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Simple Summary: Individuals with atrophic gastritis and gastric intestinal metaplasia, considered
gastric precancerous conditions (GPC), are at increased risk of developing gastric adenocarcinoma.
The identification and surveillance of these patients are important for the diagnosis of early gas-
tric neoplasia. Non-invasive markers of GPC with good diagnostic performance could allow the
implementation of a stepwise screening approach and, with successful personalized endoscopic
surveillance, possibly decrease gastric cancer morbidity and mortality. Pepsinogen I and II and their
ratio are the most broadly investigated biomarkers with moderate diagnostic performance. Their com-
bination with other markers like Helicobacter pylori antibodies and gastrin-17 (called GastroPanel®)
allows for more precise identification of GPC but without significant improvement in overall per-
formance. Other new serum biomarkers could possibly enhance the performance of pepsinogens.
Some of them may be considered stand-alone biomarkers; however, until now, no high-quality data
support the use of any of them.

Abstract: Gastric cancer (GC) is still one of the most prevalent cancers worldwide, with a high
mortality rate, despite improvements in diagnostic and therapeutic strategies. To diminish the GC
burden, a modification of the current diagnostic paradigm, and especially endoscopic diagnosis
of symptomatic individuals, is necessary. In this review article, we present a broad review and
the current knowledge status on serum biomarkers, including pepsinogens, gastrin, Gastropanel®,
autoantibodies, and novel biomarkers, allowing us to estimate the risk of gastric precancerous
conditions (GPC)—atrophic gastritis and gastric intestinal metaplasia. The aim of the article is to
emphasize the role of non-invasive testing in GC prevention. This comprehensive review describes
the pathophysiological background of investigated biomarkers, their status and performance based on
available data, as well as their clinical applicability. We point out future perspectives of non-invasive
testing and possible new biomarkers opportunities.

Keywords: chronic atrophic gastritis; gastric cancer; gastric intestinal metaplasia; gastric precancerous
conditions; pepsinogen
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1. Introduction

Gastric cancer (GC) was the leading cause of cancer death worldwide until the 1980s.
Since then, GC incidence has been decreasing parallel to the decreasing prevalence of
Helicobacter pylori (H. pylori) infection, the main gastric carcinogen. Despite that, currently,
GC is still the fifth most frequently diagnosed cancer, responsible for almost 660,000 deaths
annually, ranking as the third cause of cancer-related death in the world [1].

GC is a heterogeneous disease; different types of GC are distinguished according to
their location: distal (non-cardia) GC and proximal (cardia) GC. These entities differ in
terms of risk factors and epidemiological patterns. Another heterogeneity can be seen on a
histopathological level. Historically, we distinguish two major subtypes according to the
Laurén classification: intestinal type and diffuse type [2]. The intestinal, usually non-cardia,
type is the most common (~80% of global cases), and the majority of cases are attributed to
chronic H. pylori infection. In contrast, cardia GC has a different etiology, with only a small
proportion of cases linked to H. pylori infection [3].

1.1. Gastric Precancerous Conditions

The development of non-cardia intestinal-type GC follows a pattern of stepwise
progression beginning with gastric precancerous conditions (GPC). According to the model
of gastric carcinogenesis known as “Correa’s cascade” [4], GC is preceded by a progression
from a normal gastric mucosa through non-atrophic gastritis, usually induced by chronic
infection with H. pylori, to precancerous conditions, i.e., successively, chronic atrophic
gastritis (CAG), intestinal metaplasia (IM), dysplasia, and finally, adenocarcinoma [4–6].
Less frequently, atrophic gastritis can result from an autoimmune reaction and, in this case,
is called autoimmune gastritis (AIG). In H. pylori-related gastritis, or non-autoimmune
gastritis (NAIG), gastritis first appears in the antrum and eventually spreads to the corpus,
causing pangastritis. In contrast, in AIG, atrophic gastritis is typically limited to the gastric
corpus and fundus, sparing the antrum [7,8]. The distribution of gastric precancerous
conditions is presented in Figure 1.
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Figure 1. Distribution of different types of gastric precancerous conditions in the stomach. Helicobacter
pylori-related gastritis affects the gastric antrum and eventually spreads to the corpus, causing
pangastritis (on the left). Autoimmune gastritis affects the gastric corpus and fundus, causing
mucosal atrophy that spares the antrum (on the right). The image was created with BioRender.com.

GPC, which may be graded according to OLGA and OLGIM histological classifications,
is associated with an increased risk of GC [9]. The annual incidence of GC in patients with
GPC, according to a PALGA study conducted on the Dutch population, was 0.1% for CAG,
0.25% for IM, 0.6% for mild-to-moderate dysplasia, and 6% for severe dysplasia (for the
latter, HR 40.14, 95% CI; 32.2–50.1) [10]. Studies have demonstrated that the most common
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location of gastric atrophy is the antrum, but patients with pangastritis have a major risk
of progression to GC [11]. To sum up, patients with CAG have an increased risk of GC;
therefore, they should benefit from close surveillance [12].

1.2. Screening Programs and Preventive Measures for Gastric Cancer

Up to now, GC screening programs have been implemented in countries with a high
incidence of GC (e.g., Japan, South Korea, and China) to enable the diagnosis at the earlier
stage and improve survival. So far, there are no established screening programs for GC in
Europe. However, there are currently ongoing European projects (GISTAR: Multicenter
randomized study of Helicobacter pylori eradication and pepsinogen testing for prevention
of gastric cancer mortality; EUROHELICAN: Accelerating gastric cancer reduction in
Europe through Helicobacter pylori eradication, TOGAS: TOwards GAstric cancer Screening
Implementation in the European Union) aiming at the evaluation of feasibility and the
most appropriate modalities of screening programs in different European countries. In
these projects, different potential approaches are being compared, including systematic
screening for H. pylori infection in the young population, pepsinogen serology followed
by upper endoscopy in case of pathological result, or the upper endoscopy systematically
added to the screening colonoscopy [13]. In another ongoing European project, AIDA
(Artificially Intelligent Diagnostic Assistant for gastric cancer inflammation), even the
possibility of creating an artificial intelligence tool to better evaluate the risk of the evolution
of GPC towards gastric cancer will be evaluated. Since most GC cases progress from
GPC, several actions have been proposed to reinforce the surveillance of patients with
GPC. One of them consists of open-access endoscopy services in patients with high-risk
GPC [10,14]. A combined screening colonoscopy and esophagogastroduodenoscopy has
also been proposed as combined colon and gastric cancer screening [15]. However, the
endoscopic diagnostic performance of gastric premalignant conditions—CAG and IM—
is questionable. The real-world data show that the sensitivity of the detection of CAG
does not exceed 70% and the detection of IM 20% [16,17]. The diagnostic performance
depends on the operator’s expertise and may vary significantly between centers [17,18].
Because of low detection by optical judgment, the diagnosis of CAG and IM still relies
on “mapping” biopsies [12]. On the other hand, endoscopically diagnosed atrophy is a
well-established risk factor for GC [19]. Risk estimation based on endoscopy may be based
on the solitary endoscopic diagnosis of severe atrophy or confirmation of IM at biopsies [20].
The endoscopic grading of the extent of mucosal atrophy, called the Kimura–Takemoto
classification, was introduced over 50 years ago [21]. Recently, important progress has been
made in the endoscopic diagnosis of gastric atrophy and intestinal metaplasia thanks to
the introduction of high-performance endoscopy techniques, including high-resolution,
magnifying endoscopy, and virtual chromoendoscopy [22]. The endoscopic grading of
gastric intestinal metaplasia (EGGIM) is a precise parameter of gastric IM estimation [23,24].
It is also worth mentioning that the endoscopic evaluation of IM shows promising results
in the identification of an incomplete type of IM known for a greater risk of GC [25].
Nevertheless, the endoscopic evaluation of pre-malignant conditions is imperfect as a
screening measure. Despite the low rate of adverse events, esophagogastroduodenoscopy
(EGD) is an invasive and costly diagnostic procedure with reported complications [26]. The
estimated number of procedures for one cancer avoided by the detection of a premalignant
condition exceeds 230 in countries with low to intermediate prevalence of GC [27]. Also,
non-invasive screening might potentially be a complementary alternative to screening EGD,
as not all of the population would be willing to undergo this procedure [28]. Therefore,
the development of non-invasive markers is required to “support” or replace endoscopy
in searching for pre-malignant conditions. It would be applicable, especially in countries
with low to moderate GC incidence, where nationwide screening programs regarding
cost-effectiveness and burden of patients seem not appropriate.
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1.3. Blood Biomarkers
1.3.1. Validated and Commercially Available Biomarkers of Gastric Atrophy
Pepsinogens—PG I and PG II Blood Concentration

Serum pepsinogens (PGs), the precursors of pepsin, are the most studied biomarkers
of gastric atrophy. PGs include PGI and PG II, secreted in the stomach lumen and cir-
culation. PGI is secreted by the chief cells present only in the gastric corpus, while PGII
is secreted throughout the stomach and proximal duodenum. Therefore, in the case of
atrophic gastritis affecting the corpus, the level of PGI drops significantly. In contrast, the
level of PGII remains unchanged, hence allowing the use of the decreased levels of PGI and
PGI/PGII ratio as potential biomarkers of corpus atrophy. One of the weaknesses of the
non-invasive diagnosis of CAG using PG testing is its poor performance in the detection of
antrum atrophy. However, it appears as a good marker of corpus and especially marked
atrophy [29]. Moreover, some recent data show that PGI testing may be useful in distin-
guishing the cause of CAG, its levels being significantly lower in autoimmune gastritis,
than in Helicobacter pylori-induced CAG [30].

The diagnostic value of PG testing has been assessed in several studies using different
methods (enzyme-linked immunosorbent assay, ELISA; Chemiluminescent Immunoas-
say, CLEIA), with a different cut-off value for each method and adjusted for different
population/ethnicity [30–38] (Table 1).
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Table 1. Studies describing the accuracy of pepsinogen levels in the diagnosis of atrophic gastritis.

Study
(Year)

Study Type,
Country

Targeted
Condition Cut-Off Values Test Method No. of Patients

Included
Age, Mean ± SD

(Range) Years
Sensitivity %

(95% CI)
Specificity %

(95% CI)
AUC ROC
(95% CI)

Lin [39]
(2023)

Single center,
China

AG

PG I ≤ 70 ng/mL,
PGI/PGII ratio ≤ 3

n/a 965 (AG: 275) n/a

8.7 94.5 n/a

PG II > 11.05
ng/mL, PGI/PGII

ratio < 3.75
21.8 86.1 n/a

Sivandzadeh [40]
(2023)

Single center,
Iran

AG

PG II > 30.28 µg/L
for corpus atrophy

ELISA 153 63.7 female; 64.9
male

28.6 (8.6–58.1) 93.5
(88.1–97.0) n/a

PG I for corpus
atrophy n/a n/a 0.551

PGI/II ratio for
corpus atrophy n/a n/a 0.544

Chapelle [31]
(2022)

Multicenter,
France

AG

PGI ≤ 21.1 ng/mL

CLEIA 356 (AG: 152) 58.6 ± 14.2

40.8 (32.9–49.0) 94.6
(90.6–97.3) 0.642

PGI/PGII
ratio ≤ 3.03 46.7 (38.6–55.0) 92.6

(88.2–95.8) 0.685

Huang [41]
2022

Single center,
United States of

America
AG, IM

PGI < 67 µg/L
ELISA

135 (AG or IM:
59) n/a

41 (29–54) 78 (68–87) 0.567

PGI/PGII ratio < 8.2 43 (30–56) 45 (34–56) 0.503

Nguyen [32]
(2022)

Single center,
Vietnam

AG moderate
to severe

PGI ≤ 63.5 ng/mL

CMIA
273 (moderate to
severe AG: 77) 56.3 ± 9.7

79.2 41.3 0.612

PGI/PGII
ratio ≤ 5.2 61 68.9 0.689

PGI ≤ 63.5 ng/mL,
PGI/PGII
ratio ≤5.2

49.4 82.1 n/a

PGI ≤ 63.5 ng/mL,
PGI/PGII
ratio ≤ 5.2

90.9 28.1 n/a
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Table 1. Cont.

Study
(Year)

Study Type,
Country

Targeted
Condition Cut-Off Values Test Method No. of Patients

Included
Age, Mean ± SD

(Range) Years
Sensitivity %

(95% CI)
Specificity %

(95% CI)
AUC ROC
(95% CI)

Miftahussurur
[42] (2022)

Multicenter,
Indonesia

AG, GC, gas-
troesophageal

reflux

PG I ≤ 70 ng/mL,
PGI/PGII ratio ≤ 3

ELISA

646 (AG: 171)

44.93 ± 12.98

7.6 (4.5–9.2) 99.2
(98.2–99.8) n/a

PGII ≥ 12.45
ng/mL 646 (AG: 27)

59.3 (38.8–77.6) 77.1
(73.0–80.8)

0.755
(0.702–0.811)

PGI/II ratio ≤ 4.75 81.5 (61.9–93.7) 78.7
(74.3–82.3)

0.821
(0.763–0.855)

Koc [33] (2022)
Single center,

Turkey

AG,
autoimmune

AG

PGI/II ratio ≤ 11.9
for AG and

autoimmune AG

ELISA
147 (AG:79,

autoimmune
AG: 16)

57.7 ± 12

45.6 84.4 0.644

PGI/II ratio ≤ 9.2
for AG 47.5 90.6 0.711

PGI/II ratio ≤ 1.9
for autoimmune AG 100 100 1

PGI ≤ 13.5 ng/mL
for autoimmune AG 100 100 1

Cai [34] (2021) Multicenter,
China

AG

PGI ≤ 73.14 ng/mL
OLGA 0 versus I/II

CLIA

1922 (OLGA 0:
1590, Olga I/II:

273, OLGA
III/IV: 49)

52.3 ± 9.8

62.1 53.8 0.585

PGI/PGII ratio ≤
11.54 ng/mL

OLGA 0 versus I/II
43.2 77.7 0.611

PGI ≤ 64.0 ng/mL
OLGA 0/I/II
versus III/IV

67.2 61.2 0.631

PGI/PGII ratio ≤
9.11 ng/mL

OLGA 0/I/II
versus III/IV

53.0 91.8 0.740
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Table 1. Cont.

Study
(Year)

Study Type,
Country

Targeted
Condition Cut-Off Values Test Method No. of Patients

Included
Age, Mean ± SD

(Range) Years
Sensitivity %

(95% CI)
Specificity %

(95% CI)
AUC ROC
(95% CI)

Chapelle [43]
(2020)

Multicenter,
France

AG

PG I < 30 µg/L

ELISA 344 (AG: 148) 58.8 ± 14.2

31.8 (24.4–39.9) 98.0
(94.9–99.4) 0.629

(0.565–0.692
PG I < 43.6 µg/L 37.8 (30.0–46.2) 95.9

(92.1–98.2)

PGI/PGII ratio < 3 30.6 (23.3–38.7) 97.4
(94.1–99.2) 0.679

(0.619–0.738)
PGI/PGII ratio < 7 50.3 (42.0–58.7) 83.7

(77.7–88.6)

Whary [44] (2020) Single center,
Colombia AG/GC PGI/PGII ratio n/a

value for AG/GC ELISA 153 n/a 44.7 83 n/a

Miftahussurur
[45]

(2020)

Multicenter,
Southeast Asia

AG,
Helicobacter

pylori infection

PG I ≤ 70 ng/mL
and PGI/PGII ratio

≤ 3

ELISA 1206 44 (13–88)

15.9 96.9 n/a

PGII ≥ 10.35
ng/mL 72.6 56.9 0.664

PGI/PGII
ratio ≤ 4.95 66.2 67.5 0.718

Zeng [35] 2020 Single center,
China

AG, GC

PG I < 71.56 µg/L

ELISA
197 (GC: 86 AG:

61) n/a

77.1 66.0 0.719
(0.621–0.816)

PG I/II ratio < 5.6 60.1 82.0 0.755
(0.666–0.844)

PG I < 71.56 µg/L,
PG I/II ratio < 5.6 67.2 84.0 0.807

(0.727–0.888)
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Table 1. Cont.

Study
(Year)

Study Type,
Country

Targeted
Condition Cut-Off Values Test Method No. of Patients

Included
Age, Mean ± SD

(Range) Years
Sensitivity %

(95% CI)
Specificity %

(95% CI)
AUC ROC
(95% CI)

Mattar [46] (2020) Single center,
Brasil

AG

PGI < 30 µg/L n/a 308 (corpus AG:
29)

64.6 ± 10.3

50 (27.8–72.1) 93.2
(84.3–97.5) n/a

PGI < 30 µg/L 308 (multifocal
AG: 29) 42.1 (21.1–66) n/a n/a

PGI/PGII ratio < 3 308 (corpus AG:
29) 55 (32–76.2) 93.2

(84.3–97.4%) n/a

PGI/PGII ratio < 3 308 (multifocal
AG: 29) 21 (6.9–46) n/a n/a

Wang [47] (2020) Single center,
China

AG, GC

PG I < 91.45 µg/L

ELISA 630 (AG: 245) 55.2 ± 10.8

73.15 50.00 0.691
(0.652–0.876)

PGI/PGII ratio < 9 72.70 53.31 0.650
(0.612–0.856)

Mezmale [48]
(2019)

Multicenter,
Kazakhstan

AG

PG I ≤ 70 ng/mL
and PGI/PGII

ratio ≤ 3
L-AA 157 51 ± 6.9

50.0 (1.2–98.7) 50.0 (1.2–98.7) n/a

PG I ≤ 30 ng/mL
and PGI/PGII

ratio ≤ 2
73.5 (65.8–80.3) 90.9

(85.3–94.9) n/a

Loong [37] (2017) Single center,
Malaysia AG, IM

PGI ≤ 87.2 µg/L)

ELISA 69 (AG: 34 AG) 56.2 ± 16

66.7 85.3 0.659

PG I/II ratio ≤ 10 83.3 77.9 0.902

G-17b < 5.6 pmol/L 68.8 44.8 <0.5

Leja [36] (2017)
Case-control
Multicenter,

Latvia
corpus AG

PGI/PGII
< 6.9 ELISA Biohit

805 (AG: 50) 51 (18–88)

70.0 (57.3–82.7) 62.6
(59.2–66.1) 0.7

PGI/PGII
< 4.1

ELISA Vector
Best 70.0 (57.3–82.7) 71.5

(68.3–74.7) 0.76

PGI/PGII
< 2.7 L-AA 70.0 (57.3–82.7) 71.9

(68.7–75.1) 0.77
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Table 1. Cont.

Study
(Year)

Study Type,
Country

Targeted
Condition Cut-Off Values Test Method No. of Patients

Included
Age, Mean ± SD

(Range) Years
Sensitivity %

(95% CI)
Specificity %

(95% CI)
AUC ROC
(95% CI)

Bang [38] (2019)
Meta-analysis:
14 studies for
AG, 43 for GC

AG, GC
PG I ≤ 70 ng/mL

and PGI/PGII
ratio ≤ 3

ELISA, L-TIA,
RIA 5541 (AG: 2220) n/a 59 (38–78) 89 (70–97) 0.81

(0.77–0.84

Huang [49] (2015)
Meta-analysis:
14 studies for
AG, 17 for GC

AG, GC PGI/PGII ratio ≤ 3 ELISA, L-TIA,
RIA, CLIA AG: 2220 n/a 50 (28–72) 94 (82–98) 0.85

(0.81–0.88)

CI, confidence interval; n/a, not available; AG, atrophic gastritis; IM, intestinal metaplasia; GC, gastric cancer; HpAb, antibodies to H. pylori [EIU]; EIU, enzyme immune units;
PGI, pepsinogen I; PGII, pepsinogen II; G-17b, basal; Gastrin-17 [pmol/L]; L-AA, latex-agglutination assay; ELISA, enzyme-linked immunosorbent assay; CMIA, Chemiluminescent
Microparticle Immuno Assay; CLEIA, ChemiLuminescent Enzyme ImmunoAssay; RIA, Radio Immuno Assay; L-TIA, Latex turbidimetric immunoassa.
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The role of PG serology in atrophic gastritis has been underlined in several interna-
tional recommendations: MAPS I and II consensus stated that serum pepsinogen levels can
predict extensive CAG. Also, low PGI serum levels or/and a low PGI/II ratio identify pa-
tients with advanced stages of atrophic gastritis, and endoscopy is recommended for these
patients, particularly if H. pylori serology is negative (high-quality evidence, strong recom-
mendation [12,50]). In the Maastricht VI/Florence Consensus, the role of PG testing has
been discussed. It has been emphasized that PG testing is one of the screening modalities
in countries with intermediate risk of GC. The PG levels help to estimate the risk of atrophy
and differentiate the etiology of atrophic gastritis [30,51]. The Kyoto consensus confirmed
that serological tests (PGI, PGII, and H. pylori antibody) are useful for identifying individu-
als at increased risk for GC (grade of recommendation strong; high level of evidence [52]).
It is worth mentioning that according to MAPS II guidelines, only individuals with stages
III and IV of OLGA and OLGIM should be assigned for surveillance [12]. It was shown
that the performance of PGI and PGI/II testing is rising with the severity of CAG [31,34,43].
Presented outcomes reflect a diagnosis of CAG based on histopathological examination.
Still, PGI and PGI/II also showed similar outcomes in the endoscopic diagnosis of atrophy
using the Kimura–Takemoto classification [32,37,39]. Also, PG testing is effective in the
prediction of atrophy based on the origin of gastritis. Along with the mentioned data
regarding PGI concentration, the PGI/II ratio was also lower in autoimmune CAG, with
better testing performance [30,33]. It is an essential issue as patients with autoimmune
CAG are believed to have a greater progression risk to cancer [53,54].

Despite the mentioned recommendations, the performance of PG testing varies sig-
nificantly among presented studies (Table 1). Different outcomes of study results might
be related to the differences in studied populations. Indeed, it has been shown that the
serum concentration of the pepsinogens and PGI/II ratio may vary between countries,
even among one geographical region [45]. Furthermore, the selection of patients for the
studies, bearing different types (in terms of their origin and localization) of CAG, as well as
different levels of severity, may be responsible for the discrepancies in the results obtained.
Therefore, studies on well-characterized groups of patients are important to help better
define the diagnostic value of PG testing [30].

To achieve better testing performance, in recent studies, PGI and PGI/II ratios have
been combined with various other markers, such as human epididymal protein 4 (HE4),
interleukin-5, or miR-101-3p, to achieve better diagnostic performance [31,35,44]. The
highest reported area under the curve (AUC) was 0.917, with 95.1% sensitivity and 80%
specificity in the diagnosis of CAG compared to controls for a combination of PGI and
PGI/II ratio with miR-101-3p [35].

Altogether, PG testing appears as a sensitive method to detect corpus atrophy, espe-
cially in the context of AIG, but is a poor marker for the detection of antrum atrophy.

Gastrin

Gastrin is produced by gastric G cells located in the gastric antrum. Gastrin stimulates
the release of gastric acid in the stomach after food intake. Its secretion is regulated by
a feedback system involving (i) the presence of peptides in the stomach, (ii) high pH in
the stomach, and (iii) positive regulation by gastrin-releasing peptide, acting together
with a negative regulation by somatostatin [55]. Gastrin is translated as a 101-amino-
acid precursor which undergoes processing to the products gastrin 17 and gastrin 34 [55].
However, only the gastrin 17 (G17) measurement is used in clinical practice [56]. Gastrin
production increases after food intake; therefore, evaluating G17 following a protein-rich
meal is more accurate than fasting gastrin [57].

In AIG, reduction in gastric acid secretion triggers a compensatory response, resulting
in an increase in gastrin levels that stimulates the release of gastric acid from parietal
cells. Therefore, increased G17 is a good serological marker of AIG [58]. Some studies
reported that gastrin levels are higher (~1.5-fold) in patients with H. pylori infection than
in uninfected patients and long-term proton pump inhibitor users [59]. In the CAG of the
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antrum, the loss of antral glands may result in a decreased number of G cells, leading to a
low output of G17. Therefore, a low G17 level could be a marker of gastric antral atrophy.
Some previous studies evaluated the diagnostic value of gastrin in this indication; the test’s
sensitivity was 36.8%, specificity 86.5%, and the overall accuracy 82.6% after protein-meal
stimulation [57].

In the guidelines, G17 is currently recommended by Maastricht VI/ Florence guide-
lines as a part of the assessment of gastric functional serology, together with PGs and anti-H.
pylori antibodies, anti-intrinsic factor, and anti-parietal cell autoantibodies. G17 provides
clinically valuable information on the likelihood of gastric mucosal atrophy, including its
etiology (grade A1 recommendation) [51].

Overall, the low sensitivity of the G-17 test made it less useful for diagnosing antral
atrophy in clinical practice as the sole marker. Nevertheless, there is an additional gain of
adding G17 to the PG as a biomarker, notably as a part of Gastropanel® [43].

Gastropanel®

GastroPanel® is a combination of serological assays, including serum PGs (PGI and
PGII), G-17, and anti-H. pylori antibodies (HpAb), which has been proposed as a ‘serological
biopsy’ for the diagnosis of CAG [60,61]. The interplay of interdependent biomarkers
measured in serum samples can help to assess the presence of CAG and the activity of
gastric inflammation in the antrum and corpus separately. Serum PGI levels and/or the
PGI/PGII ratio are low in patients with corpus and fundus CAG. The G17 level is high in
CAG limited to the corpus and fundus but low or non-elevated if the CAG occurs in both
the antrum and corpus [62]. Therefore, a low G17 serum level in combination with positive
HpAb would indicate the presence of antrum atrophic gastritis related to H. pylori infection.
Thus, combining the results of the HpAb, PGI, or PGI/PGII ratios and G17 tests would
allow for detecting the presence and site of inflammation [63].

A meta-analysis performed by Zagari et al. included 20 studies assessing the accuracy
of a combination of serological assays (PGI, PGI/PGII ratio, G17, H. pylori serology) for
the diagnosis of CAG, compared to histology. Pooling data from these studies yielded
a summary sensitivity of 74.7% (95% CI; 62–84.3) and a specificity of 95.6% (95% CI;
92.6–97.4). Based on the median prevalence of CAG across the studies of 27%, the negative
predictive value of the panel test was 91%, and the positive predictive value was 86% [60].
Although the demonstrated sensitivity for GastroPanel® is very high, we need to take
into consideration that there is a wide heterogeneity of the results obtained in the studies
included in this meta-analysis, with the sensitivity ranging between 32 and 98% [60]. These
data seem to be supported by another recent meta-analysis where diagnostic performances
were good for the estimation of corpus CAG [64]. In a recent study based on a population
screening in Taiwan, GastroPanel® showed a high sensitivity exceeding 80% but with a
low specificity of 48.8% (95% CI 42.5–55.0%) [65]. It is also worth mentioning that the
performance of the Gastropanel® test based on ELISA analysis is comparable with LZ-
Test®, where the same components have been analyzed with a latex-enhanced turbidimetric
immunoassay (L-TIA) [66]. In the study performed by Chapelle et al., sensitivity, specificity,
positive, and negative predictive values for the detection of CAG by GastroPanel® in a
European population were 39.9% (95% CI 31.9–48.2), 93.4% (88.9–96.4), 81.9% (71.1–90), and
67.3% (61.4–72.8), respectively. The sensitivity was significantly higher for the detection
of severe CAG [60.8% (95% CI 46.1–74.6) p = 0.015] and corpus CAG [61% (49.2–72),
p = 0.004] [43]. The better performance of GastroPanel® in the prediction of corpus CAG
has been underlined by another meta-analysis where pooled sensitivity and specificity for
corpus and antrum atrophy were 70.2% and 51.6% for sensitivity and 93.9% and 84.1%
for specificity of corpus and antrum, respectively [67]—see Table 2. However, studies
by Chapelle and McNicholl showed that diagnostic performances of GastroPanel® were
not significantly better than PGI alone [43,68]. Also, the recent data showed the limited
performance of AUC: 0.62 in the detection of CAG and IM in an American population [41].
It should be mentioned that, in a study with a limited number of patients, GastroPanel®



Cancers 2024, 16, 2254 12 of 22

was not shown to be valuable for AG diagnosis [69]. On the other hand, data on a larger
number of patients (n = 512) gave an overall agreement of GastroPanel® and updated
Sydney system exceeding 90% [29].

Recently, another important issue has been raised. GastroPanel® testing could be
not only a mass screening tool for GPC but also an effective triage tool in the referral for
gastroscopy decision-making [70]. Also, combined PG and gastrin levels as part of the
prediction model could be helpful in the identification of IM or dysplasia among individuals
with CAG [71]. It can also be helpful in the identification of autoimmune gastritis among
patients with CAG with or without IM [72].

Table 2. Studies describing the accuracy of GastroPanel® in the diagnosis of atrophic gastritis.

Study
(Year)

Study Type,
Country

Targeted
Condition

Cut-Off
Value Test Method

No. of
Patients
Included

Age, Mean
± SD

(Range)

Sensitivity
% (95% CI)

Specificity %
(95% CI)

Dondov [73]
(2022)

Single center,
Mongolia AG, GC

PG I≤ 75.07
ng/mL,

PGI/II ratio
≤ 6.25,

G-17 ≤ 23.42
pmol/L

ELISA 114 (AG: 40,
GC: 36) 59.98 ± 10.88 80.0 60.5

Syrjänen [64]
2022

Meta-
analysis,

49 studies
corpus AG

PG I lower
than

threshold,
PG I/II

lower than
threshold,

G-17 higher
than

threshold

different 22 597 n/a 70 (64–76) 93 (90–95)

Chiang [65]
(2020)

Multicenter
(population-

based
screening),

Taiwan

AG

PG I < 30
µg/L;

PGI/PGII
ratio < 3
G17b < 1;

HpAb < 30 *

ELISA 465 n/a 80.6
(70.0–88.3)

48.8
(42.5–55.0)

Chapelle [43]
(2020)

Multicenter,
France AG

PG I < 30
µg/L;

PGI/PGII
ratio < 3
G17b < 1;

HpAb < 30

ELISA 344 (AG:
148) 58.8 ± 14.2 39.9

(31.9–48.2)
93.4

(88.9–96.4)

Mattar [46]
(2020)

Single center,
Brasil AG n/a 308 (AG:

135) 64.6 ± 10.3

Zagari [60]
(2017) **

Meta-
analysis of
20 studies

AG

PGI;PGI/
PGI/II ratio;
G17b; HpAb;

different
cut-offs

ELISA 4241 n/a 74.7
(62.0–84.3)

95.6
(92.6–97.4)

Syrjänen [67]
(2016)

Meta-
analysis of
27 studies

corpus AG

PGI;PGI/
PGI/II ratio;
G17b; HpAb;
cut-offs n/a n/a 8654 n/a

70.2
(64.3–77.5)

93.9
(91.0–96.0)

antrum AG 53.8
(38.3–68.7)

84.1
(71.3–91.9)

McNicholl
[68]

(2014)

Multicenter,
Spain AG

PGI < 25
µg/L

G-17b < 0.1
HpAb < 30

n/a 85 44 50 (39–61) 80 (71–88)

CI, confidence interval; ELISA, enzyme-linked immunosorbent assay; AG, atrophic gastritis; HpAb, antibodies
to H. pylori [EIU]; EIU, enzyme immune units; PGI, pepsinogen I; PGII, pepsinogen II; G-17b, basal; Gastrin-17
[pmol/L]; * cut-off values not clearly defined, results based on the GastroSoft® ** in the study PGI, Gastrin 17,
Helicobacter pylori with or without PGI/PGI ratio were analyzed.
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1.3.2. Other Potential Biomarkers
MicroRNAs and Long Non-Coding RNA Polymorphism

Non-coding RNA (ncRNA) are among the most novel molecules in cellular physi-
ology, and despite the enormous scientific interest, their translational impact on clinical
practice remains to be determined. There are different subtypes of ncRNA that may play a
substantial role in pathophysiology or have a potential diagnostic role in the identification
and management of preneoplastic conditions and include microRNAs (miRNAs) [74],
long non-coding RNA (lncRNA) [75], xeno-miRNAs (exogenous miRNAs) [76], or circular
RNA (circRNA) [77]. However, despite the heterogeneity of their forms, they have several
things in common, including interference with gene expression and, therefore, substantial
involvement in cellular processes such as cell proliferation and apoptosis, as well as in
carcinogenesis [78–80]. The deregulation of miRNA has been repeatedly demonstrated in
GC, and alterations of miRNA have also been reported in preneoplastic conditions [81,82].
A study by Marquez et al. showed that the expression levels of inflammatory miRNAs—
miRNA-146a and miRNA-155—increased by an average of 21- and 62-fold, respectively,
in adult patients with gastritis compared to the controls [82]. In one of the first studies
where miRNA expression has been systematically evaluated, the differential expression of
miR-21, miR-155, and miR-223 was reported in patients with preneoplastic conditions and
strongly linked to H. pylori infections but not to PPI or aspirin use [81,83]. Additionally, the
expression levels of miRNA may be H. pylori strain-specific, with a link to virulent H. pylori
strains, indicating its potential role in the pathogenesis of H. pylori-associated gastritis and
likely initiation of the early neoplastic cascade [84]. However, not only miRNA expression
but also the CpG Island methylation of miRNA genes or single-nucleotide polymorphisms
(SNPs) may be relevant as potential biomarkers [85]. In a study performed by Okubo,
patients with certain SNPs in miRNAs had an increased susceptibility to GC [86]. The role
of Epstein–Barr Virus-encoded miRNA has also been linked to gastric carcinogenesis and its
associated molecular alterations [87–89]. Similarly, alterations in lncRNA HOX transcript
antisense RNA (HOTAIR) have been reported not only in GC but, most interestingly, in
GPC, specifically intestinal metaplasia, suggesting its role in early carcinogenesis [90].

To summarize, there is a great hope that miRNA, as a unique biomarker with ex-
traordinary stability against degradation, may facilitate the early identification of patients
at risk for GC development, but the use of tissues may only extend the current invasive
practice, including upper GI endoscopy or histological assessment. Therefore, there is a
great need for non-invasive biomarkers. A comprehensive systematic review of miRNA as
non-invasive biomarkers for gastric cancer found that although miRNA-based tools may
be a promising tool for non-invasive diagnosis of GC, there are still significant concerns
that need to be addressed in future studies [91]. In particular, the quality of the reports is
quite heterogeneous, and many studies are still underpowered due to a lack of independent
validation [92]. Furthermore, technical comparisons are currently difficult, and the use
of non-microRNA-based techniques for normalization must be interpreted with caution.
Most importantly, there is still limited data on miRNA as non-invasive biomarkers, which
needs to be addressed in the future.

2. Hormones
2.1. Leptin

Leptin is a peptide hormone that plays a key role in appetite and metabolism reg-
ulation. It is primarily produced by adipocytes but also in the gastrointestinal tract by
gastric chief cells, along with PG I. Leptin receptors (OB-R) are present in the stomach
and intestines. Thus, the stomach is a unique organ which expresses both leptin and its
receptors and transduces autocrine leptin signaling [93,94]. Increased leptin levels act as a
pro-inflammatory stimulus for various organs [95]. In murine models, increased gastric
leptin levels with microbial dysbiosis lead to the development of IM in the stomach [94,96].

Leptin serum levels are increased in the presence of GPC [97–99]. In a study performed
by Capelle et al., serum leptin was higher in patients with IM or dysplasia than in healthy
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controls [98]. The immunohistochemical examination of the stomach tissue showed that
leptin and OB-R expression were higher in the presence of GPC [100]. The expression
of leptin in the GC tissue was significantly associated with advanced stage, poor tumor
differentiation, and risk of metastasis [101,102].

Although serum leptin levels are of significant additional value in predicting gastric
IM, measuring leptin levels does not seem very useful in clinical practice for screening
purposes in patients at risk for GC due to the high variability of leptin and a variety of
factors influencing its levels such as age, body mass index (BMI), sex (female > male),
smoking, and the distribution of adipocytes [98,99].

2.2. Adiponectin

Adiponectin (APN) is produced by adipocytes and plays an important role in energy
metabolism and insulin sensitivity. APN is inversely related to BMI and may modulate
obesity-related malignancies [103]. In precancerous conditions such as CAG as well as in
H. pylori infection, APN can be used to identify patients at risk of developing metabolic
syndrome [104,105]. Adiponectin may enhance carcinogenesis through its well-recognized
effects on insulin resistance as well as its direct effect on tumor cells [106]. A study by
Ishikawa et al. suggested that serum APN is lower in patients with GC as compared to
healthy controls [107], but in a study performed by Seker et al., there was no statistical
significance between the groups [108]. Additionally, as in the case of leptin, serum APN
levels may vary due to multiple factors (sex, body fat distribution, renal and cardiac
function, smoking, dietary factors, and physical exercise [106]), making it difficult to
implement in clinical practice to diagnose GPC.

2.3. Insulin-like Growth Factor

The insulin-like growth factor (IGF-)1 is a peptide hormone secreted primarily by the
liver. The IGF-1 signaling system plays a central role in cellular growth, differentiation, and
proliferation and may act as an oncogene [109–111].

Patients with GC have increased levels of growth factors, including IGF, as compared
to healthy individuals [112]. The study performed by Ennishi et al. shows that certain IGF1
genetic variations are significantly associated with GC risk in the Japanese population [113].
Another study found an increased expression of IGF 1 and 2 receptor genes (at the mRNA
and protein level) in GC when compared with non-tumor tissue. These findings suggest
that IGF is involved in the pathogenesis of GC, probably by autocrine/paracrine stimulation
of cell growth. [114]. The eradication of H. pylori leads to a mild but statistically significant
decrease in serum IGF-1 levels, which may be due to a decrease in antral inflammation
and the inhibitory effects of eradication regimes on a synthesis of IGF-1 by the liver [115].
Despite IGF’s important role in GC carcinogenesis, the role of IGF in the development of
GPC is still unknown. Also, IGF is primarily produced by the liver, not by gastric tissue,
which makes it difficult to make the assessment relatable to the gastric mucosa. Therefore,
the role of IGF as a marker of GPC is limited.

3. Autoantibodies

Recent epidemiological studies on GC have shown a rising incidence in young, espe-
cially female patients [116,117]. The causal mechanism for this “new” type of GC has not
been identified. However, a role for autoimmunity or changes in the microbiota has been
proposed [117–119]. This is supported by studies suggesting an association between au-
toimmune conditions, such as dermatomyositis, pernicious anemia, Addison disease, and
herpetiform dermatitis, and an increased risk of GC [120–122]. In the recent meta-analysis
by Song et al., an autoimmune condition was associated with a GC pooled relative risk (RR)
of 1.37 (95% CI, 1.24 to 1.52). Among the 24 autoimmune conditions, two autoimmune dis-
eases were mainly associated with increased risk of GC: dermatomyositis (RR, 3.69; 95% CI,
1.74 to 7.79) and pernicious anemia (RR, 2.84; 95% CI, 2.30 to 3.50) [120]. If autoimmunity
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is associated with the development of GC, one would expect the presence of a biological
stigma of autoimmunity in patients with GPC, which precedes the appearance of cancer.

In the study by Osmola et al. that evaluated the frequency of autoantibodies (anti-
nuclear antibodies (ANA), anti-parietal cell antibodies (APCA), anti-intrinsic factor anti-
bodies (AIFA), and 16 myositis-associated antibodies) as potential markers of GPC, showed
that ANA positivity was significantly higher in AIG than in H. pylori-related gastritis or
in control patients (46.7%, 29%, and 27%, respectively), but the clinical significance of this
finding remains to be established [123]. Myositis-associated antibodies were not higher in
patients with GPC compared to the control group. Higher APCA and AIFA positivity was
confirmed in AIG, whereas H. pylori infection does not affect autoantibody seropositivity
(ANA, APCA, AIFA) [123]. In contrast, other studies suggest a link between higher APCA
and AIFA autoantibodies and H. pylori infection [124,125]. Overall, the autoantibodies
alone do not appear as good markers of GPC [123].

4. Other Potential Biomarkers

Due to the high frequency of GC, the search for new biomarkers of GPC is under
investigation to improve the diagnostic performance of PG.

4.1. Human Epididymal Protein 4

Increased serum level of human epididymal protein 4 (HE-4) is an ovarian cancer
biomarker established in the clinical guidelines. HE-4 is upregulated in GPC in the meta-
plastic transition following acute parietal cell loss in mice and humans and has been
suggested as a surrogate marker of preneoplastic conditions in the stomach [126]. HE-4
can also be expressed by GC—the expression in immunohistochemical examination was
present in 25% of intestinal type and around 60% of diffuse type GC of stages I and II; its
expression correlated with tumor size, stage, and survival [127,128]. HE-4 expression was
also present in other gastrointestinal cancers, like pancreatic and esophageal cancer [127].
In a study performed by Chapelle et al., combining the PGI/II ratio with serum HE-4
concentration showed an increased sensitivity of up to 85.2% for detecting moderate to
severe atrophic gastritis at any location, whereas the PGI/II ratio alone demonstrated 75%
sensitivity and 92.6% specificity for the detection of moderate to severe corpus CAG [31].
Therefore, HE-4 can be a good additional marker for the diagnosis of GPC.

4.2. Interleukin-6

Interleukin-6 (IL-6) is a pleiotropic cytokine that plays a role in inflammation and
tumor progression. Recent studies have shown that H. pylori induces signal transduction
and activation of transcription 3 (STAT3), which plays a vital role in gastric carcinogenesis.
STAT3 activation is mediated through reactive oxygen species (ROS)-induced upregulation
in IL-6 expression in human GC cells [129]. These findings provide a novel molecular
mechanism responsible for H. pylori-induced gastritis and gastric carcinogenesis and a
possibility to use serum IL-6 as a GPC biomarker. Additionally, higher IL-6 serum levels
were detected in H. pylori-infected individuals [130]. Increased levels of IL-6 and other
chemokines have been associated with GC growth, and IL-6 serum levels increase during
tumor progression and correlate with patient survival. Several studies have investigated
the IL-6 value as a diagnostic marker of GC, with a range of sensitivity and specificity
of 0.39–0.85 and 0.50–0.97 [131–133]. Of note, IL-6 values may be influenced by other
factors, including autoimmune diseases, inflammation, and physical exercise, and thus, this
parameter is susceptible to giving false-positive results. In a study performed by Chapelle
et al., IL-6 showed a promising sensitivity of 72.2% for the detection of antral CAG, which
makes it an interesting marker for detecting atrophy in this location [31].

5. Conclusions and Future Directions

The approaches described in this review are supposed to offer a new diagnostic
possibility for GPC and, as an effect, help decrease GC mortality in the near future. We
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should keep in mind that according to the WHO, markers, to become screening tests, must
fulfill certain criteria [134]: (i) The diagnosed condition should be an important health
problem. As GPCs are formed ahead of GC, their diagnosis and surveillance are important
to closely monitor people who are at risk of developing GC and eventually treat the disease
at the early stage. (ii) The test must be safe to administer and acceptable to the population.
While endoscopy is an invasive test and not well accepted by patients, we should consider
embracing the development of noninvasive markers to improve the adherence of patients.
(iii) The test should be reasonable in terms of cost. Tests should be affordable to be accepted
by health systems, especially in low- and middle-income countries, where most of the GC
cases occur. (iv) Tests should lead to the improvement of health outcomes. By implementing
screening tests for GPC, we can, in consequence, decrease the mortality of GC. (v) Test
should be sensitive. High sensitivity with high specificity is the main goal of screening
tests. To date, different molecular targets have been analyzed as potential biomarkers in
patients at risk of GC. However, the single biomarker with sufficiently high sensitivity
and specificity to be used in broad routine practice has yet to be identified or validated.
Pepsinogens are the most studied biomarkers, and potentially combining pepsinogens
with one or more of the emerging tests could potentially improve the performance of
non-invasive testing for GPC. Despite all the progress made in the field of non-invasive
markers of GPC, it is important to stress that, for now, careful endoscopic examination
with gastric biopsies for histological assessment remains the most reliable method for GPC
detection and grading.
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Growth Factor 2 (IGF 2) and Its Receptors (IGF 1R and M6-P/IGF 2R). J. Pathol. 2003, 201, 430–438. [CrossRef] [PubMed]

115. Ustundag, Y.; Sahin, H.; İlikhan, S.; Dogan, B.G.; Kokturk, F.; Kar, F. Helicobacter pylori Eradication Does Not Change Circulating
Insulin-Like Growth Factor 1 and Insulin-Like Growth Factor Binding Protein 3 Levels in Patients with and without Precancerous
Gastric Lesions. Am. J. Med. Sci. 2013, 346, 381–384. [CrossRef] [PubMed]

116. Arnold, M.; Park, J.Y.; Camargo, M.C.; Lunet, N.; Forman, D.; Soerjomataram, I. Is Gastric Cancer Becoming a Rare Disease? A
Global Assessment of Predicted Incidence Trends to 2035. Gut 2020, 69, 823–829. [CrossRef] [PubMed]

117. Anderson, W.F.; Rabkin, C.S.; Turner, N.; Fraumeni, J.F.; Rosenberg, P.S.; Camargo, M.C. The Changing Face of Noncardia Gastric
Cancer Incidence Among US Non-Hispanic Whites. JNCI J. Natl. Cancer Inst. 2018, 110, 608–615. [CrossRef] [PubMed]

118. Blaser, M.J.; Chen, Y. A New Gastric Cancer Among Us. JNCI J. Natl. Cancer Inst. 2018, 110, 549–550. [CrossRef] [PubMed]
119. Song, M.; Camargo, M.C.; Katki, H.A.; Weinstein, S.J.; Männistö, S.; Albanes, D.; Surcel, H.-M.; Rabkin, C.S. Association of

Antiparietal Cell and Anti-Intrinsic Factor Antibodies with Risk of Gastric Cancer. JAMA Oncol. 2022, 8, 268–274. [CrossRef]
120. Song, M.; Latorre, G.; Ivanovic-Zuvic, D.; Camargo, M.C.; Rabkin, C.S. Autoimmune Diseases and Gastric Cancer Risk: A

Systematic Review and Meta-Analysis. Cancer Res. Treat. 2019, 51, 841–850. [CrossRef]
121. Zádori, N.; Szakó, L.; Váncsa, S.; Vörhendi, N.; Oštarijaš, E.; Kiss, S.; Frim, L.; Hegyi, P.; Czimmer, J. Six Autoimmune Disorders

Are Associated with Increased Incidence of Gastric Cancer: A Systematic Review and Meta-Analysis of Half a Million Patients.
Front. Immunol. 2021, 12, 750533. [CrossRef]

122. Landgren, A.M.; Landgren, O.; Gridley, G.; Dores, G.M.; Linet, M.S.; Morton, L.M. Autoimmune Disease and Subsequent Risk of
Developing Alimentary Tract Cancers among 4.5 Million US Male Veterans. Cancer 2011, 117, 1163–1171. [CrossRef] [PubMed]

123. Osmola, M.; Hemont, C.; Chapelle, N.; Vibet, M.-A.; Tougeron, D.; Moussata, D.; Lamarque, D.; Bigot-Corbel, E.; Masson, D.;
Blin, J.; et al. Atrophic Gastritis and Autoimmunity: Results from a Prospective, Multicenter Study. Diagnostics 2023, 13, 1599.
[CrossRef] [PubMed]

124. Presotto, F.; Sabini, B.; Cecchetto, A.; Plebani, M.; Lazzari, F.D.; Pedini, B.; Betterle, C. Helicobacter pylori Infection and Gastric
Autoimmune Diseases: Is There a Link? Helicobacter 2003, 8, 578–584. [CrossRef] [PubMed]

125. Allakky, A. Exploring the Association of Helicobacter pylori with Anti-Intrinsic Factor and Anti-Parietal Cell Antibodies in
Pernicious Anemia: A Systematic Review. Cureus 2023, 15, e45887. [CrossRef]

126. Nozaki, K.; Ogawa, M.; Williams, J.A.; Lafleur, B.J.; Ng, V.; Drapkin, R.I.; Mills, J.C.; Konieczny, S.F.; Nomura, S.; Goldenring, J.R.
A Molecular Signature of Gastric Metaplasia Arising in Response to Acute Parietal Cell Loss. Gastroenterology 2008, 134, 511–522.
[CrossRef] [PubMed]

127. O’Neal, R.L.; Nam, K.T.; LaFleur, B.J.; Barlow, B.; Nozaki, K.; Lee, H.-J.; Kim, W.H.; Yang, H.-K.; Shi, C.; Maitra, A.; et al. Human
Epididymis Protein 4 Is Up-Regulated in Gastric and Pancreatic Adenocarcinomas. Hum. Pathol. 2013, 44, 734–742. [CrossRef]
[PubMed]

128. Guo, Y.-D.; Wang, J.-H.; Lu, H.; Li, X.-N.; Song, W.-W.; Zhang, X.-D.; Zhang, W.-M. The Human Epididymis Protein 4 Acts as a
Prognostic Factor and Promotes Progression of Gastric Cancer. Tumor Biol. 2015, 36, 2457–2464. [CrossRef]

https://doi.org/10.20517/2394-4722.2018.79
https://doi.org/10.1111/hel.12028
https://doi.org/10.5551/jat.943
https://doi.org/10.1016/j.beem.2013.08.006
https://doi.org/10.1158/1078-0432.466.11.2
https://doi.org/10.1007/s12032-009-9382-x
https://www.ncbi.nlm.nih.gov/pubmed/20013320
https://doi.org/10.1136/mp.54.5.311
https://doi.org/10.1080/13813450902783106
https://doi.org/10.1016/S0959-8049(01)00269-6
https://www.ncbi.nlm.nih.gov/pubmed/11677116
https://www.ncbi.nlm.nih.gov/pubmed/32051741
https://doi.org/10.1111/j.1349-7006.2011.02062.x
https://www.ncbi.nlm.nih.gov/pubmed/21854509
https://doi.org/10.1002/path.1465
https://www.ncbi.nlm.nih.gov/pubmed/14595755
https://doi.org/10.1097/MAJ.0b013e31827beed3
https://www.ncbi.nlm.nih.gov/pubmed/23276902
https://doi.org/10.1136/gutjnl-2019-320234
https://www.ncbi.nlm.nih.gov/pubmed/32001553
https://doi.org/10.1093/jnci/djx262
https://www.ncbi.nlm.nih.gov/pubmed/29361173
https://doi.org/10.1093/jnci/djx279
https://www.ncbi.nlm.nih.gov/pubmed/29361121
https://doi.org/10.1001/jamaoncol.2021.5395
https://doi.org/10.4143/crt.2019.151
https://doi.org/10.3389/fimmu.2021.750533
https://doi.org/10.1002/cncr.25524
https://www.ncbi.nlm.nih.gov/pubmed/21381009
https://doi.org/10.3390/diagnostics13091599
https://www.ncbi.nlm.nih.gov/pubmed/37174990
https://doi.org/10.1111/j.1523-5378.2003.00187.x
https://www.ncbi.nlm.nih.gov/pubmed/14632671
https://doi.org/10.7759/cureus.45887
https://doi.org/10.1053/j.gastro.2007.11.058
https://www.ncbi.nlm.nih.gov/pubmed/18242217
https://doi.org/10.1016/j.humpath.2012.07.017
https://www.ncbi.nlm.nih.gov/pubmed/23084584
https://doi.org/10.1007/s13277-014-2858-0


Cancers 2024, 16, 2254 22 of 22

129. Piao, J.; Lee, H.G.; Kim, S.; Kim, D.; Han, H.; Ngo, H.; Park, S.; Woo, J.; Lee, J.; Na, H.; et al. Helicobacter pylori Activates IL-6-STAT3
Signaling in Human Gastric Cancer Cells: Potential Roles for Reactive Oxygen Species. Helicobacter 2016, 21, 405–416. [CrossRef]

130. Nakagawa, H.; Tamura, T.; Mitsuda, Y.; Goto, Y.; Kamiya, Y.; Kondo, T.; Wakai, K.; Hamajima, N. Significant Association between
Serum Interleukin-6 and Helicobacter pylori Antibody Levels among H. Pylori Positive Japanese Adults. Mediators Inflamm. 2013,
2013, 142358. [CrossRef]

131. Kim, D.-K.; Oh, S.Y.; Kwon, H.-C.; Lee, S.; Kwon, K.A.; Kim, B.G.; Kim, S.-G.; Kim, S.-H.; Jang, J.S.; Kim, M.C.; et al. Clinical
Significances of Preoperative Serum Interleukin-6 and C-Reactive Protein Level in Operable Gastric Cancer. BMC Cancer 2009, 9,
155. [CrossRef] [PubMed]

132. Sánchez-Zauco, N.; Torres, J.; Gómez, A.; Camorlinga-Ponce, M.; Muñoz-Pérez, L.; Herrera-Goepfert, R.; Medrano-Guzmán, R.;
Giono-Cerezo, S.; Maldonado-Bernal, C. Circulating Blood Levels of IL-6, IFN-γ, and IL-10 as Potential Diagnostic Biomarkers in
Gastric Cancer: A Controlled Study. BMC Cancer 2017, 17, 384. [CrossRef] [PubMed]

133. Vainer, N.; Dehlendorff, C.; Johansen, J.S. Systematic Literature Review of IL-6 as a Biomarker or Treatment Target in Patients
with Gastric, Bile Duct, Pancreatic and Colorectal Cancer. Oncotarget 2018, 9, 29820–29841. [CrossRef] [PubMed]

134. World Health Organization. WHO Recommendations on the Diagnosis of HIV Infection in Infants and Children; Department of
HIV/AIDS, World Health Organization: Geneva, Switzerland, 2010; ISBN 9789241599085.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/hel.12298
https://doi.org/10.1155/2013/142358
https://doi.org/10.1186/1471-2407-9-155
https://www.ncbi.nlm.nih.gov/pubmed/19457231
https://doi.org/10.1186/s12885-017-3310-9
https://www.ncbi.nlm.nih.gov/pubmed/28558708
https://doi.org/10.18632/oncotarget.25661
https://www.ncbi.nlm.nih.gov/pubmed/30038723

	Introduction 
	Gastric Precancerous Conditions 
	Screening Programs and Preventive Measures for Gastric Cancer 
	Blood Biomarkers 
	Validated and Commercially Available Biomarkers of Gastric Atrophy 
	Other Potential Biomarkers 


	Hormones 
	Leptin 
	Adiponectin 
	Insulin-like Growth Factor 

	Autoantibodies 
	Other Potential Biomarkers 
	Human Epididymal Protein 4 
	Interleukin-6 

	Conclusions and Future Directions 
	References

