable and distinguished to be able to interpret which, if any, of these processes are dif-
ferentially affected by circadian rhythmicity [40,70]. Based on dissociations demonstrated
in recent sleep deprivation studies, neurobehavioral (or cognitive) functions of particu-
lar interest for future studies may include attentional control [71], memory binding [72]
and maintenance [73], and emotion regulation [74]. Referring to the sleep deprivation
literature is relevant here, because our results indicate that the differences we observed
in the overall temporal profiles of the KSS, DSST, and PVT with the circadian and home-
ostatic processes still intertwined (Figure 3) are attributable at least in part to differences
between neurobehavioral functions in the influence of time awake through the homeostatic
process. This more holistic perspective is consistent with a theoretical model in which
the circadian process exerts global, top-down control over neurobehavioral functioning
(placing peak circadian functioning in the “wake maintenance zone” as we have found);
whereas the homeostatic process exerts local, bottom-up control based on the neuronal
pathways involved, in a use-dependent manner that gives rise to differential degrees of
impairment [38,42]. Our results add to a growing body of evidence consistent with that
theoretical model [75–77].

Our findings have practical implications for shift-workers and others involved in
around-the-clock operations [78–80]. If the circadian timing of neurobehavioral function-
ing were inherently task-dependent, this would present a formidable challenge in the
prediction, assessment, and management of workplace risks for errors, incidents, and
accidents [81,82]. However, while there are substantial inter-individual differences in the
magnitude of neurobehavioral impairment to contend with in such settings [83], our results
provide some reassurance that circadian peaks and troughs in subjective assessments of
sleepiness are temporally aligned with those in objective performance deficits. Thus, bio-
logically driven, circadian changes in neurobehavioral functioning should be predictable
regardless of the tasks people perform—consistent with how it is implemented in current
biomathematical models predicting neurobehavioral performance [12]. As such, there does
not appear to be a fundamental need to adjust biomathematical model predictions based
on what activities a person may be engaged in.

5. Conclusions

If there are inherent differences between tasks in the timing of the endogenous cir-
cadian peak, our carefully conducted study with comprehensive disentanglement of the
circadian and homeostatic processes as well as the inter-individual differences therein
would have been expected to manifestly expose them—but for the three distinct neurobe-
havioral tasks we investigated we found peak circadian performance clustering in the late
biological afternoon (in the “wake maintenance zone”) during the CR protocol after both
simulated day and night shift schedules. Our findings are in line with reports from previous
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CR studies [28,29] where, as Monk and colleagues observed: “between-task heterogeneity
in circadian performance rhythms appeared to be absent when the sleep/wake cycle was
suspended” [29] (p. 9). However, results from a forced desynchrony study [28], and from
our systematic dissociation of the endogenous circadian process from the homeostatic
process via juxtaposition of prior exposure to simulated day versus night shift conditions,
suggest that between-task heterogeneity in circadian performance rhythms may be more
broadly absent; and that any apparent circadian timing differences in other studies may
actually be attributable to differential homeostatic effects and/or measurement confounds.
From the available evidence, therefore, we parsimoniously conclude that circadian rhyth-
micity in neurobehavioral functioning is governed by a single endogenous circadian driver
emanating from the central biological clock [84]. Further research with larger and more
diverse samples and a wider spectrum of distinct neurobehavioral assays is needed to
explore the limits of generalizability of this conclusion.
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