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Abstract  
Deep learning tools for behavior analysis have enabled important new insights and discoveries in 
neuroscience. Yet, they often compromise interpretability and generalizability for performance, 
making it difficult to quantitively compare phenotypes across datasets and research groups. We 10 
developed a novel deep learning-based behavior analysis pipeline, Avian Vocalization Network 
(AVN), for the learned vocalizations of the most extensively studied vocal learning model species – 
the zebra finch. AVN annotates songs with high accuracy across multiple animal colonies without 
the need for any additional training data and generates a comprehensive set of interpretable features 
to describe the syntax, timing, and acoustic properties of song. We use this feature set to compare 15 
song phenotypes across multiple research groups and experiments, and to predict a bird’s stage in 
song development. Additionally, we have developed a novel method to measure song imitation that 
requires no additional training data for new comparisons or recording environments, and 
outperforms existing similarity scoring methods in its sensitivity and agreement with expert human 
judgements of song similarity. These tools are available through the open-source AVN python 20 
package and graphical application, which makes them accessible to researchers without any prior 
coding experience. Altogether, this behavior analysis toolkit stands to facilitate and accelerate the 
study of vocal behavior by enabling a standardized mapping of phenotypes and learning outcomes, 
thus helping scientists better link behavior to the underlying neural processes. 
 25 

 
Introduction 

A deep understanding of animal behavior is fundamental to a deep understanding of the brain. 

However, accurate, quantitative description of animal behavior, particularly in ethologically relevant 

contexts, remains a substantial challenge in neuroscience research. In recent years, careful observation of 30 

motor and vocal behaviors is increasingly being replaced with machine learning and deep learning-based 

approaches. These tools allow researchers to consider much greater volumes of data than was previously 

possible, to uncover patterns in animal behavior that are undetectable to humans,  and have led to important 

insights into ethologically relevant behaviors, and the effects of experimental interventions thereupon [1-3]. 

However, this increased power often comes at the expense of interpretability and generalizability.  35 

 

An increasing number of supervised deep learning methods are being developed for the automated 

annotation of animal vocalization behavior [4-7], and unsupervised methods for dimensionality reduction 

and analysis [3, 8-11]. While unsupervised approaches are very powerful, and have been shown to explain 

more variance in vocalization repertoires than hand-selected acoustic features [8], the features that they 40 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2024. ; https://doi.org/10.1101/2024.05.10.593561doi: bioRxiv preprint 

mailto:Todd.Roberts@utsouthwestern.edu
mailto:Therese.Koch@utsouthwestern.edu
https://doi.org/10.1101/2024.05.10.593561
http://creativecommons.org/licenses/by-nd/4.0/


  2 

generate are notoriously difficult to interpret, and specific to the exact dataset from which they were derived 

[3, 8, 9]. As a result, unsupervised data-driven methods, while allowing detailed comparison of individuals 

within the same data set, make it more difficult to compare the nature and severity of vocal phenotypes 

across experiments and research groups.  

 45 

 To truly maximize the benefits of machine learning and deep learning methods for behavior analysis, 

their power must be balanced with interpretability and generalizability. This can be achieved by combining 

automated annotation with a carefully selected set of meaningful features, thereby creating a common 

feature space for the comparison of behavioral phenotypes across research groups, experimental 

conditions, and studies. For speed, ease of use, and standardization, the annotations should be generated 50 

without the need for any training data or hyperparameter setting for new individuals or recording conditions. 

The features should be consistent across recording conditions, allowing direct, meaningful comparisons 

between research groups. The feature set should be comprehensive, describing multiple aspects of the 

behavior. Finally, the features should be interpretable, allowing researchers to form concrete hypotheses 

about how different manipulations will affect specific features, and use observed feature values to guide 55 

future experimental design. 
 

We have developed an analysis pipeline called Avian Vocalization Network (AVN) which satisfies 

these criteria for zebra finch song analysis. Zebra finches are the most popular animal model for the study 

of vocal learning. They learn to sing a single, highly stereotyped song by memorizing the song of an adult 60 

tutor, then refining their vocalizations to match this song template during a sensorimotor learning period 

early in development (Fig 1a); a process which bears many parallels to human speech learning [12]. Typical 

zebra finch songs consist of a variable number of introductory notes, followed by multiple repetitions of a 

motif, composed of 3 to 10 unique syllable types produced in a stereotyped sequence. Traditionally, zebra 

finch song has been analyzed by segmenting the song into syllables, then manually labeling syllables based 65 

on visual inspection of their spectrograms [13-15]. This process is very labor intensive, which limits the 

number of songs that can be considered at a time. Manual syllable labeling and motif identification can also 

be subjective and therefore susceptible to experimenter bias, as motif composition and syllable types can 

be somewhat ambiguous, particularly in young birds with immature song and in birds with experimentally 

disrupted songs.  70 
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Figure 1 – Overview of AVN song analysis pipeline. a. Schematic timeline of zebra finch song learning. b.  Overview of AVN song 

analysis pipeline. Spectrograms of songs are automatically segmented into syllables then syllables are labeled. The raw spectrograms 

are used to calculate features describing the rhythm of a bird’s song, the segmentations are used to calculate syllable-level timing 75 
features, and the labeled syllables are used to calculate syntax-related features and acoustic features of a bird’s song. c. Birds from 

diEerent research groups, with multiple diEerent song phenotypes can all be processed by the AVN pipeline, generating a matrix of 

directly comparable, interpretable features, which can be used for downstream analyses including phenotype comparisons, tracking 

the emergence of a phenotype over time, investigating song development, and detecting individual outlier birds with atypical song 

phenotypes.  80 

 

We tested two deep-learning approaches for syllable segmentation, which don’t require any 

additional training data or hyperparameter setting for new birds. We then applied unsupervised 

dimensionality reduction and clustering methods to assign labels to these automatically segmented 

syllables. Finally, we use the resulting annotated songs to calculate a set of 55 interpretable features which 85 
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describe the syntax, timing, and acoustic properties of a set of songs (Fig 1b). We show that the automated 

annotation performs consistently well across multiple zebra finch colonies, and that the feature set can be 

used to glean mechanistic insights from the comparison of vocal phenotypes, and to predict a bird’s stage 

in song development (Fig 1c). We also developed a new method to compare two birds’ syllable repertoires 

in order to measure song learning, which outperforms existing song similarity scoring methods on multiple 90 

key metrics. The complete pipeline is available as an open-source python package and as an application 

with a graphical user interface, allowing researchers with no prior coding experience to easily annotate their 

songs, calculate the feature set, and calculate song similarity scores (supplemental Fig 1).  

 

Results 95 

Comparing deep learning methods for fully automated syllable segmentation 

 To accurately segment and label zebra finch songs without the need for any individual-specific 

training data or hyperparameter tuning, we tested and compared two different deep-learning based 

approaches for syllable segmentation. Traditionally, zebra finch song is segmented based on an amplitude 

threshold [10, 16]. The best value for this amplitude threshold depends heavily on recording conditions and 100 

background noise levels, and setting this threshold often requires careful trial and error by a human 

annotator. Amplitude-based segmentation methods also cannot distinguish between song syllables and 

noises, like wing flaps or other non-vocal artifacts, which can contaminate downstream analyses. Instead of 

relying on amplitude alone, we compared two deep learning models, TweetyNet [5] and WhisperSeg [6], 

which take the full spectral content of the audio into account when performing segmentation.  105 

 

We tested these two segmentation methods with a dataset of over 1000 manually annotated songs 

from 35 adult zebra finches, including birds with typical song production, isolate birds raised without a song 

tutor, and birds with disrupted song production due to knockdown of the transcription factor FoxP1. 

TweetyNet was designed to simultaneously segment and label syllable types, by assigning syllable labels 110 

to short spectrogram frames. This application requires re-training for each individual bird, so we instead 

trained TweetyNet to label spectrogram frames as simply containing vocalizations, silence, or noise. We 

trained it with 34 of the 35 birds in the dataset and evaluated segmentation accuracy with the remaining 

bird, repeating this once for each bird in the dataset. This allows the model to learn an abstract notion of 

vocalization vs. non-vocalization which generalizes well to new individuals not included in training. The 115 

WhisperSeg model is already trained for segmentation of new individuals, so we used the existing standard 

model to segment each of our birds. Segmentation accuracy was evaluated against expert human 

annotations by calculating the precision, recall and F1 scores of syllable onset detections within 10ms of a 

syllable onset in the manual annotations.  

 120 

WhisperSeg shows the best performance, with a mean F1 score of 0.882(+- SEM 0.02), compared 

to TweetyNet’s score of 0.824 (+- SEM 0.03) and a simple amplitude segmentation algorithm (RMSE) with 
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a mean score of 0.593 (+-SEM 0.02) (Fig 2a). WhisperSeg’s precise onset times were also more consistent 

with expert human annotations than both other methods (median absolute time difference of 1.75ms for 

WhisperSeg, 2.22ms for TweetyNet, and 3.81ms for RMSE) (Fig 2b). All 3 methods performed similarly for 125 

the typical, isolate and FP1 KD birds (supplemental 2 a-f). As a further test of the generalization of these 

methods, we applied them to a dataset of manually annotated songs from 25 birds from the Rockefeller 

University Field Research Center Song Library [17]. Using the pre-trained WhisperSeg model, and a 

TweetyNet model trained on all 35 birds from the UTSW colony and none from the Rockefeller Song Library, 

each of these models yielded very similar segmentation accuracy scores to those obtained with the UTSW 130 

colony (Fig 2a,c, supplemental 3).  

 
Figure 2 – Automated syllable annotation metrics. a. F1 scores for syllable onset detections within 10ms of a syllable onset in the 

manual annotations of each bird (n=35 from UTSW and n=25 from Rockefeller) across segmentation methods. b. Distribution of time-

diEerences between predicted syllable onsets and their best matches in the manual annotation, across segmentation methods. 135 
Distributions include all matched syllables across all 35 birds from the UT Southwestern colony (UTSW) and (c.) 25 from Rockefeller. d. 
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Example spectrogram of a typical adult zebra finch. The song was segmented with WhisperSeg and labeled using UMAP & HDBSCAN 

clustering. Colored rectangles reflect the labels of each syllable. e. Example UMAP plot of 3131 syllables from the same bird as in d and 

f. Each point represents one syllable segmented with WhisperSeg, and colors reflect the AVN label of each syllable. f. Example confusion 

matrix for the bird depicted in d and e. The matrix shows the percentage of syllables bearing each manual annotation label which fall 140 
into each of the possible AVN labels. g. V-measure scores for AVN syllable labels compared to manual annotations for each bird (n=35 

from UTSW and n=25 from Rockefeller), across segmentation methods.  

 

Accurate, fully unsupervised syllable labeling 

 Next, we assign syllable labels to these segmented units. To achieve this, we first performed UMAP 145 

dimensionality reduction [18] on spectrograms of the segmented syllables, then performed hierarchical 

density based clustering (HDBSCAN) [19] on the syllables’ UMAP embeddings, as in [10]. We calculated 

the UMAP embeddings of all segmented syllables for each of the 35 birds in our dataset using manual 

segmentations, WhisperSeg, or TweetyNet segmentations. In all cases, we found that the syllables formed 

multiple dense clusters, which corresponded well to manually annotated syllable labels (Fig 2 d-g, 150 

supplemental Fig 4).  

 

Using manual segmentation yielded the best agreement with manual labels (mean v-measure score 

= 0.87 +- 0.01) which is to be expected, as no discrepancies are introduced during segmentation (Fig 2g, 

supplemental 5). When clustered, WhisperSeg’s segments yielded better agreement with manual labels 155 

than TweetyNet’s (WhisperSeg mean v-measure = 0.80 +- 0.02, TweetyNet’s mean v-measure - 0.77 +-

0.02). We observe similar performance on our second dataset of 25 typical adult zebra finches from the 

Rockefeller Song Library, suggesting that these methods generalize well across colonies and recording 

environments (Fig 2g).  

 160 

Altogether, we conclude that WhisperSeg followed by UMAP-HDBSCAN clustering produces the 

most accurate syllable labels. These will be referred to as AVN labels henceforth in this manuscript. AVN 

labels are produced without the need for any per-bird parameter tuning or model training. This approach not 

only saves experimenters time when analyzing many birds, but also reduces the potential for experimenter 

bias during song annotation. AVN labeling generalizes well across multiple zebra finch colonies, suggesting 165 

that it can be easily adopted by new research groups without the need for extensive additional validation. 

Thus, we hope it can serve as a new standard for song annotations when manual annotation is not required.  

 

Analyzing Song Syntax 

 The automatically generated AVN labels can be used to visualize and quantify a bird’s song syntax. 170 

Typical zebra finches produce syllables in a very predictable order, where the syllable type that a bird will 

sing can be reliably predicted based on the immediately preceding syllable type [15, 20]. Many studies have 

found that manipulations of the neural circuitry underlying song learning and production can disrupt a bird’s 
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syntax, leading to more variable sequences [15, 21-23]. Methods used to quantify these syntax disruptions 

vary across papers and research groups, making it impossible to directly compare the severity of disruptions. 175 

We propose a comprehensive suite of features to describe a bird’s song syntax, which can all be calculated 

using the AVN python package and AVN graphical application. 

 

First, we developed a new song syntax visualization, called a syntax raster plot which lets 

researchers view a large number of song bouts’ syllable sequences simultaneously (Fig 3a). We can also 180 

visualize syntax using a transition matrix, which gives the probability of a syllable type being produced, given 

the preceding syllable type (Fig 3b). We quantify the stereotypy of a bird’s syntax by calculating the entropy 

rate of the transition matrix, and find a strong correlation (r = 0.89, p <0.05) between entropy rates calculated 

using AVN labels and manual annotations, showing that our AVN labels are sufficiently reliable to describe 

a bird’s syntax stereotypy (Fig 3c). We also find the same statistical relationship between groups as with 185 

manual annotations, namely that birds with FP1 KD and isolate birds have significantly higher entropy rates 

than typical birds (One way ANOVA F(2, 32) = 15.05, Tukey HSD p-adj FP1 vs. typical < 0.005, p-adj isolate 

vs. typical <0.005) (Fig 3d). Multiple studies have also found that neural song-circuit manipulations can 

induce a ‘stutter’ in birds, i.e. increase the rate of syllable repetitions in their songs [24-26], so we’ve 

introduced two additional metrics to specifically look at the rate of syllable repetitions in a bird’s song; the 190 

mean number of times a syllable is produced in a row each time it is sung (repetition bout length), and the 

CV of the number of syllable repetitions (CV repetition bout length) (supplemental 6e-f).  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2024. ; https://doi.org/10.1101/2024.05.10.593561doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593561
http://creativecommons.org/licenses/by-nd/4.0/


  8 

 
Figure 3 – Song syntax and timing analysis with AVN. a. Example syntax raster plot for a typical adult zebra finch made with AVN labels. 

Each row represents a song bout, and each colored block represents a syllable, colored according to its AVN label. b. Example transition 195 
matrix from the bird featured in a. Each cell gives the probability of the bird producing the ‘following syllable’, given that they just 

produced a syllable with the ‘preceding syllable’ label.  c. Correlation between normalized entropy rate scores calculated for each bird 

using manual annotations or AVN labels (n=35 birds from UTSW, r = 0.89, p<0.005). d. Comparison of normalized entropy rates 

calculated with AVN labels across typical (n=20), isolate(n=8), and FP1 KD (n=7) adult zebra finches (One Way ANOVA F(2, 32) = 15.05, 

p <0.005, Tukey HSD * indicates p-adj < 0.005). e. Schematic representing the generation of rhythm spectrograms. The amplitude trace 200 
of each song file is calculated, then the spectrum of the first derivative of the amplitude trace is computer. The spectra of multiple song 
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files are concatenated to form a rhythm spectrogram, with bout index on the x-axis and frequency along the y axis. The example rhythm 

spectrograms show the expected banding structure of a typical adult zebra finch, and the less structured rhythm of a typical juvenile 

zebra finch (50dph). f. Comparison of rhythm spectrum entropies cross typical (n=20), isolate (n=8), FP1 KD (n=7) adult zebra finches 

(>90dph), and juvenile zebra finches (n = 11, 50-51dph) (One Way ANOVA F(3, 43) = 17.0, p < 0.05, Tukey HSD * indicates p-adj < 0.05).  205 

 

Analyzing Song Timing 

 Song timing can refer to the durations of individual syllables and gaps, or to the rhythmic patterns of 

a song bout. We have developed and validated multiple metrics to describe song timing at each of those 

scales, which can easily be calculated using the AVN python package or graphical application. First, we look 210 

at the timing of individual syllables and gaps by plotting the distribution of their durations based on our 

WhisperSeg segmentations. Typical mature zebra finches have very stereotyped syllable durations across 

renditions of the same syllable type, which result in a distribution of syllable durations consisting of multiple 

narrow peaks, each corresponding to a different syllable type (supplemental Fig 7b). Immature birds, on the 

other hand, have very variable syllable durations, and tend to have a single broad peak and long positive 215 

tail in their syllable duration distributions [27, 28]. We observe these same patterns using our WhisperSeg 

segmentations when we apply them to our dataset of 35 mature birds, and an additional 11 juvenile birds 

aged 50-51 days post hatch (dph). We quantify the maturity of a bird’s syllable timing by calculating the 

entropy of their syllable duration distribution, which will approach 1 when density is evenly spread across 

syllable durations (as in juvenile birds), and approach 0 when density is concentrated in a narrow range of 220 

syllable durations, as was done in [28]. Indeed, using our WhisperSeg segmentation, we find that juvenile 

birds have significantly higher syllable duration entropies than adult birds (F(3, 43) = 17.43, p<0.005, Tukey 

HSD p-adj juvenile vs. typical adult <0.05) (supplemental Fig 7e). The syllable duration entropy values that 

we obtain with WhisperSeg segmentation are also highly correlated with those scores that we obtain from 

manual segmentation (r = 0.85, p<0.05) (supplemental Fig 7a, c), further indicating that our automated 225 

segmentation is sufficiently accurate for downstream analyses.  

 

In addition to syllable level timing, we have implemented multiple metrics describing a song’s rhythm 

at the bout level based on the ‘rhythm spectrogram’ first proposed in [29]. A rhythm spectrum is constructed 

by taking the Fourier transform of the derivative of the amplitude trace of a song. If the song consists of 230 

multiple motifs with a consistent rhythm, the song’s amplitude will have a repeating fluctuation pattern, which 

will be reflected in its spectrum. By calculating the ‘rhythm spectrum’ of multiple bouts, then concatenating 

them into a rhythm spectrogram, we can get a clear impression of a bird’s overall rhythmicity, and the 

consistency of that rhythm across song bouts (Fig 3e). We quantify the strength of this rhythm by computing 

the Wiener Entropy of the mean rhythm spectrum, and we quantify the consistency of the rhythm across 235 

bouts by calculating the coefficient of variation of the peak frequency across each bout in the rhythm 

spectrogram (supplemental Fig 8). We find that juvenile birds have significantly higher rhythm spectrum 

entropies (Figure 3f, One Way ANOVA F(3, 43) = 17.0, Tukey HSD juvenile vs. typical adult p-adj < 0.005) 
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and higher peak frequency CVs than adult birds (supplemental Fig 8, One Way ANOVA F(3, 43) = 8.23, 

Tukey HSD juvenile vs. typical adult p-adj < 0.05). Whereas the FP1 KD birds’ syllable duration entropies 240 

are squarely in line with typical adults (supplemental Fig 7e, Tukey HSD FP1 KD vs typical adult p-adj = 

0.53), their rhythm spectrum entropies (Fig 3f) and gap duration entropies (supplemental Fig 7f) are 

significantly higher (Tukey HSD FP1 KD vs. typical adult p-adj <0.05). This is consistent with our earlier 

finding that the FP1 KD birds have more variable syllable sequencing, and also highlights the 

complementary nature of these metrics; when considered together, they provide a comprehensive overall 245 

description of a bird’s song production.   

 

 

Comparing Song Disruptions with AVN Features 

 In addition to syntax and timing features, AVN can also calculate a suite of acoustic features, 250 

including goodness of pitch, mean frequency, frequency modulation, amplitude modulation, entropy, 

amplitude, and pitch. This feature set is well established for describing zebra finch song, thanks to the Sound 

Analysis Pro application [30]. These features are calculated for each frame of a spectrogram, but to facilitate 

comparisons between birds, we take the mean value of each feature for every syllable rendition, then 

compute the overall mean value and the coefficient of variation across renditions of the same syllable type. 255 

We then select the syllable types with the minimum, median and maximum values with respect to each 

feature to represent the overall acoustic properties of a bird’s song. This results in a total of 48 acoustic 

features for each bird. When combined with our 3 syntax related features and 4 timing related features, we 

are left with a complete set of 55 features to describe all major aspects of a bird’s song production. This 

feature set represents an extremely valuable resource for comparing experimental groups, for tracking song 260 

phenotypes over time, or for detecting birds with atypical song production.  

  

 To showcase the AVN feature set’s potential for comparing birds across experiments and research 

groups, we calculated this feature set for 53 typical adult zebra finches, 16 isolate-reared zebra finches, and 

7 FP1 KD zebra finches from the UTSW colony, as well as 25 typical adult zebra finches from the Rockefeller 265 

Song Library [17], and 4-sham deafened birds and 5 early-deafened birds from Hokkaido University, 

originally recorded for [31]. We fit a Linear Discriminant Analysis (LDA) model to a dataset containing only 

typical and isolate zebra finches and achieved a 95% classification accuracy between these two groups 

(Figure 4a), with the most important features being higher syntax entropy rates, higher syllable duration 

variance, and higher rhythm entropies for isolates compared to typical birds (supplemental Fig 9a). We 270 

repeated this process for typical hearing and deaf birds and achieved a 99% classification accuracy (Fig 

4b), with the most important features being higher mean frequency variance, lower absolute mean 

frequency, and higher syllable duration variance for deaf birds compared to hearing birds (supplemental Fig 

9b).  
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  275 
Figure 4 – Song phenotypes classification with AVN features. a. Linear discriminant values for multiple groups of birds generated from 

a model trained to discriminate between typical and isolate zebra finches (n=16 isolate birds, 7 FP1 KD birds, 5 deaf birds, 4 sham 

deafening birds, 53 typical zebra finches from the UTSW colony and 25 typical zebra finches from Rockefeller). b. Linear discriminant 

values for multiple groups of birds generated from a model trained to discriminate between typical and deaf zebra finches. Same birds 

as in a. c. Confusion matrix indicating the LDA model’s classification of typical, deaf, isolate and FP1 KD birds from aa model trained to 280 
discriminate between typical, deaf, and isolate birds. Scores for typical, deaf, and isolate birds were obtained using leave-one-out cross 

validation, and FP1 KD scores were obtained using a model fit to all typical, deaf and isolate birds. d. Plot of the linear discriminant 

coordinates of isolate (n=16), typical (n=78), and FP1 KD birds (n=7) for a model trained to discriminate between typical, deaf, and isolate 

birds. FP1 KD birds overlap most with isolate birds in this LDA space, indicating that their song production most closely resembles that 

of isolates. 285 

 Finally, we fit an LDA model to a dataset containing typical, isolate, and deaf zebra finches, and used 

this model to assess which of these groups the FP1 KD birds most closely resemble. Previous work suggests 

that FP1 KD in the targeted brain region impairs tutor song memory formation while leaving song motor 

learning intact [21]. Thus, we would expect the FP1 KD birds’ songs to most closely resemble isolates’, who 
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have no tutor song memory but do have access to auditory feedback of their own vocalizations, and to not 290 

resemble deaf birds who have neither tutor song memories, nor access to auditory feedback. Indeed, we 

find that 5/7 FP1 KD birds are classified as isolates by the LDA classifier, with the other 2/7 being classified 

as typical birds (Fig 4c,d). This supports our hypothesis about the nature of the song disruption in FP1 KD 

birds and highlights the utility of a common feature set for comparing song phenotypes. We hope that the 

ease of calculation and completeness of this feature set will facilitate phenotypic comparisons across the 295 

field of songbird neuroscience, particularly as the field grows in its ability to conduct genetic manipulations 

of the neural circuits involved in different aspects of song learning and production.  

 

Tracking Song Development with AVN Features 

 To further showcase the potential of these AVN features for zebra finch song analysis, we also used 300 

them to track song development. We calculated the AVN feature sets for 14 birds from UTSW and 5 birds 

from Duke University [9] at multiple timepoints during song development, ranging from 46 dph to 102 dph. 

We fit a Generalized Additive Model (GAM) to predict a bird’s age based on its AVN features and find that 

we achieve the most accurate age predictions with a model that considers a bird’s syllable duration entropy, 

their syntax entropy, absolute syllable durations, and the variability of goodness of pitch, syllable duration 305 

and Weiner entropy across renditions (Fig 5b). When trained with data from all but one bird and tested on 

the remaining bird, this model can predict a bird’s age within 7 dph for 50% of age points, and within 11 dph 

for 75% of age points (Fig 5a). Its performance is best for younger birds, with prediction accuracy dropping 

considerably for birds over 80 dph, which is expected as song changes slow with age and eventually stabilize 

when birds reach around 90 dph.  310 
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Figure 5 – Age prediction with AVN features. a. Generalized additive model’s age predictions vs. true ages for 103 days of song 

recordings across 19 individual birds. Model predictions were generated using leave-one-bird-out cross validation. The grey line 

indicates where points would lie if the model were perfectly accurate. b. Partial dependence functions for each feature in the GAM 

model. The values of each feature along the x-axis map onto learned contributions to the age prediction along the y-axis. The GAM 315 
model’s prediction is the sum of these age contributions based on each day of song’s feature values, plus an intercept term.  

 

Measuring Song Imitation 

 So far, we’ve demonstrated how AVN’s features can be used to describe and compare adult and 

juvenile song production across experiments and research groups. While these features are sufficient to 320 

predict a bird’s song learning stage and to detect abnormalities in experimental groups, they don’t directly 

reflect song learning success. Zebra finches learn song by imitating an adult tutor, and this song learning is 

typically assessed by comparing a pupil bird’s song to its tutor’s, with higher similarity reflecting more 

successful learning ([30], but see [17]). Many methods for zebra finch song similarity scoring currently exist, 

however they all require either the manual identification of pupil and/or tutor motifs [30, 32, 33], which limits 325 

the number of renditions that can be considered and has the potential to introduce experimenter bias, or 
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require retraining or re-calibration when applied to new tutor-pupil pairs [8, 34], which makes it impossible 

to directly compare learning outcomes across experiments.  

 

To overcome these limitations, we have developed a novel similarity scoring system which doesn’t 330 

require any manual motif identification, or any retraining or re-calibration for new tutor-pupil comparisons. 

Our approach involves a deep convolutional neural network which is trained with a dataset of over 16,000 

manually annotated syllables from 21 adult zebra finches from the UTSW colony. These syllables are 

presented to the model in triplets, consisting of a randomly selected ‘anchor’ syllable, a ‘positive’ syllable 

which belongs to the same type as the anchor, and a ‘negative’ syllable, which belongs to a different syllable 335 

type. The model learns to map spectrograms of syllables to an 8-dimensional embedding space, such that 

the anchor syllable’s embedding is closer to the positive’s embedding than to the negative’s. We use the 

trained network to compute the syllable embeddings for hundreds of syllables produced by a pupil bird and 

by its tutor and measure the similarity between their songs by calculating the Earth Mover’s Distance (EMD) 

between their syllable distributions (Fig 6a).  340 

 

 We first validated this approach with a dataset of 30 typical tutor-pupil pairs from the UTSW colony 

segmented using WhisperSeg, none of whom share a song tutor with any of the birds used to train the 

model. The model consistently yields higher EMD dissimilarity scores between a pupil and unrelated bird, 

compared to a pupil vs. another bird with the same tutor (a ‘sibling’) and a pupil vs. its tutor, as expected 345 

(Fig 6b). Across each of these comparisons our method produces EMD scores following the same pattern 

and in the same absolute range for the UTSW dataset and for a dataset of 25 tutor-pupil pairs from the 

Rockefeller Song Library, despite these birds being recorded under different conditions from any of the birds 

used in model training (Fig 6b). This shows that the trained model generalizes well to birds from other 

research groups without the need for any additional fine tuning, and thus can serve as a standard approach 350 

for the entire field. Our approach outperforms Sound Analysis Pro [30] (contrast index = 0.156) [32] and 

Mandelblat-Cerf & Fee 2014 (contrast index = 0.41) [32], based on its ‘contrast index’, and yields similarly 

high contrast indices for both the UTSW and Rockefeller datasets (Supplemental 10c, UTSW mean contrast 

index = 0.521 +- 0.019, Rockefeller mean contrast index = 0.548 +- 0.017, t-test p = 0.30). EMD scores 

produced by this model also agree better with expert human judgements of song similarity than do 355 

%similarity scores calculated with Sound Analysis Pro (Figure 6c, EMD vs. human expert absolute r = 0.87, 

Supplemental 10b, SAP %similarity vs. human expert absolute r = 0.33). In fact, the correlation between 

EMD scores and our human expert panel’s scores is within the range of correlations of individual experts 

with the mean of the remaining evaluators, indicating that our method is as reliable as an individual human 

expert (supplemental Fig 10d).  360 
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Figure 6 – Illustration and validation of AVN’s song similarity scoring method. a. Schematic of the similarity scoring method. A deep 

convolutional neural network is used to embed syllables in an 8-dimensional space, where each syllable is a single point, and similar 

syllables are embedded close together. The first 2 principal components of the 8-dimensional space are used for visualization purposes 

only here. The syllable embedding distributions for two random subsets of syllables produced by the same pupil on the same day have 365 
a high degree of overlap. The distributions of all syllables from a pupil and his song tutor are less similar than a pupil compared to himself, 

but still much more similar than a pupil and a random unrelated bird. b. Earth Mover’s Distance (EMD) dissimilarity score distribution for 
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comparisons between a pupil and itself (n=30 comparisons for UTSW, n = 25 for Rockefeller), a pupil and its tutor (n=30 comparisons for 

UTSW, n=25 for Rockefeller), two pupils which share the same tutor (aka pupil vs. ‘Sibling’ comparisons, n = 60 comparisons for UTSW, 

n = 64 for Rockefeller), and between two pupils who don’t share  song tutor (aka pupil vs. unrelated bird, n = 90 comparisons for UTSW, 370 
n = 75 for Rockefeller). Calculated with a dataset of 30 typical tutor-pupil pairs from UTSW and 25 from Rockefeller. c. Correlation 

between EMD dissimilarity scores and human expert judgements of song similarity for 14 tutor-pupil comparisons from the UTSW colony 

(r = -0.87, p<0.005). d.  Tutor-pupil EMD dissimilarity scores for typical pupils from the UTSW colony (n = 30), typical pupils from the 

Rockefeller Song Library (n = 25), and FP1 KD pupils from the UTSW colony (n = 7) (One Way ANOVA F(2, 57) = 18.6, p < 0.005. * indicates 

Tukey HSD post hoc p-adj < 0.05). e. EMD Dissimilarity score between birds at various age points across development, compared to their 375 
mature song recorded when the bird is over 90dph. Each point represents one comparison (n = 91 comparisons across 11 birds). Grey 

line is an exponential function fit to the data to emphasize the slowing of song maturation as birds approach maturity. 

 

 Using this method, we find that FP1 KD pupils have significantly higher EMD dissimilarity to tutor 

scores when compared to typical birds from either UTSW or Rockefeller (Fig 6d, One Way ANOVA F(2, 57) 380 

= 18.6, Tukey HSD FP1 KD vs typical UTSW p-adj < 0.005, FP1 KD vs typical Rockefeller p-adj < 0.005), 

showing that this method can be used to assess song learning outcomes in experimentally manipulated 

birds. We also used the model to look at how a bird’s song changes over development, by comparing song 

at multiple age points to a bird’s mature song. As expected, we find that birds gradually become more similar 

to their mature song over the course of development, and that the rate of this change slows as birds 385 

approach maturity (Fig 6e). Altogether, these tests showcase that this method is more reliable at assessing 

tutor-pupil song similarity than existing methods, while also not requiring any manual motif identification or 

dataset-specific fine tuning. As a result, as with the AVN acoustic, timing, and syntax features, its scores 

are directly comparable across research groups, facilitating the quantitative comparison of song learning 

outcomes across studies. 390 

 

Discussion  
Here, we have presented the AVN song analysis pipeline, which performs highly accurate syllable 

segmentation and syllable labeling. We have shown that this approach yields consistently high performance 

across multiple zebra finch colonies, suggesting that it can standardize and simplify large scale behavioral 395 

annotation across research groups, without the need for additional training or fine-tuning. The AVN labels 

are used to calculate syntax features which agree well with manual annotations, and which are sufficient to 

discriminate between typical birds and birds with known genetic disruptions. The AVN segmentations and 

raw song files are used to calculate timing features, which again are consistent across colonies, and which 

reflect a bird’s stage in song development. Standard acoustic features are also calculated for each AVN 400 

syllable type, which can be used to describe the overall acoustic properties of a bird’s song.  

  

 To showcase the utility of these song features, we presented how they can be used to compare 

multiple different song phenotypes, to test our hypothesis that the songs of FP1 KD birds would more closely 
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resemble isolate birds’ compared to typical or deaf birds’ songs [21]. We also showed how these features 405 

can be used to create an interpretable model to predict a bird’s age within 7 days while their song is rapidly 

evolving from immature subsong to stable adult song. As more research groups use the AVN feature set to 

describe their birds’ song phenotypes, these analyses will only become more sensitive and powerful. 

Ultimately, we hope that these song features can be used to establish a comprehensive map of song 

phenotypes, which more closely link abnormal song phenotypes with the neural circuit dysfunctions 410 

underlying them.  

  

 Finally, we developed a novel similarity scoring system which outperforms existing methods in its 

sensitivity and fidelity to expert human judgements of song similarity, all without requiring any manual song 

annotation. Again, we expect this to be an invaluable tool for describing the nature and severity of song 415 

learning phenotypes in experimentally manipulated birds, where existing similarity scoring methods perform 

particularly poorly.  

  

 AVN is available to researchers as an open-source python package and as a graphical application. 

The python package allows researchers with some coding experience to take full advantage of the flexibility 420 

of these tools and integrate this pipeline into their data collection and processing workflows, while the 

application allows other researchers to easily annotate their songs and calculate AVN features with minimal 

coding, in a highly reproducible fashion.  

 

 Altogether, we see this pipeline as an example of the integration of deep learning tools and expertly 425 

curated features to automated behavior analysis without compromising the interpretability or generalizability 

of results. This feature set and annotation approach was designed with zebra finches in mind, but should be 

easily adaptable to other species with discrete syllables that can be clustered according to their acoustic 

features, such as Bengalese finches and Canaries, for example [10]. These species have more complex 

syllable sequencing than zebra finches and would therefore also benefit from additional syntax and timing 430 

features specific to their species. Additionally, while we’ve strived for a comprehensive set of features, it is 

possible that our 55-feature set will fail to reflect certain interesting song phenotypes that haven’t yet been 

observed. We hope that the open-source nature and extensive documentation of the AVN pipeline will allow 

and encourage researchers to contribute additional song features to the pipeline as they encounter such 

cases where the current feature set may be insufficient.  435 

 

 

 

 

 440 
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Methods 

The AVN documentation, AVN-GUI, and code necessary to produce all figures in this manuscript can be 

found through the following links: 

 AVN Documentation: https://avn.readthedocs.io/en/latest/index.html 445 

 AVN GUI: https://avn.readthedocs.io/en/latest/AVN_GUI.html  

 Code for Figures: https://github.com/theresekoch/AVN_paper  

  

Data Acquisition 
 A complete list of birds and the analyses in which they were included can be found in Supplementary 450 

Table 1.  

 

UTSW Dataset 
Many birds included in this study were previously recorded and analyzed in [21]. This includes 7 

birds which were injected with a pscAAV-GFP-shFoxP1 virus before exposure to a song tutor, leading to 455 

disrupted songs (referred to as FP1 KD birds in this manuscript and FP1-KD SE in [21]). 8 birds were 

included in this group in the previous paper. One was omitted from this manuscript because it exhibited 

completely typical song, likely due to weak viral expression. A further 10 birds which were injected with a 

control virus before exposure to a song tutor (Ctrl SE in [21]), and 10 which were injected with the pscAAV-

GFP-shFoxP1 after tutor song exposure (FP1-KD BI in [21]) are included in the current study. Both of these 460 

groups exhibit species-typical song production and are included in the ‘typical’ group in this study. Finally, 8 

additional birds which were raised in isolation from an adult song model until they were at least 90 days post 

hatch (‘Full isolates’ in the FP1 paper and ‘Isolates’ in the current study) were included in this study, for a 

total of 35 birds. See [21] for more information on viral injections and rearing conditions.  

 465 

An additional 8 adult isolate birds, 37 typically reared adult birds, and 10 juvenile birds were recorded 

for this study. For isolate birds, fathers were removed from breeding cages before the young reached 12dph. 

These young remained housed with their mother and siblings in a room containing only other isolate 

breeding cages, until they were weaned between 40 and 60dph, at which point they were housed 

individually, with auditory but no visual access to other isolate reared males. Typically reared and juvenile 470 

birds were raised in our main colony room which contained about 55 breeding pairs. They had unlimited 

access to their father’s song in their home cages, until they were weaned between 40 and 60dph, at which 

point they were housed in group cages with other males.  

 

Recordings were obtained by individually housing birds in sound attenuating chambers. They were 475 

continuously recorded using Sound Analysis Pro 2011 [30]. All birds were placed on a 14h:10h day:night 
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cycle and provided ad libitum access to food, water and grit. All procedures were performed in accordance 

with protocols approved by the Animal Care and Use Committee at UT Southwestern Medical Center.  

 

Additional Song Data 480 

 In addition to the birds recorded at UTSW, this study includes recordings of 25 pupils and 6 tutors 

from the Rockefeller University Field Research Center Song Library [17], 5 juvenile birds from Duke 

University [9], and 5 early deafened and 4 sham deafened birds from Hokkaido University [31]. See citations 

for more information on rearing and recording conditions.  

 485 

Manual Song Annotation 

 A random subset of 30 song files from a single day of recording were annotated for each of 35 adult 

birds from UTSW, and 15 song files were annotated for each of 25 adult birds from the Rockefeller Song 

Library.  Manual annotation was performed using the evsonganaly application in MATLAB [35], and involved 

1) amplitude threshold syllable segmentation with a threshold selected for each song file based on visual 490 

inspection of the amplitude trace and spectrogram, 2) manual correction of erroneous syllable onsets or 

offsets, and 3) assignment of syllable labels to each syllable based on visual inspection of the spectrogram.  

 

For all applications except training TweetyNet [5], segments that reflect cage noise were dropped 

from the annotations based on visual inspection of the spectrograms. A second set of annotations were 495 

made which retained noise segments, labeling them as such, with all syllables and calls labeled as simply 

‘vocalizations’ for the purpose of training TweetyNet.  

 

Segmentation 

Amplitude Segmentation 500 

Amplitude segmentation was performed using the ‘RMSEDerivative’ class in the AVN python package’s 

segmentation module. Each song file is bandpass filtered between 200 Hz and 9000 Hz, then the root mean 

square energy (RMSE) of each audio frame is computed with a hop length of 512 samples, and a frame 

length of 2048 samples. The RMSE values of each song file are normalized, then the RMSE’s first derivative 

is compared against user-specified thresholds. A syllable onset is identified as a positive crossing of the 505 

‘onset’ threshold. Syllable offsets tend to be marked by more gradual changes in RMSE compared to syllable 

onsets, making it difficult to identify them consistently. To mitigate this, we perform onset to onset 

segmentation with this method, meaning each segment included a song syllable, and the silent gap that 

immediately followed it. If a syllable onset is not followed by another onset within 300ms (as in the end of a 

song bout), the offset is set as the first negative crossing of an ‘offset’ threshold after the syllable onset.  510 

 

In keeping with the TweetyNet and WhisperSeg segmentation methods which don’t require per-bird 

parameter adjustments, the same ‘onset’ and ‘offset’ thresholds were used for all birds in the dataset. These 
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thresholds were selected using AVN’s segmentation.Utils.threshold_optimization_many_birds() function, 

which compares the F1 scores relative to manual segmentation obtained with multiple different threshold 515 

values to identify the threshold value that results in the lowest mean F1 score across all 35 UTSW birds 

used for amplitude segmentation validation. The same thresholds selected based on the UTSW birds were 

used to segment the 25 Rockefeller Song Library birds, as a test of the generalization of this method without 

the need for manual segmentations.  

 520 

TweetyNet 
The vak python package was used to prepare datasets for, train, and generate segmentation 

predictions with the TweetyNet model [5]. TweetyNet is a deep neural network consisting of a block of 

convolutional layers followed by a bidirectional long short-term memory (LSTM) layer. The model takes a 1s 

spectrogram of song as input, and labels each frame within that spectrogram. TweetyNet was designed for 525 

simultaneous syllable labeling and segmentation, in which case it would label each frame of the spectrogram 

with a syllable label or as silence. However, to make this model generalize to new birds without any 

additional training data, we instead trained TweetyNet to label each frame as a vocalization, silence, or noise 

(common sources of noise include the bird hopping around its cage and flapping its wings), rather than a 

more specific syllable type. When trained with such data from many birds, it can learn to distinguish 530 

vocalizations from noise and silence in a sufficiently general manner that the model can be applied to 

previously unseen individuals.  

 

Manually annotated song files with label classes ‘noise’ and ‘vocalization’ were used to train 

TweetyNet in a leave-one-out cross validation scheme, meaning the model was trained with data from all 535 

but one bird and tested on the withheld bird for each of the 35 birds in the UTSW dataset. A model trained 

with data from all 35 UTSW birds was used to segment the 25 validation birds from the Rockefeller Song 

Library dataset, to test the model’s ability to generalize to new colonies. Full model training and prediction 

procedures can be found in this paper’s accompanying github repository. For more information on the 

TweetyNet model itself, see [5].  540 

 

WhisperSeg 

 WhisperSeg is an instance of the Whisper Transformer model which was pre-trained for automatic 

human speech recognition, and fine-tuned for animal voice activity detection with a multi-species animal 

vocalization dataset [6]. It takes a spectrogram representation of up to 2.5s of song as input and outputs the 545 

indices of vocalization onsets and offsets in the spectrogram. These indices are then converted to 

timestamps, and a consistent labeling scheme for an entire song file is achieved through a ‘majority-vote’ 

post-processing step across overlapping 2.5s song segments. Syllable segmentation was performed using 

the whisperseg-large-ms-ct2 model, with hyperparameters optimized for zebra finch song segmentation, 
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based on [6]. Full model prediction procedures can be found in this paper’s accompanying github repository. 550 

For more information on the WhisperSeg model and its training, see [6].  

 

Validation 

Segmentation methods were compared on the basis of their precision, recall, and F1 scores relative 

to manual annotations. 555 

Precision	 = 	
True	Positives

True	Positives	 + 	False	Positives
	 

Recall	 = 	
True	Positives

True	Positives	 + 	False	Negatives
	 

F1	 = 	
True	Positives

True	Positives + 12 (False	Positives	+	False	Negatives)
	 

where a true positive is a syllable onset in the automatic segmentation that is within 10ms of a syllable onset 

in the manual annotation, a false positive is a syllable onset in the automatic segmentation that doesn’t 560 

match with a syllable onset in the manual annotation within 10ms, and a false negative is a syllable onset 

that is present in the manual annotation which doesn’t match with an automatic segmentation onset within 

10ms. When determining onset alignments, we ensure that each syllable onset in the manual annotation 

can only ‘match’ with a single syllable onset in the automatic segmentation, and vis-versa. This was done 

using AVN’s `segmentation.Metrics.calc_F1()` function. Across all 3 metrics, scores closer to 1 indicate 565 

better agreement between automatic and manual segmentations. These same features were calculated for 

syllable offsets as well, but with an allowance of 20ms rather than 10ms, to account for the greater variability 

in exact offset segmentation across all methods tested.  

 

To further examine the temporal precision of each method relative to manual annotation, we also 570 

calculated the time difference in milliseconds between matched syllable onsets and offsets between 

automatic segmentations and manual annotations. This was done using AVN’s 

`segmentation.Metrics.get_time_delta_df()` function.  

  

Labeling 575 

UMAP Dimensionality Reduction 

 UMAP dimensionality reduction [18] is performed on spectrograms of syllables, prior to HDBSCAN 

clustering for label assignment [19]. First, spectrograms of each segmented syllable are produced. The 

audio is first bandpass filtered between 500Hz and 15KHz, then amplitude normalized independently for 

each syllable rendition. The short term Fourier transform of the normalized audio for each syllable is 580 

computed with a window length of 512 samples and a hop length of 128 samples. The resulting amplitude 

spectrogram is converted to decibels using the librosa `amplitude_to_db()` function [36]. The db-scaled 

spectrogram is then padded to match the dimensions of the longest syllable in a given bird’s dataset, or 
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clipped to 870ms if it exceeds that duration. This limit is very generous, and only ever applies to 

segmentation errors, but it is necessary to avoid memory issues during UMAP computation. Normalized 585 

spectrograms are then flattened from an array to a single long vector, and the vectors corresponding to each 

spectrogram are concatenated into an array separately for each bird. This spectrogram array is used to 

calculate the UMAP embeddings of each syllable using the UMAP python package’s `UMAP()` function. 

This approach is based on [10]. 

 590 

 At a high level, UMAP dimensionality reduction involves constructing a graphical representation of 

the syllable set, where each syllable spectrogram can be thought of as a point in high dimensional space 

which is connected to other syllables near it by edges. These edges are weighted based on the distance 

between points and the local density of those data points. The high dimensional graph is then projected into 

lower dimensions in a way that best preserves its overall structure. 595 

 

UMAP dimensionality reduction can be a useful initial step when attempting to cluster high-

dimensional data points because many clustering algorithms, especially density-based clustering algorithms 

such as HDBSCAN can suffer from the ‘curse of dimensionality’. When clustering spectrograms directly, 

each pixel in the spectrogram is a dimension, meaning each spectrogram exists as a point in a space with 600 

thousands of dimensions. In such a high dimensional space, points will be very sparsely distributed, even if 

the spectrograms appear largely very similar. As a result, it is very difficult to detect regions of higher point 

density to serve as the basis of clusters. Reducing the dimensionality of the dataset forces points closer 

together, such that regions of high density separated by lower density can be more easily detected. UMAP 

is particularly adept at emphasizing local clusters in high dimensional data because of how its initial 605 

embedding graph is constructed.  

 

UMAP parameters were selected based on suggestions in the UMAP-learn documentation for 

clustering using UMAP embeddings and based on visual inspection of plots and labeling outcomes 

compared to manual annotations for birds from the UTSW dataset.  610 

 

HDBSCAN Clustering 

 The “Hierarchical Density-based Spatial Clustering of Applications with Noise” (HDBSCAN) 

clustering algorithm [19] was applied to the UMAP embeddings of syllable spectrograms for each bird 

independently, in order to assign syllable labels. This method was selected based on the results in [10] for 615 

clustering Bengalese finch syllables, a species closely related to zebra finches.  

 

Essentially, HDBSCAN works by calculating the ‘mutual reachability’ distance between points in the 

UMAP space, based on the distance between them and their local densities. These mutual reachability 

distances serve as edges connecting nodes (points representing individual song syllables) in a graph, which 620 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2024. ; https://doi.org/10.1101/2024.05.10.593561doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593561
http://creativecommons.org/licenses/by-nd/4.0/


  23 

are then pruned to obtain a minimum spanning tree (a graph using the minimum number of total edges to 

connect all points). The minimum spanning tree is then converted to a hierarchy by sorting the edges on the 

basis of their mutual reachability scores. Clusters of points are identified by defining a minimum cluster size 

and selecting the clusters that persist over the longest span of the hierarchy. As with the UMAP parameters, 

the same HDBSCAN hyperparameter set was used for all birds. The hyperparameter values were selected 625 

based on v-measure scores and visual inspection of confusion matrices for WhisperSeg segments 

compared to manual annotations for birds from the UTSW colony.  

 

Validation 

 Syllable labeling was assessed by comparing automatically assigned syllable labels to manual 630 

annotations. Automatically labeled segments first had to be aligned to the manual annotations to identify 

pairs of labels in the automatic clustering and manual annotation that referred to the same vocalization. This 

was done using the same method described in the Segmentation Validation section, in which syllable onsets 

are uniquely matched to their closest counterpart across segmentation methods, this time up to a maximum 

distance of 100ms. False positive syllable detections (i.e. syllable present in the automatic segmentation 635 

without a manual annotation counterpart) are assigned to their own manual annotation category (‘x’), and 

False negative syllables detections (i.e. syllables present in the manual annotation without an automatic 

segmentation counterpart) are assigned to their own cluster (‘1000’) for the purposes of visualization and 

quantification.  

 640 

 Once syllables have been aligned between automatic segmentation and manual annotations, the 

HDBSCAN cluster labels are compared to manual labels for each bird to construct a confusion matrix, which 

gives the number of syllables in each HDBSCAN cluster that carry each of the possible manual labels. The 

confusion matrix values can then be used to compute homogeneity, completeness, and v-measure scores, 

to evaluate the correspondence between HDBSCAN labels and manual annotations for each bird. 645 

Homogeneity measures the extent to which syllables with the same AVN label also carry the same manual 

annotation label, completeness measures the extent to which syllables with the same manual annotation 

label also carry the same AVN label, and the V-measure is the harmonic mean of these two scores. 

Homogeneity	=	
H(manual	labels	|	clusters)

H(manual	labels)
 

Completeness	=	
H(clusters	|	manual	labels)

H(clusters)
 650 

V-measure	=	
2		 × 	Homogeneity	 × 	Completeness
Homogeneity	 + 	Completeness

 

Where 𝐻(manual	labels	|	clusters) is the conditional entropy of the manual labels given the cluster labels, 

𝐻(manual	labels) is the entropy of the manual labels, and vis-versa. In all cases, a higher score indicates 
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better correspondence between clusters and manual labels, with a maximum possible score of 1, and 

minimum score of 0.  655 

 

Syntax Features 

Syntax Raster Plot 
Beginning with a table of all AVN labels, syllables that are preceded and followed by a period of 

silence longer than 200 ms are removed, as they likely reflect calls produced outside of song. Song bouts 660 

are then identified as sequences of at least two syllables that are separated by silent gaps no longer than 

200ms. These bouts are aligned based on a user-specified alignment syllable, such that the first instance 

of the alignment syllable is in the same position across all bouts. This alignment is important as bouts 

typically begin with a variable number of introductory notes, which will obscure patterns in syllable sequence 

across bouts when they are not aligned to the first non-introductory note syllable. After alignment, bouts are 665 

ordered such that bouts with similar sequences after the alignment syllable are together in the final plot, 

which also helps emphasize patterns across bouts. This is done using AVN’s 

syntax.Syntax_Data.make_syntax_raster() function. See avn’s documentation for additional information and 

examples.  

 670 

Syllable Transition Matrix 

 As with syntax raster plots, syllables that are preceded and followed by more than 200ms of silence 

are dropped from the AVN labels as they likely reflect calls produced outside of song. Silent gaps longer 

than 200ms and file bounds are then added as states to the AVN label sequence. All syllable transitions 

between AVN labels are then counted, including transitions to and from periods of over 200ms of silence; 675 

meaningful transitions as they reflect the beginnings or ends of song bouts. Transitions to and from file 

bounds are ignored, as these are artifacts of the recording and don’t reflect meaningful behavioral states. 

The transition counts are then divided by the total number of renditions of the first syllable type in the 

transition to get the conditional probability of the second syllable, given the first syllable. This is done using 

AVN’s syntax.Syntax_Data.make_transition_matrix() function.  680 

 

Syntax Entropy Rate 

Syntax stereotypy is quantified using the entropy rate of the syllable transition matrix.  

entropy rate =  −  Gπ!𝑝!,# log$J𝑝!,#K
%, '

 

where 𝑝!,# is the probability of transitioning from initial syllable type i to following syllable type k, and 𝜋! the 685 

probability of syllable type i occurring, regardless of what syllable precedes or follows it. An entropy rate 

approaching 0 indicates that all transitions are highly predictable. The maximum possible entropy rate score 

is 𝑙𝑜𝑔$(𝑁) where N is the number of syllable types in the bird’s repertoire plus one to account for silence as 

a possible state. To directly compare scores between birds without being biased by the number of syllable 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2024. ; https://doi.org/10.1101/2024.05.10.593561doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593561
http://creativecommons.org/licenses/by-nd/4.0/


  25 

types in their song (a feature which depends strongly on the number of syllable types present in their tutor’s 690 

song), we divide the entropy rate score by 𝑙𝑜𝑔$(𝑁) such that is it now bounded between 0 and 1. This is 

done using AVN’s syntax.Syntax_Data.get_entropy_rate() function.  

 

Repetition Bouts 

 A repetition bout refers to every instance in which a syllable is produced, either a single time or 695 

multiple times in a row. For example, in the syllable sequence abcaaabc, syllable a has 2 repetition bouts, 

one of length one, meaning the syllable was produced without being repeated, and one of length 3, meaning 

the syllable was produced 3 times in a row. The number and length of repetition bouts is calculated for each 

syllable type in a bird’s repertoire. The mean repetition bout length and coefficient of variation (CV) of 

repetition bout length is then calculated for each syllable type.  700 

 

To facilitate comparisons across birds, which have different numbers of syllable types, the mean 

repetition bout length and CV of repetition bout length for the syllable type with the highest mean repetition 

bout length are selected to represent the bird’s overall tendency to repeat syllables, excluding syllable types 

that reflect putative calls or introductory notes. Typical zebra finches often repeat calls or introductory notes, 705 

but rarely repeat song syllables, so looking at the repetition of song syllables is more informative when 

detecting or comparing birds with abnormal syntax. That said, in certain experiments repetition bout features 

of calls or introductory notes may be of greater interest, in which case they can also be specifically identified 

using AVN.  

 710 

 An AVN syllable type is considered a putative introductory note if it 1) is no less than 5% less likely 

to be transitioned to from silence than the syllable type most commonly transitioned to from silence, meaning 

it tends to occur at the start of a vocalization bout, and 2) it has a single dominant transition to a syllable 

type other than itself which is not silence, meaning that after a number of repetitions, it is eventually followed 

by a predictable next syllable type, which should reflect the start of a motif. These criteria were determined 715 

based on inspection of the syntax properties of introductory notes in manual song annotations. An AVN 

syllable type is considered a putative call if it is 1) not a putative introductory note, and 2) is produced in a 

bout of one or two syllables preceded and followed by at least 200ms of silence in more than ⅓ of all 

utterances. This criterion was again determined based on visual inspection of manual song annotations.  

 720 

Song Timing Features 

Syllable and Gap Duration Entropy 

 A syllable duration distribution is constructed based on the segment durations output by WhisperSeg 

for each bird. A histogram of the log() 	of syllable durations is calculated, with 50 evenly spaced bins ranging 

from -2.5 to 0. As in [28] the log of syllable durations are used because the syllable duration distributions of 725 

juvenile birds are roughly exponential, and therefore linear in log space. Histograms are normalized to 
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produce a probability density function across syllable durations. The entropy of this distribution is then 

calculated as  

Entropy = 
∑ 𝑝!  log(𝑝!)*
! + (
log(𝑁)

 

 where 𝑝! is the density the ith bin in the histogram, and N is the total number of bins (50, in this case). 730 

The resulting entropy can range from 0 to 1, with higher scores indicating less predictable syllable durations, 

consistent with the songs of immature birds. 

 

 Entropy is calculated similarly for silent gap durations, where gaps durations are defined as the time 

difference between a syllable offset and the immediately following syllable onset, up to a maximum duration 735 

of 200 ms. A log transform was not applied to gap durations before constructing a histogram with 20 10ms 

bins.  

 

Rhythm Spectrograms 

 Rhythm spectrograms are a visualization of the strength and stereotypy of rhythmic patterns in a 740 

bird’s song, generated by concatenating the rhythm spectra of multiple song bouts, as first proposed in [29]. 

A song bout's rhythm spectrum is the spectrum of the first derivative of its amplitude. If a song’s amplitude 

has consistent repeating fluctuation patterns (as we expect for a bout composed of multiple repetitions of 

the same stereotyped motif), then its spectrum will exhibit harmonic banding patterns. If, by contrast, there 

are no repeating rhythms in the song’s amplitude, the rhythm spectrum will have a more even spread of 745 

energy across frequency bands. To detect these harmonic patterns more easily in the rhythm spectrogram, 

all rhythm spectrograms are plotted as the rolling average of 10 song bouts, smoothing out some bout-to-

bout variation in the spectra to make harmonic bands more obvious.  

 

 To ensure consistent dimensions and resolution across song bouts, the rhythm spectrum is actually 750 

calculated for segments of song of a fixed duration, rather than complete song bouts. This also eliminates 

the need for any segmentation and labeling of song files to identify bouts, making this timing analysis method 

completely independent of possible segmentation and labeling errors. Each .wav file is broken into multiple 

3-second-long frames, with a hop length of 0.2 seconds. The 3 frames with the highest total amplitude (ie 

the 3 windows containing the most vocalizations) from each file have their rhythm spectra calculated, and 755 

the mean of their spectra is taken as the rhythm spectrum for that file. Because of this windowing system, 

only files at least 3 + 3 × 0.2 seconds in duration can be windowed this way, so shorter .wav files are 

ignored.   

 

The derivative of the amplitude of each frame is centered at 0 by subtracting the mean value, then 760 

multiplied by a Hanning window to reduce spectral leakage when calculating the spectrum. The transformed 
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amplitude derivative is then padded to a total length of 100000 frames, resulting in a smoother spectrum 

with more interpolated values. A bandpass filter is then applied, keeping only frequency components above 

1 Hz and below 500Hz, as these are the frequencies consistent with typical zebra finch motif and syllable 

periods. Finally, the real component of the Fourier transform is calculated, constituting the frame’s ‘rhythm 765 

spectrum’. Only portions of the rhythm spectrum corresponding to frequencies between 0 and 30Hz are 

included in rhythm spectrograms and downstream feature calculations, as this is the range with the strongest 

harmonic banding for typical zebra finches. This is all done using AVN’s 

avn.timing.RhythmAnlysis.make_rhythm_spectrogram() function.  

 770 

Rhythm Spectrum Entropy 

 We quantify the strength of the harmonic content of a bird’s rhythm spectrum (i.e. the strength of its 

rhythm) by calculating the Wiener Entropy of the mean rhythm spectrum across bouts. Wiener entropy is a 

common acoustic feature used to assess the harmonic nature of zebra finch syllables, with scores near 0 

reflecting signals with little harmonic structure, and scores ranging to negative infinity for signals with more 775 

harmonic structure.  

rhythm	spectrum	entropy	=	
∑ log(rhythm	spectrum$)*
,	+	)

𝑁	 − 	log(∑ rhythm	spectrum$)*
,+) 𝑁)⁄

 

This is calculated using AVN’s avn.timing.RhythmAnalysis.calc_rhythm_spectrogram_entropy() function.  

 

Peak Frequency Variability 780 

 Whereas the rhythm spectrum entropy measures the overall strength of the rhythms in a set of songs, 

the peak frequency variability reflects the consistency of the rhythm across multiple song renditions. The 

exact spacing of the harmonics in a rhythm spectrogram depends on the shape of the amplitude trace of the 

bird’s motif. It isn’t obvious how different motifs and motif lengths affect the banding pattern of the rhythm 

spectrogram, so it doesn’t make sense to compare the appearance of different birds’ rhythm spectra beyond 785 

the prominence of harmonic bands. Likewise, the frequency of the harmonic band with the highest 

magnitude doesn’t carry any special meaning. However, in a very stereotyped bird, that harmonic band will 

be consistent across songs. If the bird sings its song slightly faster or slower the band can shift slightly in 

the frequency domain. So, we measure a bird’s rhythm stereotypy by looking at the variability of the 

frequency with the highest magnitude across song files (the peak frequency). 790 

 

 In practice the frequency band with the highest energy can jump between harmonic bands across 

files, even while the overall timing is largely unchanged, so to truly capture fluctuations in the underlying 

rhythms in a bird’s song, we restrict the range of ‘peak frequency’ values to a 3Hz band about the median 

peak frequency across bouts. The coefficient of variation of the peak frequency within this range is calculated 795 
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as the peak frequency variability. This is done using AVN’s avn.timing.RhythmAnalysis.calc_peak_freq_cv() 

function.  

 

Acoustic Features 

Goodness of pitch, Mean Frequency, Weiner Entropy, Amplitude, Amplitude Modulation, Frequency 800 

Modulation, and Pitch were all calculated using AVN in python, with implementations based on the Sound 

Analysis Tools for MATLAB [30]. Each of these features is calculated for each frame in a spectrogram, 

resulting in a time series of values. We summarize these time series of varying lengths by taking the mean 

value of each feature for each AVN segmented syllable. We then calculate the mean and coefficient of 

variation of the mean feature values for each syllable type according to their AVN labels. As each bird has 805 

a different number of syllable types, we need to further summarize these features so that we have a 

consistent set of values for comparisons across individuals. To do this, we take the syllable type with the 

minimum, maximum and median mean value and CV for each feature. This results in 6 values summarizing 

the variability and absolute values of each feature for each bird. Across 7 acoustic features plus syllable 

duration, this results in a total set of 48 features.  810 

 

Linear Discriminant Analysis 

 We fit 3 different linear discriminant analysis models in this paper. One to discriminate between 

typical zebra finches and isolate zebra finches, one to discriminate between typical zebra finches and deaf 

zebra finches, and one to discriminate between all 3 groups at once. For each of these models, L1 815 

regularization was used to reduce the number of features considered in the model. This improves both the 

generalization of the model, and its interpretability by focusing on just a subset of the most informative 

features. L1 feature selection was performed considering all AVN features from each bird, excluding 

amplitude and amplitude-modulation features, as these were found to vary according to recording 

conditions. Once the feature set was reduced, classification accuracy of the models was tested using a 820 

stratified k-folds cross validation approach. Plotted LDA values and feature weights were obtained from a 

model trained with the complete dataset. This was all done using the scikit-learn python package [37].  

 

Age Prediction Generalized Additive Model 
 The full AVN feature set was calculated for 19 individual birds across 103 age points, using songs 825 

produced within the first 4 hours after lights on. Juvenile birds have been shown to have more variable songs 

in the early morning [9], which exaggerates the difference between immature and mature song and improves 

the model’s ability to predict a bird’s age, compared to features calculated with a full day of songs, or songs 

produced in the afternoon. 

 830 

Before fitting a Generalized Additive Model (GAM) for age prediction, we pruned our feature set to 

include only the most informative features. We first excluded all amplitude and amplitude-modulation 
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features, as these were strongly affected by recording conditions and differed between colonies. We then 

calculated the mutual information between each remaining feature and age, considering 43 age points from 

12 individual birds. We automatically excluded all features with a mutual information score lower than 0.05 835 

(20/44 features). We further refined this feature set by performing forward feature selection with our 43 age 

point dataset. This means we iteratively added individual features to the model based on which additional 

feature resulted in the lowest mean squared error (MSE) predictions in a bird-fold cross validation.  We then 

selected the feature set with the lowest overall MSE, further reducing our feature set to just 7 features.  

 840 

 A GAM model with the 7 selected features was used to predict bird’s ages in a leave-one-bird-out 

(aka bird-fold) cross validation scheme. Here, we included the 43 age points from 12 individual birds used 

for feature selection, plus an additional test set of 60 age points from 7 individual birds. We saw no significant 

difference in model performance between this test set and the dataset used for feature selection, so we 

pooled results across these groups.  845 

 

 To investigate the contribution of each feature to the overall model, we fit a model with all birds in 

the dataset, and used the pyGAM python package [38] to extract the partial dependence functions for each 

feature.  

 850 

Similarity Scoring 

Data Preparation 

 Spectrograms of manually segmented and labeled syllables from 21 adult zebra finches from the 

UTSW colony were used for model training. All validation was performed with spectrograms of WhisperSeg 

segmented syllables from a test set of 30 tutor-pupil pairs from UTSW and 25 tutor pupil pairs from the 855 

Rockefeller Song Library [17], none of which were included in training. These spectrograms are normalized 

for amplitude, then clipped or padded to a uniform duration of 180ms. To reduce computational costs, all 

frequency bands below 2kHz and above 6kHz are discarded.  

 

Model Architecture 860 

 The proposed neural network model is composed of 5 convolutional layers alternating with 4 

‘Multiscale Analysis Modules’ (MAMs), followed by a global pooling layer and 3 fully connected linear layers 

(supplemental Fig11). This architecture is based on the model proposed in [39], which was used for species 

classification with field recordings of bird, frog and toad vocalizations. The first convolutional layer consists 

of 32 3 x 3 kernels, with the 4 subsequent convolutional layers consisting of 64 3 x 3 kernels with a stride 865 

length of 2 along the frequency axis, resulting in down sampling by a factor of 2 along that dimension. Each 

MAM is composed of 4 parallel strands, each processing the data at different scales. The first strand consists 

of a single convolutional layer with 32 1 x 1 kernels, the second, third and fourth strands start with a 32 filter 

1 x 1 kernel convolutional layer, followed by a convolutional layer with 32 3x3, 5x5, and 7x7 kernels, 
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respectively. The output of each of these strands is concatenated channel-wise, resulting in a 128 channel 870 

representation of the data which is passed to the next layer. This parallel strand organization allows the 

model to perform feature extraction at multiple different scales without increasing the depth of the model, 

saving computational cost and limiting potential overfitting. This approach was first proposed in [40]. The 

ReLU activation function is used after every layer [41]. The output of the final linear layer is an 8-dimensional 

vector, which represents an input syllable’s embedding. These vectors are normalized to have a length of 875 

1, such that all embeddings lie on a unit 8-dimensional hypersphere. 

 

Model Training 

 The model is trained using dynamic triplet loss with triplet mining. Triplet loss involves presenting the 

model with batches of triplets, where each triplet consists of an anchor, a positive, and negative syllable. 880 

The anchor and positive syllables carry the same manual annotation label from the same bird, and the 

anchor and negative syllables carry different labels, either from the same bird or from an unrelated bird. The 

loss function to be minimized is:  

Loss =  GmaxWX|𝑓(𝐴!)  −  𝑓(𝑃!)|X$  −  X|𝑓(𝐴!)  −  𝑓(𝑁!)|X$  +  α,   0_
*

! + (

 

  where N is the total number of possible triplets in training, 𝑓(𝐴!)	is the embedding of the anchor in triplet i,	885 

𝑓(𝑃!) is the embedding of the positive, 𝑓(𝑁!) is the embedding of the negative, and 𝛼	is a margin parameter. 

If the positive is closer to the anchor than the negative by at least 𝛼, the loss for that triplet is 0.  

 

 During training, many randomly sampled triplets will already yield a loss of 0, and therefore will not 

lead to any change in the model. As a result, such triplets are not presented to the model during training. 890 

The remaining triplets which result in a positive loss value can be divided into two groups, hard triplets and 

semi-hard triplets. Hard triplets are cases where ||	𝑓(𝐴) 	− 	𝑓(𝑃)	|| 	> 	 ||	𝑓(𝐴) 	− 	𝑓(𝑁)	||, and semi-hard 

triplets are cases where 

	||	𝑓(𝐴) 	− 	𝑓(𝑃)	|| 	< 	 ||	𝑓(𝐴) 	− 	𝑓(𝑁)	||	and		||	𝑓(𝐴) 	− 	𝑓(𝑃)	|| 	−	 ||	𝑓(𝐴) 	− 	𝑓(𝑁)	|| 	> 	𝛼. Hard triplets result 

in higher loss values, and therefore larger model weight updates, which can result in unstable training. 895 

Previous studies have shown that, as a result, training with semi-hard triplets alone can lead to faster and 

more stable model convergence [42]. We found that we achieved the best model performance when training 

with a ratio of 75 semi-hard triplets : 25 hard triplets, so this ratio was used to train the final model. A forward 

pass of the model is performed for each mini batch in training to determine the ‘hardness’ of all possible 

triplets from that batch. Triplets are then sampled according to the specified ratio of semi-hard to hard triplets, 900 

and are presented to the model for training.  

 

 Our approach is said to be dynamic triplet loss because the value of the margin parameter 𝛼 is 

updated dynamically over the course of training. The value is initially set to 0.1 and increased stepwise by 
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0.2 every time a training epoch had fewer than 2,500 hard or semi hard triplets per batch on average, up to 905 

a maximum value of 0.7. This allows the model to begin learning an easier task, of separating syllables of 

different classes by a smaller margin. As the margin increases, the task gradually becomes more difficult, 

leading to more stable model convergence compared to starting with a higher margin value. Each time the 

margin parameter is increased, triplets that previously resulted in a loss of 0 can become semi-hard triplets, 

meaning the set of triplets presented to the model also expands over the course of training. The initial margin 910 

value, maximum margin value, margin step size and non-zero triplet threshold were all determined 

empirically. The weight optimization was performed with the Adam optimizer, with weight decay of 0.0001 

[43].  

 

 Ultimately, this dynamic triplet loss training constitutes a form of deep metric learning, where high 915 

dimensional inputs (e.g., spectrograms of syllables) are mapped onto a lower-dimensional space where the 

similarity between samples is proportional to the distance between them. Training with triplets is 

advantageous in a context where the total amount of labeled training data is limited, as the number of 

possible triplets is proportional to the cube of the number of training samples.  

 920 

EMD 

 Syllable embeddings were obtained by running a forward pass of the trained model with all 

segmented syllables that an individual bird produced on a given day. This results in a distribution of 

thousands of syllables in the 8-dimensional embedding space. Two birds songs are compared by calculating 

the Earth Mover’s Distance (EMD) between their syllable embedding distributions using the PyEMD package 925 

[44]. If one were to imagine the distributions as piles of dirt, the earth mover’s distance is the minimum cost 

of moving earth from one distribution to match the other, where cost is defined as the amount of dirt moved 

multiplied by the distance over which it is moved. This value can range from 0 for identical distributions, to 

positive infinity for distributions that are infinitely far apart. As our embedding space is limited to points lying 

on a unit radius 8-dimensional hypersphere, the maximum possible value for EMD is 1.41 for distributions 930 

that are each concentrated on a single point, maximally separated within the constraints of the embedding 

space.  

 

 The EMD score considers many song renditions from each bird being compared, allowing a better 

overall comparison of the similarity between two birds’ song production as compared to multiple pairwise 935 

comparisons between renditions. One limitation of EMD, however, is that it is completely agnostic to syllable 

sequencing, so a pupil that imitated all syllables from his tutor but sings them in a completely different order 

will have a similar EMD score to a pupil that imitated all syllables from a tutor and produces them in the 

same order. That said, there is new evidence that zebra finches recognize songs independently of syllable 

order, raising questions about the importance of syllable order in song perception [45]. The EMD score is 940 

also symmetrical, meaning that the presence of syllables in the tutor’s song that weren’t imitated by the pupil 
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will have the same impact on the EMD score as new, improvised syllables present in the pupil’s song but 

not in the tutor’s song.  

 

Similarity Scores across Comparison Types 945 

 To validate the performance of our model and EMD scores for similarity scoring, we compute EMD 

scores between a pupil and itself, a pupil and its tutor, pupil and a ‘sibling’, and a pupil and an unrelated 

bird. For comparisons between a pupil and itself, embeddings of all recorded syllables from a day of song 

are computed. If the bird has fewer than 4,000 syllables in this dataset, the dataset is randomly split in half 

and the two halves are compared. If a bird has more than 4,000 syllables, two sets of 2,000 syllables are 950 

randomly sampled and compared. For comparisons between a pupil and its tutor, up to 4,000 syllables are 

sampled from each of the tutor and the pupil and compared. In the case of pupil and ‘sibling’ comparisons, 

a sibling is defined as another bird sharing the same song tutor. We expect that typical zebra finches that 

learned from the same tutor will have similar songs, but that these will generally be less similar than a pupil 

compared to its tutor directly. Each pupil is compared to up to 3 ‘siblings’, depending on availability in our 955 

dataset. Finally, each pupil is compared to 3 randomly selected pupils who don’t share their song tutor. For 

each of these comparisons, up to 4,000 syllables are randomly sampled from each bird as well, to help 

reduce the compute time for EMD.  

 

Contrast Index 960 

 As in [32], contrast index is calculated as:  

Contrast	Index	=	
self	similarity	-	cross	similarity
self	similarity	+	cross	similarity

 

where self similarity is the EMD score between pupil and itself, calculated as described in the previous 

section, and cross similarity is the mean similarity between a pupil and 3 unrelated birds, again calculated 

as described in the previous section. As EMD is a dissimilarity score, rather than a similarity score, more 965 

negative values actually reflect better contrast between comparisons, so we report the absolute value for 

ease of comparison to existing similarity scoring methods.  

 

Expert Human Similarity Scores 

A panel of 11 expert human annotators were each presented with 126 pairs of spectrograms and 970 

were instructed to rate their similarity on a scale from 1 (not similar) to 10 (very similar). The spectrograms 

were generated using Sound Analysis Pro 2011 [30], began at the beginning of a song bout, and included 

at least one full motif when motif structure was present. Raters were presented with 4 pupil-tutor 

spectrogram pairs per pupil, 8 comparisons between a tutor and itself to ensure that raters were using the 

full rating scale, and 10 duplicated tutor-pupil comparisons to ensure that the scorers were internally 975 

consistent. No individual scorer differed from the mean score by more than an average of 2 standard 

deviations, none differed by more than 2 points on the duplicated comparisons, and all but one made use 
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of the full scale (this scorer never assigned a perfect 10/10 score, so their scores were rescaled such that 

they spanned the full range). Similarity scores for each tutor-pupil pair were obtained by taking the mean 

similarity score across their 4 spectrogram pairs, across all scorers. The full scoring set is available at 980 

https://forms.gle/9TDu1fwGGYXWKhgB6. These scores were previously generated for and published in 

[21]. Of the birds evaluated, 15 were also in the similarity scoring validation set, so the correlation between 

these 15 birds’ mean human similarity scores and tutor-pupil EMD scores were used to evaluate the 

agreement between methods.  

 985 

For comparison to the expert human similarity scores, Sound Analysis Pro 2011 % similarity scores 

were calculated for the same set of 15 pupils. A representative motif from the tutor song was selected and 

compared to between 30 and 60 motif renditions from the pupil bird when the pupil was over 90dph, using 

the asymmetric time-courses similarity tool. The final reported scores are the mean %similarity across all 

comparisons for a given pupil.  990 

 

Comparisons to Mature Song 

 For the 6 birds from UTSW and 5 birds from Duke University [9] from which we had recordings at 

90-100dph and earlier time points, we computed the EMD between their juvenile and adult songs. For each 

bird, 4,000 WhisperSeg segmented syllables were sampled from a full day of song recordings when the 995 

birds were between 90 and 100 dph, to serve as the mature song distribution. Up to 4,000 WhisperSeg 

segmented syllables were sampled from each day of available recordings prior to or shortly following the 

mature song date for comparison. EMD scores were calculated using embeddings from the similarity scoring 

model as described previously. As the scores appeared to follow an exponential pattern, where the rate of 

song dissimilarity change slowed over development, we fit an exponential function to the data using the 1000 

scipy.optimize curve_fit() function [46], and plotted this function alongside the data.  

 

Data Availability 

Song recordings and annotations for all birds recorded at UTSW are available through the Texas 

Data repository (https://dataverse.tdl.org/dataverse/avn). Annotations of songs from the Rockefeller 1005 

University Song Library [17] generated for this paper are also available through the Texas Data Repository 

(https://doi.org/10.18738/T8/DN0SIV), while the songs are available at http://ofer.hunter.cuny.edu/songs. 

Recordings of juvenile birds from Duke University are available at https://doi.org/10.7924/r4j38x43h. 

Recordings of early-deafened zebra finches are available upon request from Dr. Kazuhiro Wada.  

 1010 
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