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Background
Prostate cancer is the most frequently diagnosed cancer in 
men. The American Cancer Society estimated approxi-
mately 161 360 new cases of prostate cancer and about 
26 730 deaths from prostate cancer in the United States in 
2017.1 Currently, the 2 main methods for diagnosing pros-
tate cancer are prostate-specific antigen (PSA) test in con-
junction with a digital rectal examination and transrectal 
biopsy. Prostate-specific antigen, which is measured by an 
immunoassay, has gained wide acceptance and approved by 
Food and Drug Administration as a serum tumor diagnostic 
marker in the management of prostate cancer.2 However, 
recent studies have shown that some men with low PSA 
levels (<4.0 ng/mL) have prostate cancer and many men 
with high PSA levels do not have prostate cancer.3 In addi-
tion, it has been shown that there is little to no reduction in 
prostate cancer–specific mortality resulting from PSA 
screening, and PSA screening may be responsible for over-
diagnosis and unnecessary treatment.4 The conflicting 

evidence on the benefit of PSA makes it an unreliable 
method for prostate cancer diagnosis.5,6 The other com-
monly used diagnostic method, transrectal ultrasound 
(TRUS)-guided biopsy, uses a 12-core sampling of the pros-
tate gland. It can result in cancers being missed if regions 
were not sampled.7 Even when the biopsy does detect can-
cer, the localization of tumor within the gland remains 
imprecise.8 Due to the imprecise nature and low sensitivity 
of the biopsy procedure, patients may need to undergo 
repeated biopsies or convert to MRI/US fusion or even 
other types of biopsies.9 This may lead to either a delayed 
detection of aggressive cancer or unnecessary recurrent 
invasive biopsies in the absence of conclusive results.10

Recently, multiparametric magnetic resonance (MR) 
imaging, which combines various functional MRI techniques 
with conventional T2-weighted imaging, has been estab-
lished as a method for detection of prostate cancer.11,12 The 
functional imaging techniques include diffusion-weighted 
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imaging (DWI), dynamic contrast-enhanced MRI (DCE-
MRI) and magnetic resonance spectroscopy imaging (MRSI). 
Apparent diffusion coefficient (ADC) values from DWI have 
been used to differentiate prostate tumors from normal tissue 
as the magnitude of diffusion of the prostate tumors is lower 
than the normal gland.13 Several studies have shown that 
ADC values are associated with patients’ Gleason scores 
(GSs).14–16 The DCE-MRI has also been used to differenti-
ate malignant from normal tissues for the prostate gland.17 
And, MRSI aims to detect alterations in cellular metabolism 
that occur in prostate cancer.18

It is known that using conventional T2-weighted imaging 
alone cannot identify the tumors within the prostate accu-
rately.19 To overcome this, DCE-MRI was combined with 
DWI to differentiate central gland cancer from benign pros-
tatic hyperplasia.20 The DWI, DCE-MRI, and MRSI were 
incorporated to predict prostate cancer aggressiveness.21 One 
group combined T2-weighted imaging, DWI, DCE-MRI,22 
and another group combined T2-weighted MRI and ADC 
MRI23 for prostate cancer detection.

Although combining several data sources can improve the 
quality of prediction, extracting complex relationship from 
multiple sources can be challenging. Advanced predictive mod-
els are required in addition to quality imaging sources. Machine 
learning methods, such as logistic regression, have been pro-
posed to identify prostate cancer.24 However, the challenge is 
class imbalance, namely, the number of instances of one class 
(eg, indolent disease samples) far exceeds the other class (eg, 
highly aggressive cancer samples). If a classifier is created with-
out considering class imbalance, the result could be biased 
toward the majority class. Several methods have been proposed 
to deal with class imbalance problem.25 These methods can be 
categorized into 2 groups: cost sampling methods and data-
level approaches.26 The cost sampling methods use an asym-
metric cost function to artificially balance the training process.27 
However, the data-level approaches turn the imbalanced prob-
lem into a balanced one by either oversampling the minority 
class (replicating minority class observations or creating syn-
thetic data)28,29 or undersampling (removing observations from 
the majority class).30,31

For the cost sampling approaches, the performance of the 
model heavily relies on the cost parameters and the parameters 
are not known a priori. And if the correlation between the pre-
dictor and output variable is weak, which we have identified is 
the case for the multiparametric MRI/MRSI data and the GS, 
using oversampling has a negative effect on the predictive 
model. Hence, in this study, we used an undersampling 
approach to systematically deal with class imbalance and devel-
oped a noninvasive tool using multiparametric imaging data in 
supervised machine learning methods.

Methods
Patient cohort and specimen octants generation

Data were collected from 11 patients who had TRUS-guided 
biopsy-proven prostate cancer and elected to have radical prosta-
tectomy received MRI/MRSI prior to their surgical procedure. 
The average PSA level of these patients was 9.4 (0.5-29.0) ng/
mL. After radical prostatectomy, each prostate specimen was 
fixed in formalin and high-resolution MR images were obtained 
prior to whole mount sectioning of the prostate. Axial sections 
(3 mm) from the specimen were made using an in-house pros-
tate slicer. Hematoxylin-eosin (H&E) staining was performed 
on 50-µm sections from each of the slides. Digital images of 
both the slice specimens and the pathologic slides were obtained, 
which were used to match to the MR images. After discarding 
unusable slices, the remaining 28 slices were subdivided into 
octants. This resulted in 223 octants (1 octant was not usable). A 
GS was given to each of the octant by a pathologist. In our data 
set, GSs range from 0 to 8, with 0 indicating no cancer cell iden-
tified, GS ⩽ 6 indicating indolent (slow-growing or nonaggres-
sive), and GS > 6 indicating aggressive cancer. In Figure 1, we 
show the distribution of GS in our data set.

Multiparametric MRI/MRSI

The following images were acquired: (a) conventional 
T2-weighted (T2W) images, (b) DWI-MRI, (c) DCE-MRI, 
and (d) MRSI covering the entire prostate using PRESS local-
ization to attain MR spectroscopy score. Sample images are 
shown in Figure 2. This particular subject shows a tumor in the 
peripheral zone (arrows), and while it is difficult to locate the 
tumor foci on the T2W images and the T2-map, it can be read-
ily detected using ADC and K trans  as areas of reduced ADC 
and elevated K trans , respectively. Spectroscopy data from a 
selected voxel in the same region show elevated level of choline 
as compared with the normal tissue and a reduction in the cit-
rate peak. This is the characteristic signature of higher-grade 
malignancy in the prostate. The location of the tumor with a 
GS of 7 is confirmed for this patient by histopathology using 
the H&E stain.

From these images, we extracted 4 types of quantitative 
features for predictive modeling. From T2W, we use the 
average of T2  values that measures the proton spin decay 

Figure 1.  Gleason score histogram.
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rate. From DWI-MRI, we extracted the ADC, which meas-
ures the magnitude of diffusion. From DCE-MRI, we 
obtained the volume transfer constant that was extracted 
using the Tofts kinetic model.32 From MRSI, MR spectros-
copy was extracted which is used to estimate the relative con-
centrations of biochemical compounds in the target area. 
The distributions of the 4 features were collected using per-
centiles (eg, 5th, 10th, 50th, 90th, and 95th percentiles). 
Then, the average and standard deviation of the values for 
the voxels within each percentile were calculated as input 
features for our next step predictive modeling. As an 

illustration, Figure 3 shows the correlation plot for the aver-
age of the 50th percentile features with the GS.

Predictive modeling via supervised machine 
learning

We considered 2 binary classification problems. In the first 
one, we aim to distinguish aggressive prostate cancer (GS > 6) 
from indolent disease and absence of cancer (GS ⩽ 6). In the 
second classification problem, we aim to detect cancerous 
samples (GS > 0).

Figure 2.  An example of multiparametric imaging of prostate: Top row: T2-weighted (T2W) image, T2-map, H&E stain (histology). Bottom row: ADC map 

(DWI), Ktrans  (DCE-MRI), MR spectroscopy. Histology and MR images showing cancer as marked by the arrow, and corresponding spectra from the 

tumor showing low citrate and high choline. ADC indicates apparent diffusion coefficient; DCE-MRI, dynamic contrast-enhanced magnetic resonance 

imaging; DWI, diffusion-weighted imaging.

Figure 3.  Correlation plot of the average values of the 50th percentile voxels for features (ADC, Ktrans , spectroscopy score, and T2) and the Gleason 

scores. ADC indicates apparent diffusion coefficient.
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Before building a predictive model, it is critical to handle 
the class imbalance problem. As seen in Figure 1, the number 
of nonaggressive cancer samples was 187 and the number of 
aggressive ones was 36. The ratio was approximately 5:1. When 
there is an imbalanced distribution in the data set, a typical 
classifier would be biased toward one class because it has the 
goal of maximizing overall accuracy. Because there was a weak 
correlation between the features and the GS, as shown in 
Figure 3, oversampling approaches may increase the noise in 
data which deteriorates the quality of the predictive model. 
Therefore, we addressed the class imbalance with undersam-
pling method which removes the observations from the major-
ity class to turn the training data set into a balanced one. For 
the aggressive cancer prediction problem, the method elimi-
nated observations from the class which included indolent dis-
ease and absence of cancer observations. For the cancer foci 
detection problem, the number of noncancerous samples was 
96 and the number of cancerous samples was 127. The ratio 
was close to 1:1.3. Therefore, the problem is balanced. The 
machine learning model that was applied to extract complex 
relationship between the multiparametric imaging features and 
the GS was an ensemble method called boosting.33 Boosting 
creates a highly accurate prediction model by combining mul-
tiple weak learners. Among the boosting method, we used the 
adaptive boosting method which is known as AdaBoost in the 
literature.34 In our implementation of AdaBoost, we used deci-
sion trees as the weak learner, ie, final classifier is a combination 
of several decision trees with different weights. For the decision 
tree classifiers, we used Gini’s diversity index to decide a vari-
able at each step that split the set of items and the minimum 
number of leaf node observations was set to 2.

Training set for the AdaBoost consisted of m  feature and 
label pairs ( , ), ,( , )x y x ym m1 1   where the xi  represented the 
features in domain X , and the labels yi ∈ − +{ }1, 1  were 
known outcomes. In each iteration t T= 1, , , where T  rep-
resented the number of iterations, a distribution Dt  was com-
puted using the correctly and misclassified m  training samples, 
and a weak learner was applied to find a hypothesis 
h Xt : { , }→ − +1 1  that minimized the error relative to Dt . 
Initially, D i m1 1( ) /=  for all i m∈ { }1 . After all  

the iterations, multiple weak learners were obtained. The com-
bined hypothesis H  led to the sign of a weighted combination 
of weak hypotheses:

H x sign h xt t
t

T
( ) ( )=











=
∑α

1

where αt  is the weight of the weak classifier h xt ( ) .
An example of the AdaBoost is illustrated in Figure 4. Red 

and blue circles represent 2 different classes. The algorithm 
starts with equal weights for each observation in the training 
set at iteration t = 1  (Figure 4A). For D1 , the algorithm cre-
ates a weak classifier h1 , which is represented by the line 
separating the 2 classes. Based on the results of the weak clas-
sifier h1 , the algorithm updates the weights of the observa-
tions where misclassified observations are given higher 
weights. For D2 , another weak classifier is created and 
weights are updated (Figure 4B). In this example, the total 
number of iterations is 3, ie, T = 3 . Hence, the final classifier 
is H x sign h x h x h x( ) ( ( ) ( ) ( ))= + +α α α1 1 2 2 3 3 .

To evaluate the performance of the model, we tested the 
model using cross-validation which is a general model valida-
tion technique for assessing how the prediction of a model will 
be generalized to an independent data set.35 In this technique, 
data are separated into k folds- , where k  is less than or equal 
to the number of observations in the data set. Then, one of the 
folds is kept as the test set, and the rest of the folds are used for 
training the model. This process is replicated for each fold in 
the data, ie, k  times. The process is illustrated in Figure 5. In 
this study, we used 10-fold cross-validation and repeated the 
10-fold cross-validation 10 times to eliminate the bias and 
overfitting the data.

Results
After testing the average and standard deviation of different 
percentiles (eg, 5th, 10th, 50th, 90th, and 95th percentiles) of 
the 4 imaging features, the average of the 50th percentile fea-
tures performed the best. These 4 features were used to dem-
onstrate the results. To separate aggressive prostate cancer 
(GS > 6) from indolent disease (GS ⩽ 6), we created models 

Figure 4.  Weak classifier for different iterations. (A) At iteration t = 1, a weak classifier is created for D1 where each observation has the same weight. (B) 

At iteration t = 2, after updating the weights of the observations, a new weak classifier is obtained for D2. (C) At iteration t = 3, final weak classifier is 

generated which is h3.
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using 2 features at a time. Figure 6 shows the probability 
obtained from the classifiers for 6 possible combinations of 
the 4 imaging features. Using Figure 6A as an example, an 
adaptive boost model was created with ADC and T2  values. 
Aggressive prostate cancer and indolent disease observations 
are represented with red and blue, respectively. Any point in 
the 2-dimensional space is shown with red, blue, or combina-
tion of red and blue based on the probability given by the 
classifier. Then, the decision boundaries for the aggressive 
prostate cancer (red) and indolent disease (blue) were obtained 
considering the probabilities (Figure 7). The final classifier 
separated 2-dimensional space into blue and red regions. For 
example, in Figure 7B, given ADC and T2  values, the classi-
fier predicts the aggressiveness of the cancer based on the 
color of the region that a point falls into. In the figure, the 
actual observations are shown as well.

Figures 8 and 9 show the quantitative results of our meth-
ods from repetitions of 10-fold cross-validations. For distin-
guishing aggressive prostate cancer versus indolent disease 
(Figure 8), the averages and corresponding 95% confidence 
intervals of AUC, sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) were 0.73 
(0.72-0.74), 0.72 (0.71-0.73), 0.73 (0.71-0.75), 0.34 (0.33-
0.37), and 0.93 (0.92-0.94), respectively. For cancer foci 
detection (Figure 9), ie, classification between the absence of 
cancer (GS = 0) and presence of cancer (GS > 0), the averages 
and corresponding 95% confidence intervals of AUC, sensi-
tivity, specificity, NPV, and PPV were 0.68 (0.66-0.70), 0.73 
(0.70-0.77), 0.62 (0.60-0.68), 0.73 (0.71-0.76), and 0.65 
(0.62-0.68), respectively.

Discussion
The current methods for prostate cancer diagnosis include 
PSA testing and transrectal biopsy. However, the accuracy of 

PSA testing is low with sensitivity around 20% for detecting 
any prostate cancer and around 50% for detecting high-grade 
prostate cancers.36 However, biopsy is more reliable for pros-
tate cancer diagnosis than PSA testing, but it is an invasive 
method. In a recent study, the reliability of a 12-core biopsy 
for prostate cancer detection was evaluated.4 For patients 
with <4 ng/mL, (4-10) ng/mL and >10 ng/mL PSA levels, 
the sensitivities were 40%, 63%, and 76%, respectively. The 
average sensitivity for the whole test group was 59%. We pro-
vided a noninvasive supervised learning tool using multipara-
metric MRI/MRSI that achieved an average sensitivity of 
73% compared with PSA and biopsy.

When attempting to predict prostate cancer aggressiveness, 
previous studies excluded noncancerous observations (GS = 0). 
In this study, we included these observations while predicting 
the prostate cancer aggressiveness. Although this turned the 
classification problem difficult (as seen in Figure 6, the positive 
class [GS > 6] and the negative class [GS ⩽ 6] are very close to 
each other), it is more realistic and we were able to achieve an 
average AUC of 0.73 for prostate cancer aggressiveness 
prediction.

A potential limitation of this study is that all our data 
were from patients with prostate cancer and we did not have 
healthy prostate data as control. However, many specimens 
were not cancerous (Figure 1). We tested the correlation 
between the GS of adjacent specimens. The correlation 
coefficient was 0.3. The correlation coefficient for speci-
mens that were one more slice apart was 0.004. Therefore, it 
was a valid assumption to treat specimens as independent 
observations. We plan to include healthy prostate data in the 
future to test our tool.

It was critical to be able to handle class imbalance when 
predicting prostate cancer aggressiveness. In practice, aggres-
sive cancer only represents a small portion of the whole 

Figure 5.  Illustration of k-fold  cross-validation.
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prostate. However, it is very important for the clinicians to be 
able to identify the aggressive cancer so that personalized 
treatment can be given. Dealing with class imbalance is still an 
ongoing research topic in machine learning field. And there 
were few studies which addressed this issue in prostate cancer 
prediction. In this study, the number of observations in one 
class (GS ⩽ 6) significantly outnumbered the other class 
(GS > 6) with the ratio of 5:1 (187/36). We demonstrated that 
our method of using undersampling in AdaBoost model was 
an effective way of handling class imbalance for prostate can-
cer aggressiveness prediction.

After prostate cancer diagnosis, many types of treatments 
are available including radiotherapy, endocrine therapy, surgery, 
etc. For men diagnosed with aggressive cancer, the goal is to 
keep the disease from spreading. Physicians can treat these 
patients with localized therapies such as surgery and radiother-
apy. And systemic treatments, such as hormonal therapy, can 
also be used for these patients. A recent study shows that a mix 
of different treatments improves survival of patients with 
Gleason 9 and 10.37 If aggressive prostate cancer can be identi-
fied early using the tools provided in this work, these types of 
treatment can be considered by physician.

Figure 6.  Probability from AdaBoost representing aggressive prostate cancer (red) and indolent disease (blue) using combinations of 2 imaging features. 

(A) ADC and T2, (B) ADC and Ktrans, (C) ADC and Spectroscore, (D) T2 and Ktrans, (E) T2 and Spectroscore, (F) Ktrans and Spectroscore.
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Figure 7.  Classifiers separating aggressive prostate cancer (red) and indolent disease (blue) from AdaBoost using combinations of 2 imaging features. A) 

ADC and T2, (B) ADC and Ktrans, (C) ADC and Spectroscore, (D) T2 and Ktrans, (E) T2 and Spectroscore, (F) Ktrans and Spectroscore.

Figure 8.  Summary of prostate cancer aggressiveness classification 

accuracy from 10 runs of 10-fold cross-validations showing average and 

95% confidence intervals of AUC, sensitivity, specificity, PPV, and NPV.

Figure 9.  Summary of prostate cancer foci detection accuracy from 10 

runs of 10-fold cross-validations showing average and 95% confidence 

intervals of AUC, sensitivity, specificity, PPV, and NPV.
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Conclusions
Our results on both cancer foci detection and aggressiveness 
classification problems showed that using multiparametric 
MRI/MRSI with machine learning method could provide cli-
nicians a more accurate predictive tool for prostate cancer 
assessment. Adaptive boosting with random undersampling 
could accurately identify highly aggressive prostate cancer. This 
noninvasive method will allow for nonsubjective disease char-
acterization, which provides physician information to make 
personalized treatment decisions.
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