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Amoeba‑inspired analog electronic 
computing system integrating 
resistance crossbar for solving 
the travelling salesman problem
Kenta Saito  1*, Masashi Aono2,3,4 & Seiya Kasai  1,5*

Combinatorial optimization to search for the best solution across a vast number of legal candidates 
requires the development of a domain-specific computing architecture that can exploit the 
computational power of physical processes, as conventional general-purpose computers are not 
powerful enough. Recently, Ising machines that execute quantum annealing or related mechanisms 
for rapid search have attracted attention. These machines, however, are hard to map application 
problems into their architecture, and often converge even at an illegal candidate. Here, we 
demonstrate an analogue electronic computing system for solving the travelling salesman problem, 
which mimics efficient foraging behaviour of an amoeboid organism by the spontaneous dynamics 
of an electric current in its core and enables a high problem-mapping flexibility and resilience using 
a resistance crossbar circuit. The system has high application potential, as it can determine a high-
quality legal solution in a time that grows proportionally to the problem size without suffering from 
the weaknesses of Ising machines.

Combinatorial optimization problems are computationally demanding tasks appearing in various practical appli-
cations, such as optimization of traffic flow, path planning, nurse scheduling and advertisement allocation1–4. 
Often these problems become intractable for conventional von Neumann-type computers, such as general-
purpose CPUs; they need to evaluate an enormous number of candidate solutions in a serial manner, where 
the number of the candidates grows exponentially with the problem size, leading to “combinatorial explosion”.

The travelling salesman problem (TSP) is one of the most widely investigated combinatorial optimization 
problems; given a map of N cities, the TSP is stated as a problem of finding the shortest route for visiting each 
city exactly once and returning to the starting city5,6, where the number of all legal solutions (possible routes) 
grows factorially as (N − 1)!/2 . The TSP is a nondeterministic polynomial time (NP)-hard problem, that is, any 
exact algorithm to find the optimal solution (exactly the shortest route) for a general instance in polynomial time 
is not known so far. On the other hand, various nature-inspired approximation algorithms have been proposed 
to promptly derive a high-quality legal solution (a satisfactory short route), such as the k-opt algorithm with 
simulated annealing, genetic algorithm, particle swarm optimization algorithm and ant colony optimization 
algorithm7–11.

Many of the nature-inspired algorithms are formulated to update multiple variables in parallel to achieve 
rapid search, whereas the serial process of the CPU that manipulates a single bit at a time can only simulate the 
parallelism in a limited way. Therefore, it is required to develop a novel domain-specific computing architecture 
to implement these algorithms to maximize their parallel search capabilities by exploiting physical processes of 
specific hardware, expecting to cultivate new potentials and markets of combinatorial optimization. The first 
physical computing system for solving the TSP comprises the Hopfield’s recurrent neural network implemented 
by an electronic circuit12,13. This system, however, was not so useful because it frequently converges at a local 
minimum state (a low-quality solution) and sometimes cannot reach even a candidate solution for some problem 
instances14–16. In fact, for some instances of 10-city TSP, it was reported that the rate of finding a legal solution 
was at most 20%15.
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In recent years, many proposals on rapid combinatorial optimization by physically implementing the “Ising 
machine” or “annealing machine” with several exploration mechanisms, such as quantum annealing (QA) and 
related methods, have attracted a lot of public attention17–21. Each of these machines explores an optimal solu-
tion by mapping the problem to a process of finding a minimum-energy spin assignment in the Ising model 
that abstracts a ferromagnetic material17,22,23. However, the problem mapping and parameter tuning of the Ising 
model are complex and costly. For the N-city TSP, the regular layout of spin variables with sparse connectivity 
requires redundant variables to be introduced in the order of N4 to handle irregularly distributed cities, leading 
to a rapid increase in the circuit area24–28. Figure 1a shows a graph structure of the Ising model, which is referred 
to as a chimera graph17. In such a structure, the consistency between the redundant variables can be broken 
potentially. When the parameter tuning cannot be made appropriately, the Ising model sometimes converges 
at an illegal state in which constraints of the TSP to exclude the revisiting of a once-visited city and to exclude 
simultaneous visits to multiple cities are violated (see Supplementary Information [SI]). Actually, in the physical 
Ising machines solving the Max-cut problem, the probability of reaching a legal state varies depending on the 
connectivity among graph nodes, and the sparsely connected graph often results in even worse performance 
owing to the variable overhead29.

Our approach is not based on the Ising model. We focus on a living amoeboid organism that performs trial-
and-error behaviour to survive efficiently and resiliently in a harsh environment, deforming its gel-like body30,31. 
Here, we demonstrate, as a proof of concept, an analogue electronic computing system called an “electronic 
amoeba”32,33, inspired by the food search and risk avoidance behaviour of a single-celled amoeboid organism, 
Physarum polycephalum30,31,34–39. In the electronic amoeba, an arbitrary TSP instance can be mapped on the resis-
tor network of a crossbar structure shown in Fig. 1b, which we call the “instance-mapping circuit (IMC)”. The 
architecture of the IMC is similar to that of the Hopfield’s recurrent neural network12,13. However, as shown in 
Fig. 2a, it is connected with the “amoeba core”, which contributes to avoiding the convergence at an illegal state. 
In the author’s previous works35,38,39, we formulated an algorithm representing a primitive idea of the electronic 
amoeba and predicted its potential performance without any physical implementation. In this paper, with results 
obtained from numerical simulations using a conventional computer and laboratory experiments using a physi-
cally fabricated circuit (Fig. 2b), for the first time, we show that the electronic amoeba finds a high-quality TSP 
solution in a time that is proportional to N . The electronic amoeba is highly scalable and energy-efficient as it 
comprises existing complementary metal-oxide semiconductor (CMOS) devices and is expected to be useful 
for wide range of applications.

Results
Figure 2a shows a schematic of the electronic amoeba composed of the amoeba core and IMC, which electroni-
cally mimics the solution-searching dynamics of a so-called “amoeba-based computer” that employs a living 
amoeba to search for a solution to the TSP38,39 (see Supplementary Information). The state of each unit in the 
amoeba core represents the decision on where and when to visit. The IMC implements a type of feedback control, 
called the “bounceback control”, which refers to the TSP constraints and intercity distances from the given map 
and sends a “bounceback signal” to each unit in the amoeba core36–39; the signal is determined in accordance 
with the recurrent neural network dynamics defined by Eq. (1) in “Methods”.

We first conduct numerical simulations using a circuit simulator run on a conventional computer (see 
“Methods”) to determine if the electronic amoeba can solve the 4-city TSP instance shown in Fig. 3a. Figure 3b 
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Figure 1.   Physical mapping schematics of the TSP to (a) the Ising machine and (b) electronic amoeba. Each 
state variable Xi , taking a value of 1, determines where and when should a salesman visit. (a) Chimera graph 
for fully connecting an arbitrary pair of spin variables Xi and Xj , requiring redundant variables for each Xi . (b) 
Resistance crossbar of the instance-mapping circuit (IMC), achieving full connectivity without introducing any 
redundant variables.
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demonstrates an example of output waveforms obtained from the circuit simulation. The subscripts of the state of 
each unit XV ,k , V  and k , mean that city V  is visited at the k th order. Initially, every unit takes a state of 1 because 
the capacitor charge is set to zero. The IMC then sends the bounceback signals to all units to flip their states from 
1 to 0, as the all-one states are violating constraints of the TSP. The state of each unit gradually approaches to 0 
when charging the capacitor by injecting a current from the current source. After several flips have been induced 
by the bounceback control, the dynamics of all units became stable as shown in the hatching area in Fig. 3b. At 
this moment, the electronic amoeba finds an optimal solution, D → A → B → C → D, which corresponds to the 
shortest route.

Using a circuit simulator, we have investigated the solution-searching performance of the electronic amoeba 
for N ranging from 10 to 30. We performed 50 trials for each instance for N not greater than 20 but only once 
for each N more than 20 because the simulation time increased rapidly; it took 5 h for the 20-city instances but 
took 6 days for the 30-city cases. In each trial, resistances in the units were randomly assigned from 1 Ω to 10 kΩ 
to lead the electronic amoeba to explore a wider state space. To evaluate the rate of finding a legal solution in the 
electronic amoeba, we performed 560 trials for solving the TSP of 10–30 cities. The rate was found to be 100%; 
the system certainly converged to one of the legal solutions for every try. This is because the amoeba core always 
stabilizes at a steady state in which no variable violates the TSP constraints39; in such a state, no further change 
in all units in the amoeba core is induced by the bounceback signals. Figure 4a shows the length of the route 
obtained by the circuit simulator. In Fig. 4a, the vertical axis is normalized by the average route length obtained 
from random sampling of 10,000 trials; if a value on the vertical axis is less than 1.0, it implies that the quality of 
the legal solution found is higher than that found by random sampling. The results indicate that the electronic 
amoeba finds higher-quality solutions than random sampling. Moreover, the average of the route length was 
on a declining trend; the quality did not degrade even when the problem size N became larger. By introducing 
random variations in the resistances of the units, each unit varies the velocity of the transition from state 1 to 
0, and a wide variety of legal solutions were found as shown in Fig. 4b; it reached different solutions even for an 
identical instance, although it did not guarantee to reach the optimal one.

Figure 4c shows that the average time required for the electronic amoeba to find a legal solution increases 
almost only linearly as a function of N . This result reproduces the observation confirmed in the amoeba-based 
computer well; the living amoeba reached an approximate solution of the TSP in linear time38,39. A hypothet-
ical mechanism of the linear-time solution has been proposed with an abstract mathematical model of the 
solution-searching dynamics of the amoeba-based computer; the numerical simulation of the model, named 
“AmoebaTSP”, suggested that the linear-time solution can be achieved if the hub of the single-celled organism 
could supply the intracellular resources to grow its branches with a constant rate, even while responding to the 
bounceback signals38,39. The linear-time operation is attributed to the design of the bounceback control together 
with parallel operations of all units in the amoeba core. The units try to choose a path between two cities having 

(b)

Amoeba core

Crossbar IMC

(a)

X13

Amoeba coreX11

X12

XNN

XNN-1

Crossbar IMC

R11,12

R11,13

R12,11

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

Rf

VT
L11 L12 L13 LNN-1 LNN

XUlRs1
Rs2

R11,NN

R11,N-1

Figure 2.   Electronic amoeba for solving the TSP. (a) Schematic of the system consisting of the amoeba core 
and IMC. For solving the N-city TSP, the amoeba core uses N2 units to represent state variables, each of which 
performs the charging and discharging dynamics of the capacitor to express expanding and shrinking behaviour 
of a pseudopod-like branch of the amoeba. The IMC executes product-sum operations of recurrent neural 
network dynamics for the bounceback control to govern the interactions among the variables (see “Methods”). 
(b) Photo of fabricated electronic amoeba consisting of commercially available CMOS devices.
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a shorter distance, according to information on shortness of the distances of possible paths through accumu-
lating and comparing experiences of being inhibited by the bounceback signals; the two units representing a 
shorter-distance path are less frequently inhibited compared to the others and are allowed to take relatively larger 
state values. The bounceback rule is designed so that once a path and their visiting orders are decided, the rule 
restricts the amoeba core from changing the decision after that. Thereby the system decides each path one by 
one, avoiding illegal paths.

The electronic amoeba will reach a high-quality solution in linear time even for larger-size instances if it 
follows a similar mechanism as AmoebaTSP. Moreover, the solution search time of the electronic amoeba can 
be reduced further as the flipping of the state of each unit can be accelerated by increasing the current and/or 
decreasing the capacitance (see Supplementary Information).

We compared the solution-searching performance of the circuit simulator-based electronic amoeba with 
that of a representative stochastic local search algorithm, the 2-opt (see “Methods”), which is a simple and fast 

Figure 3.   Solution-searching dynamics of electronic amoeba. (a) 4-city TSP instance. Each edge weight 
indicates the distance between corresponding cities. (b,c) The dynamics of state variables in the circuit 
simulation and fabricated system, respectively. Variable XV ,k represents that city V is visited at the k th order. The 
shortest routes, D → A → B → C → D and A → D → C → B → A, were found by the simulation and fabricated 
system, respectively.
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method requiring no parameter optimization7. The quality of the solution obtained by the 2-opt gets higher (and 
saturates eventually) as its main operation iterates for a larger number of times, but we terminated the iteration 
when the quality become equal to that obtained by the electronic amoeba and measured the time required by 
the termination. As shown in Fig. 4d, the 2-opt required an amount of time that grows as a quadratic function of 
the problem size, whereas the electronic amoeba needed only linear time to present the solution with the same 
level of quality (Fig. 4c). Accordingly, the electronic amoeba, once physically implemented, will be more useful 
for finding a high-quality solution in a shorter search time than the 2-opt when run on a conventional computer 
and when the number of cities exceeds 50.

By fabricating the electronic amoeba physically (Fig. 2b) using CMOS devices, we have verified that the 
fabricated system can solve various 4-city TSP instances as shown in Fig. 5a–e, where the optimal and worst 
solutions are summarized in Table 1. The amoeba core comprises 16 branches, and we can map an arbitrary 
4-city instance by changing the resistance values in the IMC. The time evolution of the state variables in the 
fabricated system is shown in Fig. 3c. At an initial stage, the variables behaved similarly to those in the circuit 
simulation (Fig. 3b), and they became stable after reaching a solution. The bottom of Fig. 5a–e shows that the 
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Figure 4.   Solution-searching performance of circuit-simulator-based electronic amoeba and 2-opt evaluated 
as a function of the problem size. (a–c) The results obtained from the electronic amoeba and (d) from 2-opt. 
(a) Route length normalized by the average length calculated by random sampling. Error bars for the 10–20-
city instances denote standard deviations obtained from 50 trials, whereas those for 21–30-city cases are not 
shown as only a trial was performed for each case. (b) Histogram of route lengths of the solutions found for a 
20-city instance after 50 trials. The average route length calculated by random sampling was 2016, whereas that 
obtained by the electronic amoeba was 1780. (c) Solution search time estimated from the dynamics generated by 
the circuit simulator (see “Methods”). (d) Solution search time required for the calculation using a conventional 
computer (see “Methods”).
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system found the shortest route for instances A–C and E where we performed 50 trials for each instance without 
changing the resistance values.

The fabricated system could not find the shortest route for instance D as shown in Fig. 5d, although the short-
est route length of D equals that of C. This would be attributed to a number of device variations in the fabricated 
circuit, such as the threshold voltage variation in the CMOS inverter, offset voltage variation in the operational 
amplifier and difference in the wiring length in the IMC, which might create a preference when making a deci-
sion. However, for the cases where the route lengths are widely distributed such as instance E, the system reached 
the optimal solution, overcoming the preference. When solving larger-sized instances and introducing more 
noise, the system performance is expected to become reliable and robust (Supplementary Fig. S6), because the 
differences in qualities (route lengths) of legal solutions of those instances become relatively smaller than that 
of smaller-sized instances, depending on noise amplitude.

Note that it is necessary for the Ising machines to expend considerable efforts on problem-mapping and 
parameter-tuning processes prior to solving the problem. If this pre-processing could be made properly, the Ising 
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Figure 5.   Results obtained from the fabricated electronic amoeba for 4-city TSP instances that gave three 
possible routes (legal solutions). (a–e) Histograms of the routes obtained from 50 trials. Abbreviations in 
horizontal axes are Rt 1: A → B → C → D → A, Rt 2: A → C → D → B → A and Rt 3: A → D → B → C → A.

Table 1.   Summary of TSP instances and their route lengths.

Instance A Instance B Instance C Instance D Instance E

Rt 1: A → B → C → D → A 100 100 100 100 100

Rt 2: A → C → D → B → A 96 99 100 101 160

Rt 3: A → D → B → C → A 136 139 140 141 200
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model combined with simulated annealing exhibits a better performance in finding a higher-quality TSP solution 
than the electronic amoeba, otherwise it fails to reach even a legal solution (see Supplementary Information). In 
contrast, there is no need for the electronic amoeba to execute complex and costly pre-processing because the 
IMC offers a high problem-mapping flexibility with its unrestricted connectivity between an arbitrary pair of 
variables and requires only simple numerical operations to determine the parameters (see “Methods”). Moreover, 
when the resistors in the IMC are replaced with memristors or atomic switches, enabling dynamic resistance 
rewriting40–44, the TSP instance to be solved can be updated promptly even in the middle of the solution-searching 
process, and the bounceback control will enable the amoeba core to find a new solution of the updated instance 
effortlessly by slightly revising the previous one. Such a dynamically rewritable IMC will enable the electronic 
amoeba to respond resiliently to sudden changes in the problem constraints caused by unexpected failures 
occurring in ever-changing practical situations.

The scalability is an important issue for the implementation of the electronic amoeba. For solving N-city 
TSP, the amoeba core needs N2 units, and the crossbar IMC requires 2N2 wires and N4 resistors at cross points 
of the wires. The circuit area of the electronic amoeba, therefore, grows in the order of N2 , which is less costly 
than the Ising machines that require the area in the order of N4 . This order is apparently comparable to that of 
the Ising model-based digital machines with full connectivity in logical level. However, the physical crossbar in 
the electronic amoeba produces advantages in terms of execution time and energy consumption; the crossbar 
allows to execute the bounceback control for all variables in a fully parallel manner, whereas the FPGA-based 
digital Ising machine requires a lot of memory accesses to achieve the logical full-connectivity, consuming higher 
time and energy costs. Owing to the modern digital LSI technology, each capacitance in the amoeba core will 
be downsized to the minimum level where its charging time is distinguishable from that of the parasitic ele-
ments. It is expected that state-of-the-art nanotechnology to fabricate a nanoscale crossbar structure equipped 
with memristors to represent analogue resistance values42,43 will suppress the increase in the physical size of the 
IMC. The electronic amoeba can be built and maintained with a significantly cheaper cost than the Quantum 
annealing machine that requires a lot of elaborate equipment for refrigeration and maintenance of quantum 
coherence. Furthermore, while the computing speed of other Ising machines are unscalable as they suffer from 
the "Neumann bottleneck" that limits the data transfer rate in a data bus between memory and operation sec-
tions, the electronic amoeba does not encounter such a limitation.

In this paper, we demonstrated that, given an arbitrary TSP instance, the electronic amoeba enables to start the 
computing readily after simple resistance determination operations in the IMC and to find a high-quality solution 
certainly in only linear time, exploiting the spontaneous dynamics of the electric current in the amoeba core. 
This reliable and swift solution-searching capability could be beneficial for particular applications that prioritize 
the search time over the quality of a solution found. For example, in a situation at a disaster site where present-
ing reliable evacuation routes for residents is necessary, making a swift announcement should be prioritized 
than deriving the exactly optimal routes. The electronic amoeba would be more useful than using conventional 
computers to run the stochastic local search algorithm when the number of cities exceeds a hundred or more. 
Moreover, the compactness of the IMC suggests that the system-on-chip approach supported by semiconductor 
LSI technologies will further enhance the scalability and energy-efficiency, making it useful for wider cloud- and 
edge-computing applications. One of our future subjects is to improve the quality of the solution found by the 
electronic amoeba. Possible approaches are to assign appropriate initial states to the amoeba core units using 
the genetic algorithm, to impose stochastic fluctuations using a hardware random number generator to forcibly 
escape local minimum solutions (see SI), and to introduce delays in the bounceback control to induce the oscil-
lation of state variables45.

Methods
Bounceback control of the electronic amoeba.  To implement the bounceback control for solving the 
TSP on the crossbar IMC, we followed the basic scheme of the amoeba-based computing system (see SI)36–38. For 
the N-city TSP, N × N state variables are needed where each variable XVk with subscript Vk indicates that city 
V  is visited at the k th order: when XVk = 1 , the city V  is visited at the k th order. The bounceback signal in the 
electronic amoeba is generated by the crossbar IMC shown in Fig. 2a. The IMC evaluates all bounceback signals 
in a parallel and continuous fashion. The IMC circuit computes the bounceback signal is as follows,

where Rf  is a feedback resistor for the op-amp and RVk,Ul is a resistor at cross point of the output line Vk and 
the input line Ul in the crossbar corresponding to the intercity distance. VT is a threshold value of the threshold 
function F in the output portion of the crossbar IMC, which is implemented by a comparator. In this study we 
used VT = 1.5 V and Rf = 10 kΩ. Rf /RVk,Ul is given by

where dist(V ,U) is an intercity distance between cities V  and U and � is a normalization factor. Rf /RVk,Ul defines 
the interaction between the state variables so as to (1) prohibit the system from visiting the city once visited, 
(2) prohibit the system from visiting different cities at once, and (3) minimize the total length of a travel route. 
� is a normalized coefficient and we use � = max(dist(V

′
,V

′ ′
)+ dist(V

′ ′
,V

′ ′ ′
))/θ , where θ is a threshold in 

the sigmoid function and dist(V ′,V ′′)+ dist(V ′′,V ′′′) is the maximum value of the total distance between the 
cities V ′ and V ′ ′ ′ via V ′ ′.

(1)LVk = F
(

∑

Ul
Rf

RVk,Ul
· XUl − VT

)

,

(2)
Rf

RVk,Ul
=

{

0.5

dist(V ,U)/�

0

(if V = Uat k �= lor V �= Uat k = l)
(if V �= Uand |k − l| = 1)

(otherwise)
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A CMOS inverter with resistors shown as square boxes in Fig. 2a represents a sigmoid function. Here, the 
slope of the sigmoid function is defined by the resistance values Rs1 = 390 kΩ and Rs2 = 2.2 MΩ. The measured 
behaviour of a pseudopod-like branch in the fabricated amoeba core is shown in Supplementary Information.

The bounceback control ensures the system does not stabilize whenever there are constraints that remain 
unsatisfied as the bounceback signals flip the constraint-violating variables from 1 to 0. The IMC does not have 
any free parameters, although the degree of resistance variation in the amoeba core is adjustable. The electronic 
amoeba, therefore, does not require any complex and costly pre-processing for problem mapping and parameter 
tuning.

Circuit simulator.  We used the electronic circuit simulator, LTspice XVII (Simulation Program for Inte-
grated Circuit Emphasis simulator, SPICE, https​://www.analo​g.com). The current source is 5N2 µA for the num-
ber of cities N , capacitance C is 500 pF and initial voltage of capacitors is set to 1.5 V in the circuit simulation. 
In the fabricated electronic amoeba integrating the commercial discrete devices, C is the sum of discrete compo-
nents near 470 pF and the current source is set to 80 µA.

2‑opt.  The stochastic local search algorithm, 2-opt, updates the route by iterating the following main opera-
tion starting from a randomly chosen route (a legal solution); it chooses two cities randomly and inverts a 
path between the two locally in the current route if the inversion resulted in a reduction in route length. We 
performed the 2-opt calculation using a conventional computer (Intel Xeon processor E5-1650 v2 @ 3.50 GHz).
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