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Abstract: Sepsis is regarded as one of the main causes of death among the critically ill. Pathogen
infection results in a host-mediated pro-inflammatory response to fight infection; as part of this
response, significant endogenous reactive oxygen (ROS) and nitrogen species (RNS) production
occurs, instigated by a variety of sources, including activated inflammatory cells, such as neutrophils,
platelets, and cells from the vascular endothelium. Inflammation can become an inappropriate
self-sustaining and expansive process, resulting in sepsis. Patients with sepsis often exhibit loss
of aspects of normal vascular homeostatic control, resulting in abnormal coagulation events and
the development of disseminated intravascular coagulation. Diagnosis and treatment of sepsis
remain a significant challenge for healthcare providers globally. Targeting the drivers of excessive
oxidative/nitrosative stress using antioxidant treatments might be a therapeutic option. This review
focuses on the association between excessive oxidative/nitrosative stress, a common feature in sepsis,
and loss of homeostatic control at the level of the vasculature. The literature relating to potential
antioxidants is also described.

Keywords: sepsis; oxidative stress; nitric oxide; netosis; platelets; clotting dysfunction; vascular
endothelium dysfunction

1. Introduction

Sepsis is a life-threatening condition that affects 30 million people worldwide per year
and is considered one of the main causes of death amongst critically ill patients. Seen in
context, sepsis-related mortality from 2009 to 2019 averaged 33.7% in North America, 32.5%
in Europe, and 26.4% in Australia [1]. In the United Kingdom, around 250,000 cases and
44,000 deaths from sepsis are reported every year [2]. In the United States, similarly high
rates of sepsis diagnosis are reported annually, at some 1.7 million cases, with mortality
rates in the region of 270,000 [3]. Specialist treatment for patients with sepsis often requires
intensive care support to maintain failing organs systems, including the lungs, heart, and
kidneys; such treatments can be complex and may require an extended length of hospital
stay, all of which places a considerable fiscal burden on healthcare providers. In the United
Kingdom, around two-thirds of patients with sepsis are treated in intensive care units
(ICUs), with an annual estimated cost at £15.6 billion [4]. This represents a significant
component of annual healthcare budgets; moreover, the need for further support for
recovering patients as provided by primary care providers places an even greater burden
budget. Again, for example, in 2011, U.S. hospitals spent $24 billion treating patients with
sepsis, representing 13% of total health care costs (reviewed by [5]).

Defining criteria for sepsis and associated syndromes have evolved over the years; the
current definition describes sepsis as an uncontrolled host-mediated response to infection
and life-threatening organ dysfunction. Any patient is diagnosed with sepsis when they
attain a score of 2 by sequential organ failure assessment (SOFA). SOFA comprises a
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scoring system based around the functionality of respiratory, hepatic, cardiovascular,
central nervous and renal systems, and platelet count [6,7].

In response to pathogen infection, a protective pro-inflammatory response is initiated,
but this can become deleterious and of extended duration, leading to sepsis, and over
activation of the inflammatory system results in the production of reactive oxygen (ROS)
and nitrogen species (RNS) to the extent that endogenous antioxidant protection becomes
overwhelmed. The consequences of this are diverse in nature, including impacts on redox-
based cell signalling systems; direct damage to biomolecules; and, perversely, the potential
for immunosuppression. A common component of severe sepsis is endothelial damage
and the triggering of the coagulation system, which can progress to DIC, which is marked
by macro and microvascular thrombosis and hemorrhage and is a leading cause of organ
damage in sepsis [8]. This review aims to explore the potential role for ROS and RNS as
initiators for adverse clotting and bleeding events in sepsis. Efforts to target these processes
using antioxidant therapies will also be discussed.

2. Disseminated Intravascular Coagulation in Sepsis

To maintain homeostatic control of blood flow through the circulation, it is essential
that the processes of platelet plug formation and fibrinolysis are tightly regulated. If
coagulation or anticoagulation mechanisms become dysfunctional, loss of homeostatic
control can result in pathologies such as DIC, which is commonly encountered in patients
with sepsis. DIC is a coagulopathy that occurs as a result of extensive and inappropriate
activation of the coagulation system. Persistent coagulation results in thrombotic occlusion
of small- and medium-sized blood vessels of the circulation via the establishment of
microthrombi owing to fibrin formation (reviewed by [9]). Additionally, cessation of
fibrinolysis, the mechanism responsible for lyzing the clot generated by activation of
hemostatic pathways, contributes to DIC development in sepsis (reviewed by [10]). It
has been reported that the levels of plasminogen activator inhibitor-1 (PAI-1), the protein
responsible for assuring the clot preservation, is elevated in sepsis and is correlated with
cytokines’ releases and poor patients’ outcome [11–13]. Another study, with the plasma of
diabetics patients, demonstrated a strong correlation between the rise in oxidation markers
(oxidized low-density lipoprotein and nitrotyrosine) and the impairment of the fibrinolysis
process [14] (see Figure 1).

As such, compromised blood flow to key organs can result in multiple organ failure
(MOF) and mortality, although other hemodynamic and metabolic disorders can similarly
disrupt blood flow with similar outcomes [15,16]. In this regard, clinical guidelines relating
to DIC state that, for better treatment and improved patient outcome, it is important to
differentiate specific clinic phenotypes of disease type, including (1) increased fibrinoly-
sis, such as would be associated with leukemia, trauma, and aortic or obstetric diseases;
(2) suppressed fibrinolysis, associated with organ failure and septicemia; or (3) balanced fib-
rinolysis, such as would be observed with solid cancers [17,18]. Up to 40% of patients with
sepsis present with or develop DIC [5,19–21]. During episodes of DIC, both bleeding and
clotting events occur concurrently, which poses considerable issues regarding therapeutic
approaches given the need to try and balance these opposing events [22].
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Figure 1. Sepsis induces oxidative stress and disseminates intravascular coagulation. (1). Sepsis
induces ROS release by platelets, neutrophils, and endothelial cells. The majority of excessive ROS
production is generated by mitochondria and NADPH oxidase present in endothelial cells, platelet,
and neutrophil. (2). The overproduction of ROS results in depletion of endogenous antioxidant
systems, including but not limited to SOD and catalase. (3). ROS release from activated inflammatory
cells such as neutrophils and platelets further propagate inflammatory responses including further
ROS production, processes that are self-sustaining and ever expanding. (4). Damage to the vascular
endothelium augments inflammatory cytokine production via ROS-mediated stress responses and
activates the coagulation system and expression of adhesion molecules, all of which results in
elevation of fibrin deposition; impairment of fibrinolysis; and, consequently, thrombus formation.
ROS: reactive oxygen species. CAT: catalase. SOD: superoxide dismutase. TF: tissue factor. NETs:
neutrophil extracellular traps.

A variety of clinical scoring methods have been developed with the intent to help
physicians estimate the severity of disease in sepsis; however, such systems lack precision
as definitive symptoms and clear diagnosis criteria are not obvious in many patients [16,23].
Currently, the most widely used DIC criteria scores are those as set out by The International
Society of Thrombosis and Haemostasis (ISTH) and the Japanese Association for Acute
Medicine (JAAM) [16].

The development of DIC in sepsis is thought to involve crosstalk between the inflam-
matory system activation and the overstimulation of coagulation and, more specifically, a
deficient natural anticoagulant system, which leads to platelet activation and neutrophil
extracellular trap formation, followed by fibrin deposition [24–26].

The disproportionate host inflammatory response to pathogens during sepsis results
in dysfunction and damage to the vascular endothelium, largely due to the effects of
a cytokine storm, with inflammatory cytokines such as tumor necrosis factor a (TNFα),
interleukins 1b and 6 (IL-1b and IL-6), and interferon-gamma (IFNg) being implicated [27].
IL-6 is reported to play a central role in the activation of coagulation by tissue factor
(TF) [16]. TF is a transmembrane glycoprotein able to activate the coagulation cascade
when it is exposed to blood, under which circumstances the formation of a complex with
FVII/FVIIa can ensue (reviewed by [28]), a frequent occurrence during endotoxemia [29].
Established beliefs indicated that TF was present and active only on general cell membranes;
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however, recent evidence has demonstrated the presence of TF on the surface of extracellular
vesicles and microparticles (MPs), derived from platelets, leukocyte, and endothelial cells
in patients with sepsis and DIC [30]. In addition to TF releasing, MPs also induce exposure
of phosphatidylserine (PS), a phospholipid found on the surface of activated platelets that
binds to an array of intrinsic and extrinsic factors to generate thrombin, a fundamental
event of blood coagulation [31]. In addition, PS is associated with a significant increase in
IL-6 and platelet activity, which correlates with the progression of endothelial damage and
leukocyte activation [32,33].

While overexpression of pro-inflammatory cytokines enhances the activation of clot-
ting cascades in sepsis, there is also good evidence to indicate associated impairment of
pathways for essential natural anticoagulant activity, such as the antithrombin system,
which is an important inhibitor of thrombin formation and FXa activation; the protein C
system including protein S, which is an essential co-factor for the activity of protein C; and
for thrombomodulin expression on endothelial cells (reviewed by [28]). Levels of protein C
and antithrombin are markedly reduced in patients with sepsis with DIC [19]. Moreover,
higher levels of protein C are associated with better patient outcomes in general, and as
such may offer use as a both a clinical biomarker and a therapeutic target [34].

3. Vascular Haemostasis in Sepsis
3.1. Endothelium

The glycocalyx is a complex structure that consists of proteoglycans, glycoproteins,
and glycosaminoglycan chains found on the surface of endothelial cells, and it plays
a critical role in the regulation of vascular permeability; for a full description, see [35].
Sepsis-induced endothelial dysfunction including glycocalyx shedding results in increased
leucocyte adhesion to endothelial cells, thereby exacerbating tissue damage [36]. Injury to
the glycocalyx is known to be accentuated by increased levels of inflammatory molecules
such as IL-1b. Diabetes likely further increases the associated risk; to this end, a recent
study undertaken in mice demonstrated that diabetes limits glycocalyx synthesis, which
is further damaged by endotoxemia [37]. Importantly, patients with diabetes have higher
hospital admission rates when compared with non-diabetics [38].

It is increasingly recognized that disruption of vascular endothelium functionality is an
important contributing factor to the onset of the progression of sepsis, including coagulation
disorders, where TF and other procoagulant factors are known to be increased by high levels
of inflammatory mediators. As such, studies have shown significant associations between
markers of endothelial dysfunction and mortality, including increases in expression of
endocan, Ang-2 and HMGB-1, and decreasing levels of protein C with TF levels [34].

Given the emerging understanding of endothelial dysfunction in sepsis, therapeutic
approaches designed to protect the endothelium and glycocalyx are the subject of ongo-
ing investigation. Indeed, a recent study has demonstrated in an animal rodent model
of sepsis that recombinant antithrombin was able to protect the endothelial glycocalyx
from injury, thus maintaining vascular integrity. Moreover, this approach was shown to
decrease levels of syndecan-1, which is an important biomarker of glycocalyx damage [39].
Moreover, outcomes of ProCESS, a randomized study for resuscitation strategies under-
taken in 1341 patients, found associations for the expression of endothelial biomarkers of
permeability with mortality in sepsis, including at baseline and 24 h mortality. A decrease
in expression of VEGF was observed, whereas there was an increase in the expression
of angiopoietin-2, tissue plasminogen activator, thrombomodulin, and von Willebrand
factor [40], leading to an increase in thrombus and associated with the increase in mortality
in sepsis.

3.2. Platelets

Platelets are anucleate blood cells derived from megakaryocytes that are able to release
cytokines, and that interact with leukocytes and endothelial cells, performing fundamental
roles in both vascular homeostasis and coagulation. Platelet activation represents an im-
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portant host response to infection for both innate and adaptive immunity [41]. In sepsis,
platelets are implicated in coagulation dysfunction, through activation of pro-inflammatory
mediators such as platelet activating factor and increasing fibrin formation via the ex-
pression of procoagulant molecules, including P-selectin [28,42,43]. However, decreased
platelet counts (thrombocytopenia) may act as a predictor of mortality for patients with
sepsis/septic shock and DIC [44]. The reasons for persistent thrombocytopenia in sepsis
are not fully understood, but some theories suggest that this may be due to reduced platelet
production, enhanced turnover, or spontaneous aggregation of platelets and enhanced
platelet consumption through the formation of microthrombi. Although persistent platelet
activation is most often related to septicemia, a few studies have shown that platelet
aggregation is decreased in experimental sepsis [45], possibly signalled via the TNF path-
way [46]. Moreover, the reduction in platelet aggregation seen in patients with sepsis is
more pronounced depending on the severity sepsis, stage of disease, and the presence of
DIC [47].

3.3. Neutrophils

Neutrophils are white blood cells that play a critical role in the immune response
(reviewed by [48]) as well as in sepsis, which is associated with an excessive activation of
neutrophils. Indeed, such neutrophil overstimulation is understood to be a key contributor
to manifestations of sepsis and associated syndromes. In addition to the production of
oxidants including hypochlorous acid (HOCL), hydrogen peroxide (H2O2) and superoxide
(O2

•−), proteases, and chemokines, activated neutrophils are also capable of undergoing a
process named netosis. The release of neutrophil extracellular traps (NETs) during neto-
sis occurs when nuclear DNA decondenses to release web-like structures of linear DNA
from the cell that are interlaced with histones, myeloperoxidase, and other antimicrobial
peptides such as elastase [49–51]. NETs are able to trap and kill microorganisms owing
to the activity of associated antimicrobial proteins, and they also limit parasite dissemina-
tion [52]. However, unwanted collateral effects linked to netosis have also been described,
including the induction of tissue injury mediated by extracellular histones and granular
proteins [53,54]. Moreover, some substances, such as elastase and myeloperoxidase, re-
leased by NETs are considered to be damage-associated molecular patterns (DAMPs) and
can cause tissue injury through activation of toll-like receptors on endothelial cells, lead-
ing to dysfunction [55–57]; additionally, extracellular MPO is still capable of forming the
damaging oxidant HOCL. Interestingly, it has been shown that the inhibition of neutrophil
elastase can prevent NETs’ formation and reduces septic shock in animal models, and thus
may offer a therapeutic target for septicemia [58].

Some recent literature has demonstrated an association with the severity of sepsis
and levels of NETs’ formation. In this regard, higher levels of NETs’ production correlated
with the worsening and severity of sepsis and organ failure in humans; moreover, NETs’
formation during the initial stages of sepsis was also positively correlated with levels of
key inflammatory cytokines IL-8, IFN-gamma, and TNFα [59]. Furthermore, inflammatory
modulation by NETs was reported lead to severe damage in the liver, spleen, and kidneys in
a murine model, processes that were abrogated by the use therapeutic of anti-citrullinated
protein antibody, a NET formation inhibitor [57,60,61]. Other modulators released during
the acute inflammatory response have also been linked to the induction of NETosis. For
example, cold-inducible RNA-binding protein (CIRP), which is a DAMP, is known to be
associated with organ injury and increased mortality in sepsis, and has recently been shown
to enhance NETosis in the mice lungs during sepsis in an animal model induced by a cecal
ligation and puncture (CLP) model [62]. Previous studies have also demonstrated that
some antibiotics such as fluoroquinolones, macrolides, and a few b-lactams are capable of
modulating the formation of NETs and, as such, may offer a protective role in early sepsis,
this being ascribed to an immunomodulatory function possibly owing to downregulation
of the PKC-Akt-mTOR pathway [50].
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In addition, given the context of this review, NETs’ release is further linked to the
evolution of DIC via the reduction in the levels of antithrombin and, as such, may provide
a possible therapeutic target to treat DIC [58,63].

Importantly, the DNA molecule contains a polyphosphate backbone and is a known
intracellular storage polymer of phosphate. Persistence of NETs is normally regulated
by plasma DNAase 1 activity; there are nevertheless circumstances when such control is
lost or overwhelmed, and net formation predominates [64]. DNA provides a negatively
charged surface for the autocatalytic activation of Factor XII and the intrinsic pathway of
coagulation, leading to increased thrombin generation and risk of thrombosis. Moreover,
histones released with DNA are potent platelet activators, causing platelet degranulation
and release of polyphosphate (PolyP). PolyP has been shown to be a highly potent activator
of the contact pathway in vitro and in vivo [65,66], binding with high affinity to several of
its protein components. Therefore, targeted inhibition of the Factor XII pathway may offer
a therapeutic option in sepsis.

4. Oxidative and Nitrosative Stress

Reactive oxygen species (ROS) are chemical species encompassing free radicals and
related oxygen containing species. The most encountered inorganic ROS include the follow-
ing: the superoxide radical anion (O2

•−), the hydroxyl radical (•OH), hydrogen peroxide
(H2O2), and hypochlorous acid (HOCl) [67–69]. Most ROS production is purposeful, allow-
ing for utilizations of oxygen for aerobic metabolism and biosynthesis. These processes are
highly regulated to limit any adverse consequences related to the inappropriate activation
of oxygen to more reactive forms. Should this control be undermined or lost, excessive
ROS production can affect redox-regulated cell-signalling responses, leading to aberrant
stress responses, as seen in sepsis. To this end, over production of O2

•− and H2O2, both
key signalling species, can lead to redox-regulated pro-inflammatory transcription factor
over activation as well as significant and inappropriate pro-inflammatory responses. The
production of directly damaging ROS including •OH and HOCl can also result in damage
and dysfunction to an array of biomolecules, including lipids, proteins, and nucleic acids,
as well as the production of toxic end-products such as aldehydes and protein carbonyls.
Moreover, interactions between relatively innocuous species such as O2

•− and nitric ox-
ide (NO) in equimolar proportions result in the production of peroxynitrite (ONOO−),
which, although not a free radical, is nevertheless a very aggressive species capable of
inflicting damage similar to that ascribed to •OH. Furthermore, ONOO− is capable of
reacting with proteins and peptides, thereby causing functional changes; modifications
include s-nitrosylation, glutathionylation, and tyrosine nitration. NO and ONOO− are
described as reactive nitrogen species (RNS); other RNS include nitroxyl (HNO), nitroso-
nium cation (NO+), S-nitrosothiols (RSNOs), NO2

− (nitrite), and dinitrosyl iron complexes,
excluding NO3 [70,71]. Under normal conditions, endothelial cells generate NO through
eNOS, influencing cGMP levels and relaxing vascular smooth muscle, thereby promoting
the vessel dilation. NO is also a known inhibitor of platelet activity through the sGC-cGMP-
PKG pathway, following different mechanisms: (i) PKG reduces intraplatelet Ca2+ levels
inhibiting platelet shape change and, consequently, inhibiting the release of mediators
involved in platelet aggregation; (ii) PKG promotes the phosphorylation of TXA2 receptor,
suppressing the effects of the platelet agonist; (iii) platelet aggregation is inhibited by the
synergic effect of cGMP and cAMP; and (iv) cGMP inhibits PI3K, which is responsible
for the activation of integrin αIIbβ3, a transmembrane glycoprotein signalling receptor
essential for normal platelet function. NO donors also have been shown to inhibit platelet
aggregation independently of sGC [72].

Additionally, it is well reported that haemoglobin (Hb) is capable of binding to NO
and its metabolites. S-nitrosothiols and dinitrosyl iron complexes bind to the heme in
Hb, working as an NO store, preventing NO oxidation. Moreover, despite the fact that
endothelial NO synthesis in venous circulation is disabled because of a low concentration of
oxygen, the Hb stores of NO guarantee that NO is available to the venous circulation [73,74].
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Appropriate regulation of NO generation and distribution is thus fundamental for the
maintenance of vascular tone and normal blood flow, regulating platelet and leukocyte
adhesion to endothelium and, ultimately, the distribution of oxygen and nutrients to the
body [75–77]. Additionally, heme is converted to carbon monoxide (CO), free iron, and
bilirubin through heme oxygenase (HO-1) action. Although CO has been reported to
induce anti-inflammatory cytokines and downregulate pro-inflammatory cytokines release
(reviewed by [78]), its pro-coagulant and anti-fibrinolysis activities (reviewed by [79]) might
be substantially involved in the induction of generalized coagulation in sepsis.

Normally, the collateral effects of ROS production are limited because of an armory
of protective strategies chiefly facilitated by diverse forms of antioxidant protection and
efficient removal and repair mechanisms. However, under circumstances such as excessive
inflammation, traumatic injury, and cell/tissue ischaemia, excessive levels of ROS formation
can occur to the extent that endogenous protection becomes overwhelmed, a scenario often
observed in the critically ill, and particularly so during sepsis. Indeed, there is well-
established literature demonstrating oxidative and nitroasive modification/damage of
biomolecules in the critically ill [80–84]. In addition, the production of DAMPs (damage-
associated molecular patterns) and PAMPs (pathogen associated molecular patterns) and
subsequent binding to activation of TLRs (toll like receptors) induce increased ROS release
by an array of cells, including endothelial cells, platelets, and neutrophils [85]. Such
activation further promotes additional ROS production by these cells, creating a self-
sustaining and ever-expanding ROS activation system, which further negatively impacts
patient clinical presentation [86–89].

As for the systems that generate ROS in sepsis, these are complex, including NADPH
oxidase (NOX) and dual oxidase enzymes (DuOX); mitochondrial respiration and dysfunc-
tion; the activities of cyclooxygenases and lipoxygenases; xanthine oxidoreductases (XOR);
the effects of ischaemia reperfusion injury; NO production by NOS enzymes; and loss of
homeostatic control for iron recycling, allowing for production of directly damaging ROS.
See Table 1 for specific details.
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Table 1. Main reactive oxygen and nitric species producers.

Enzyme Mechanism Reference

Nicotinamide adenine
dinucleotide phosphate (NADPH)

oxidase (NOX1-5; DUOX1, 2)

Conversion of O2 to O2
•−, NADPH acts as an electron donor. NOX1–4 provide constitutive activity, which is dependent on subunits

NOXO1, p47phox, or p22 phox phosphorylation. Further rearrangement of the subunit complexes p40phox, p67phox, and Rac from the
cytosol to the membrane allows for transfer of electrons from the substrate to O2.

NOX5 and Duox activation are calcium-dependent.

[90–92]

Mitochondrial respiration chain

Oxygen acts as the terminal electron acceptor of the respiratory chain. The process involves a four-electron reduction of oxygen to water,
which can occur in the outer membrane, in the inner membrane, or within the matrix. ROS including O2

•−, H2O2, and •OH are
produced as intermediates in this ongoing process. Around 1% of O2

•− exits the mitochondria as a physiological process under
steady-state conditions. Hyperoxia and hypoxia/reperfusion both augment O2

•− release greatly, with the potential for direct effects on
cellular redox state and signaling, as well as the conversion to more damaging species through iron catalysis (Fenton reaction).

[93–97]

Cyclooxygenase and Lipoxygenase
These enzymes metabolize arachidonic acid (AA) to form prostaglandins, thromboxane, and leukotrienes. The enzymic addition of

oxygen as occurs in these processes involves ROS generation with the potential for collateral effects.
In addition, COX and LOX metabolites are known to affect intracellular redox balance by activation of NOX enzymes.

[98,99]

Xanthine, oxidoreductase (XO),
dehydrogenase oxidase (XDH)

Rate-limiting enzymes responsible for the conversion of hypoxanthine and xanthine to uric acid in the last stages of purine catabolism.
XDH catalyses these process, utilising NAD+ as a cofactor. XDH can be readily converted to XO by hyperoxia, by the effects of

ischaemia/reperfusion, or by limited proteolysis. XO catalyses the same reaction, but uses oxygen as a co-factor rather than NAD+;
consequently, O2

•− and H2O2 are generated as by products and thus influence an array of ROS-related dysfunctions.

[71,100,101]

Nitric oxide synthase (NOS)
NOS1 or nNOS (neuronal), NOS2
or iNOS (inducible), and NOS3 or

eNOS (endothelial)

Enzymatic production of NO and regulation of vascular tone.
Use of l-arginine and O2 as substrates and nicotinamide-adenine-dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD),

flavin mononucleotide (FMN), and (6R)5,6,7,8-tetrahydrobiopterin (BH4) as reduced cofactors.
When NO is produced by endothelial cells, it diffuses through smooth muscle cells, binding to guanylyl cyclase (GC). GC produces the

second messenger, cyclic guanosine 3,5-monophosphate (cGMP). cGMP interacts with protein kinase G (PKG), which promotes the
phosphorylation of contractile proteins, resulting in a decrease in cytosolic Ca2+, which stimulates myosin light-chain dephosphorylation,

promoting vasorelaxation.
Formed by the reaction between equimolar amounts NO and O2

•−, the peroxnitrite ion (ONOO−) is more reactive and toxic than NO. It
modifies proteins and peptides via nitration (of tyrosine) and nitrosylation (of thiol moieties) and, in addition, via hydroxylation reactions
involving a species likened to •OH. ONOO− formation and damage is strongly correlated with a range of cardiovascular pathologies.

[101]
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5. The Role of Oxidative and Nitrosative Stress in Sepsis-Related Haemostasis
5.1. Glycocalyx

The glycocalyx of the endothelium is an intravascular lubricant layer, composed of
membrane-binding domains and plasma proteins that separate circulating blood from
vessel walls. It is a major contributor to cardiovascular homeostasis, controlling thrombus
development, vascular permeability, together with the provision of anti-inflammatory
and antioxidant defenses [102,103]. Severe inflammation promotes glycocalyx shedding,
altering structure, and compromising function [102]. Oxidative stress is thought to be
a major contributor for this impairment, which ultimately leads to the synthesis and
exposure of adhesion molecules and, subsequently, the influx of leukocytes and platelets to
the vascular bed [104,105]. Indeed, it has been reported that, in diseases where oxidative
stress plays an important role, such as sepsis or post-cardiac arrest syndrome, shedding of
glycocalyx structures was apparent (see Figure 1) [106].

5.1.1. Mitochondria

Mitochondria are the principal site of ROS generation in endothelial cells both in
health and during sepsis [107], and numerous studies have reported the impacts of altered
mitochondrial activity on the function of blood vessel. For instance, in human coronary
arterioles, rotenone and myxotgiazol, inhibitors of mitochondrial complex I and III, respec-
tively, mitigated flow-induced dilatation associated with O2

•− and H2O2 release, whereas
apocynin, an NADPH oxidase inhibitor, did not affect the increase in ROS generation
induced by shear stress [108]. Additionally, Lowes et al. showed that human umbilical
vein endothelial cell incubated with LPS; promoted elevated ROS generation; lowered
mitochondrial membrane potential; and increased the release of cytokines IL-1b, IL-6, IL-8,
and IL-10. These effects were all abrogated by MitoQ, a mitochondrial targeted antioxi-
dant [109]. MitoTEMPO, another mitochondrial superoxide scavenger, also ameliorated
organ dysfunction and improved the survival rates in a murine model of sepsis involv-
ing the CLP model [110]. Additionally, the antioxidant protein paraoxonase-2 (PON2)
is involved in the control of oxidative stress, reduction of inflammation, and protection
against atherosclerosis. Furthermore, Altenhöfer et al. have demonstrated that PON2
decreased O2

•− generation from the endothelial cells of human mitochondrial complex I
and complex III at the inner mitochondrial membrane, supposedly by acting on coenzyme
Q10 (CoQ) [111]. In addition, Ebert et al. showed that PON2-knockout mice presented
loss of redox homeostasis, endothelial cells’ abnormalities with an increase of tissue factor
activity, reduction of coagulation times, and increased platelet activity [112].

5.1.2. NADPH Oxidase

This multisubunit enzyme is also reported to promote ROS generation in the endothe-
lium. Wu et al. showed that, in microvascular endothelial cells when stimulated with
LPS, the ROS scavenger ascorbate abrogated NOX1 activity; p47phox expression; and,
consequently, decreased ROS production [113]. The upregulation of NOX1 by LPS, TNF-α,
and IL-1α has also been shown to induce mitochondrial O2

•− generation in pig pulmonary
arteries [114].

During sepsis, the endothelium generates high levels of tissue factor pathway inhibitor
(TFPI), together with NO and prostacyclin, in order to maintain an antithrombotic capac-
ity. However, in sepsis, endothelium anticoagulant factors such as TFPI do not operate
appropriately, thereby allowing leukocyte and platelet adhesion and, consequently, the
release of tissue factor and the formation of microthrombi [87,111]. Interestingly, incubation
of endothelial cells with xanthine/xanthine oxidase a potent source of O2

•− and H2O2,
inhibiting TFPI [115].

5.1.3. iNOS and NO

The glycocalyx can also release toxic levels of NO via iNOS activity, which causes hy-
potension and circulatory failure, subsequent disruption of oxygen distribution impairment
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of the endothelial barrier system, and damage to various organs [77,116]. Additionally,
greatly elevated levels of NO promote a substantial inhibition of platelet activity, leading to
an extensive bleeding time, hemorrhage, and potentially death [117,118]. Furthermore, in
addition to endothelial cells, neutrophils also contain iNOS, which further contributes to
the NO pool in sepsis and reduces the interaction between neutrophils and the endothe-
lium [119]. In this regard, a study using a cecal ligation and puncture (CLP) model of
sepsis in rodents showed that increases in NO production inhibited neutrophil rolling
and, consequently, abolished adhesion to the endothelium. Importantly, treatment with
aminoguanidine, an NO inhibitor, was able to restore neutrophil function and decreased
mortality [120]. Another relevant pathophysiological RNS species is ONOO−, which is
formed by the reaction between equimolar levels of O2

•- and NO; this directly damaging
species when formed is associated with cytotoxic effects and tissue damage [77,116,121].

5.2. Platelets

Platelets also play a key role in ROS production during sepsis, with both external
and internal ROS production reported to modulate platelet activity through the integrin
αIIbβ3 (fibrinogen receptor), GVI (collagen receptor), and GPIbα (von Willebrand factor
receptor) [122,123]. As such, platelets incubated with LPS from Chlamydia pneumoniae,
Proteus mirabilis, or Escherichia coli all demonstrated elevated levels of ROS generation.
In addition, LPS induced ROS generation by platelets and increased platelet–fibrinogen
binding and P-selectin exposure, all of which was abrogated by superoxide dismutase and
catalase [107,122]. Moreover, mice pre-treated with the antioxidant N-acetylcysteine (NAC)
prior to injection with LPS re-established normal levels of platelet ROS production and
aggregation [124].

One of the main roles of platelets in sepsis is to promote the activation and migration
of neutrophils to the sites of tissue injury and to stimulate neutrophil NETs’ release and ROS
generation [125,126]. Additionally, both in experimental sepsis and in patients recovering
from septic shock, neutrophils also generate extensive levels of production ROS via NADPH
oxidase (NOX2), independent of any platelet stimulus. Importantly, neutrophils’ surface
receptors, such as integrin, Fc receptors, and members of the G-protein-coupled receptors
family, have all been shown to promote the stimulation of neutrophil-NADPH oxidase
activation [127].

It is well known that platelets contain NADPH oxidases, more specifically NOX1,
NOX2, and NOX4. However, any role of NOXs in platelet signalling remains somewhat
contradictory [128–131]. Some studies have reported a fundamental role in experimental
platelet ROS production, while others have shown that endotoxemia in rats increased TNF-
α levels and promoted platelet-NADPH oxidase activity, via cGMP-PKG and PKC-p47phox
signalling pathways [22,124,132]. NADPH oxidase (NOX2) activity within neutrophils
and specifically ROS production has been suggested to stimulate NETosis, as seen in both
human and experimental sepsis [104,133]. However, this assertion is a subject of ongoing
debate, as other studies have shown that inhibition of neutrophil NADPH oxidase did not
affect NETs’ release [134,135].

Moreover, in patients with sepsis, soluble plasma factor-induced uncoupling of
platelet mitochondria increases respiratory capacity, a feature that was more intense in
non-survivors. In addition, platelet mitochondria function was reported to be associated
with organ failure and elevated lactate levels [136,137].

6. Conclusions

This review provides some evidence linking aspects of oxidative/nitrosative stress,
and the onset and establishment of hemostasis in sepsis. Abnormal coagulation events
including DIC impair tissue prefusion, which may ultimately result in multiple organ
dysfunction and death. The combination of greatly elevated levels of ROS and RNS
production resulting from an overstimulation of the inflammatory response beyond the
limits of homeostatic control, in part due to depletion of finite antioxidant reserves, results
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in a pro-oxidant environment. Under these circumstances, redox-based stress responses
become detrimental, with an array of negative impacts including the over-stimulation
of coagulation and further expansive inflammatory systems’ activation; endothelium
dysfunction and platelet and neutrophil activation, including the formation of neutrophil
NETs, all contribute to these responses.

Diagnosis and treatment of sepsis remain a significant challenge for healthcare providers
globally, and gaining greater insights into key aspects of complicated proinflammatory
processes that ensue during onset and progression of disease remains a priority. Targeting
the drivers of excessive oxidative/nitrosative stress using antioxidant treatments is an
obvious therapeutic avenue. However, while beneficial responses can be demonstrated
for an array of adverse endpoints including clotting dysfunction using in vitro and in vivo
models, clinical trials have to date been somewhat disappointing; a more nuanced approach
may offer a way forward. In this regard, the advent of antioxidants that are specific for key
compartments/organelles such as mitochondria, combinational approaches to operative in
differing extracellular and intracellular compartments, prophylactic usage in risk groups,
and/or the timing and/or duration of use may provide some measure of success (see
Figure 2 and Table 2).
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Figure 2. Potential antioxidants therapies. (1) The inflammatory scenario of sepsis induces shear
stress, causing endothelium damage and activation of iNOS, leading to an NO boosting. (2) Vitamin
C is an antioxidant acting on iNOS inhibition expression, improving microvascular dysfunction and
ameliorating hypotension. (3) The compound PHP and melatonin sequestrate NO and promote SOD
activation. (4) Sodium selenite promotes an increase in GPx activity. (5). NAC and melatonin restore
GSH levels and inhibit platelet and neutrophil dysfunction. (6). MitoQ enhances mitochondrial
respiration and restores mitochondrial dysfunction. NO: nitric oxide. CAT: catalase. SOD: superoxide
dismutase. GPx: glutathione peroxidase. GR: glutathione reductase.
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Table 2. Potential antioxidant therapies.

Therapy Mechanism Positive Effect Why is Not it Been Clinically Used?

Vitamin C Potent ROS scavenging antioxidant
agent [138]

Septic shock patients treated with ANON®, an antioxidant-enriched
concentrated liquid diet with high concentrations of vitamin C and E,

demonstrated a restoration of vitamin C radical levels in serum and a reduction
in MOF [139]. Septic animals treated with vitamin C showed an improvement
in microvascular dysfunction and microvascular permeability barrier integrity,
inhibition of iNOS expression, and ameliorated hypotension [89,113,138,140].

The vasodilatation and reduction in vitamin C plasma concentration after low
doses of LPS administration in healthy volunteers were reversed by

co-administration of vitamin C [141].

Limited clinical trials

Seleniun A micronutrient fundamental for GPx
synthesis [142,143]

The administration of high levels of sodium selenite intravenously showed an
increase in blood selenium concentration and GPx activity and significantly

decreased mortality of septic patients with DIC [144].

Seleniun decreased the infection in nonseptic
patients only. Clinical trials did not show any
improvement in outcomes in a general septic

patient population [145]

N-acetylcysteine
(NAC)

Antioxidant is able to restore the levels
of GSH in the cells and also acts as an

anti-inflammatory agent [146]

The treatment of rats with NAC, 30 min after LPS injection, re-established their
ROS generation levels and platelet aggregation [124]. NAC treatment in rats

decreased neutrophil infiltration and leukocyte adherence, ameliorated
mitochondrial dysfunction, and decreased oxidative stress [147–150]. NAC
administration by septic patients reduced lipid peroxidation, induced tissue
oxygenation, ameliorated cardiac function, and decreased the mortality rate

[151–154].

Conflicting results: some studies showed that
NAC did not improve outcome for patients or
affect levels of cytokines’ release [155]. NAC
can also worsen organ failure [156]. Findings
need to be confirmed in larger clinical trials

MitoQ Targets mitochondrial dysfunction [157]
Endotoxemic rats that received MitoQ by i.v. administration demonstrated

enhancement in mitochondria respiration, decreased levels of oxidative stress
and IL-6, and improved organ dysfunction [157,158].

There are no data from human studies

Superoxide
dismutase (SOD)

Converts superoxide radical into
hydrogen peroxide and molecular

oxygen (O2), while the catalase and
peroxidases convert hydrogen peroxide

into water [159,160]

The M40401 SOD mimetic restored vascular reactivity, regulated arterial
pressure, and decreased mortality levels of rats infected with E. coli [161] There are no data from human studies
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Table 2. Cont.

Therapy Mechanism Positive Effect Why is Not it Been Clinically Used?

Nitric oxide
scavenger

The compound pyridoxylated
haemoglobin polyoxyethylene (PHP) is

a chemically altered human-derived
hemoglobin used as an NO scavenger

and SOD mimetic [162].

In a Pseudomona aeruginosa sepsis model in sheep, infusion of PHP for 48 h
restored a low mean arterial pressure and improved the systemic vascular

resistance [163,164]. In phase I/II clinical trials, PHP increased blood pressure
and diminished catecholamine requirement [165]; in a phase III trial with

377 patients, PHP reduced the necessity of vasopressor use [166].

Despite some positive results, after 28 days of
therapy with PHP, there was no benefit and

indeed mortality rates increased, with a SOFA
score higher than 13 [166]

Melatonin

Secreted during the night, melatonin is a
hormone produced by the pineal gland.

It possesses anti-inflammatory
properties and demonstrates antioxidant

functions, acting as both an ROS and
RNS scavenger [167].

In septic rats induced by CLP, administration of melatonin improved organ
injury; an effect that was ascribed to the capacity of melatonin to enhance GSH
levels and to inhibit neutrophil aggregation [168]. In a placebo-controlled study

with 12 healthy volunteers, the group that received melatonin before LPS
showed lower levels of inflammatory markers and oxidative stress compared

with the saline control group [138,169].

Lack of clinical trials
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