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ABSTRACT During its complex life cycle, the malaria parasite survives dramatic environ-
mental stresses, including large temperature shifts. Protein prenylation is required during
asexual replication of Plasmodium falciparum, and the canonical heat shock protein 40
protein (HSP40; PF3D7_1437900) is posttranslationally modified with a 15-carbon far-
nesyl isoprenyl group. In other organisms, farnesylation of Hsp40 orthologs controls
their localization and function in resisting environmental stress. In this work, we find
that plastidial isopentenyl pyrophosphate (IPP) synthesis and protein farnesylation are
required for malaria parasite survival after cold and heat shock. Furthermore, loss of
HSP40 farnesylation alters its membrane attachment and interaction with proteins in
essential pathways in the parasite. Together, this work reveals that farnesylation is
essential for parasite survival during temperature stress. Farnesylation of HSP40 may
promote thermotolerance by guiding distinct chaperone-client protein interactions.
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nfection with the protozoan parasite Plasmodium falciparum causes the majority of
cases of severe and fatal malaria. P. falciparum must recognize and adapt to dramatic
environmental stresses, as its complex life cycle requires development in both an inver-
tebrate mosquito vector and the warm-blooded vertebrate human host. In particular,
temperature is critical at every stage of the parasite life cycle. In the mosquito vector,
many temperature-sensitive factors contribute to human transmission, such as biting
rate, vector longevity, parasite development, and vector competence (1). Human infec-
tion begins upon the bloodmeal of a female Anopheles mosquito. Entering the human
host, where the normal physiological temperature is 37°C, sporozoite-stage parasites
experience heat shock. However, this temperature stress is necessary for efficient hepa-
tocyte infection and the resulting amplification of infection (2, 3). The parasite emerges
from the liver to initiate asexual replication within erythrocytes, the clinically sympto-
matic stage of Plasmodium infection. A pathognomonic feature of falciparum malaria is
periodic episodes of fever (to 41°C or more) recurring every 48 h, corresponding to the
synchronous rupture of infected erythrocytes and daughter merozoite release (4). In
contrast, the sexual-stage parasites that return to the mosquito vector are again exposed
to cold temperature shock, as the parasite must now readjust to approximately 25°C.
While temperature fluctuations are an inherent part of the malaria life cycle, how the para-
site copes with thermal stress is not well understood.
Temperature regulates both malaria pathogenesis and antimalarial sensitivity. Controlled
hypothermia (32°C) has been used clinically to improve outcomes of severe cerebral malaria
(5). In vitro, hypothermia (32°C) inhibits P. falciparum growth (6), and a similar effect occurs at
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lower temperatures (28°C) (7). While the potency of some antimalarials (e.g., chloroquine,
mefloquine, and pyronaridine) are unaffected by lower temperatures (6, 8), susceptibility to
artemisinin—the backbone of front-line artemisinin-based combination therapies—is modu-
lated by both cold and heat stresses (6, 8). As temperature fluctuations are an inherent part
of the P. falciparum life cycle, this common environmental stress may affect the ability of
antimalarials to influence essential parasite targets. Antimalarial resistance threatens malaria
control efforts worldwide. In particular, rising rates of delayed clearance to artemisinin-based
combination therapies, including resistance to artemisinin partner drugs, has raised concerns
about emerging multidrug resistance (9-17). Thus, there is a pressing need to identify essen-
tial survival pathways in P. falciparum, such as thermotolerance, in order to support ongoing
development of new antimalarial agents.

During intraerythrocytic development, P. falciparum assembles isoprenoids de novo
through the methylerythritol 4-phosphate (MEP) pathway (18-20), localized within the
unusual plastidial organelle of the parasite, the apicoplast. Chemical inhibition of this
pathway by the small molecule fosmidomycin (FSM) is lethal to malaria parasites (18).
FSM-mediated growth inhibition can be rescued by supplementation with isoprenoids
such as isopentenyl pyrophosphate (IPP) (21, 22). These studies validate the essentiality
of isoprenoid synthesis in asexual P. falciparum, but there have been long-standing
questions regarding which biological processes in the parasite require apicoplast iso-
prenoid biosynthesis. Protein prenylation appears to be a core essential function of iso-
prenoid biosynthesis in malaria parasites (23-27). During protein prenylation, either a
farnesyl (FPP; 15-carbon) or a geranylgeranyl (GGPP; 20-carbon) isoprenyl group is
posttranslationally attached to C-terminal cysteines by one of three well-characterized
prenyltransferases, farnesyltransferase (FTase) and geranylgeranyltransferases type |
and type Il (GGTase |, GGTase Il). Chemical inhibition of prenyltransferases with small
molecules (e.g., FTase inhibitor FTI-277) inhibits parasite growth (24-29), providing
compelling evidence that prenylated malarial proteins and their unidentified down-
stream biological processes include potential antimalarial targets. We and others have
used chemical labeling to characterize the complete prenylated proteome of intraery-
throcytic P. falciparum (30, 31). These studies identify a single heat shock protein 40
(HSP40; PF3D7_1437900) as robustly farnesylated during intraerythrocytic replication.

Heat shock proteins are necessary for protein folding and stabilization. Importantly,
heat shock proteins play a vital role in surviving cellular stresses that might otherwise be
lethal, and therefore heat shock protein expression is upregulated under diverse cellular
insults, including heat and cold shock. The main functions of Hsp40 family members are
to identify and bind partially misfolded proteins in order to initiate Hsp70-mediated
refolding. Inhibition of Hsp70 in P. falciparum was recently shown to hypersensitize para-
sites to heat shock conditions (32). As heat shock proteins have a known role in tempera-
ture-dependent survival, it is perhaps unsurprising that roughly 2% of the P. falciparum
genome is dedicated to molecular chaperones, including a large number of heat shock
proteins (33). HSP40 is a member of an expanded Hsp40 family in P. falciparum compris-
ing 49 total members (34). The majority of Hsp40 family members in P. falciparum are
unique and not shared with other Apicomplexa (34, 35). HSP40 is predicted to be the
only canonical Hsp40 and the main cochaperone of Hsp70 in P. falciparum because of its
similar heat inducibility and localization (36). The lack of additional canonical Hsp40s in
P. falciparum suggests that HSP40 is necessary for parasite development. Critically,
HSP40 is the sole prenylated heat shock protein in P. falciparum (30, 31). In yeast, preny-
lation of the HSP40 homolog YDJ1 is required for thermotolerance, protein localization,
and interaction with client proteins (37-39). In P. falciparum, the role of farnesylated
HSP40 (farnesyl-HSP40) has not previously been investigated.

In this study, we investigate the role of the apicoplast MEP pathway of isoprenoid bio-
synthesis and downstream protein prenylation on survival during environmental stress in
P. falciparum. We find that plastidial IPP production is critical to parasite survival following
either heat (40°C) or cold shock (25°C). In addition, we find that farnesylation, but not gera-
nylgeranylation, is required for thermotolerance in P. falciparum. We also demonstrate that
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the farnesylated heat shock protein HSP40 is likely essential. Farnesylation of HSP40 medi-
ates its membrane association and directs its interaction with proteins in essential path-
ways in the parasite. Our work suggests HSP40 prenylation as a compelling candidate for a
downstream effector by which IPP synthesis and protein farnesylation contribute to para-
site stress survival.

RESULTS

Thermotolerance in malaria parasites requires IPP synthesis and protein
farnesylation. The malaria parasite must adapt to diverse environmental stresses,
such as large temperature shifts, throughout its complex life cycle. Heat shock proteins
play an important role in the ability of the parasite to survive temperature stress
(40-43). Because P. falciparum expresses a farnesylated heat shock protein, HSP40, we
hypothesized that production of isoprenoids and protein prenylation are required for
growth during temperature stress. We tested this hypothesis by inhibiting protein pre-
nylation and applying either heat or cold stress.

Chemically diverse small molecule inhibitors affect protein prenylation during asex-
ual replication of Plasmodium spp. For example, treatment with FSM, which inhibits
upstream isoprenoid biosynthesis and therefore synthesis of prenylphosphates,
reduces downstream protein prenylation (23). Well-validated prenyltransferase inhibi-
tors, such as FTI-277 (FTI), BMS-388891 (BMS), and GGTI-298 (GGT]), directly reduce lev-
els of protein prenylation in P. falciparum (28, 44) (Fig. 1A). We tested whether inhibi-
tion of prenylphosphate synthesis or prenyltransferases influenced parasite growth
following heat (40°C) or cold (25°C) stress. These temperatures were selected to emu-
late temperatures in which the parasite is exposed during febrile episodes (for heat
stress) and during transmission to the mosquito vector (for cold stress). Parasites were
pretreated with inhibitor 24 h prior to temperature shock. Parasite growth was eval-
uated by flow cytometry (Fig. S1) for 6 days postshock (Fig. 1B).

While untreated parasites readily recovered following brief heat or cold shock (Fig. 1C
and D), we found that parasite survival under heat (Fig. 1C) or cold (Fig. 1D) stress was signif-
icantly attenuated upon nonlethal inhibition of IPP synthesis by FSM. FTI and BMS are
chemically unrelated, well-validated protein farnesyltransferase inhibitors, while GGTI inhibits
protein geranylgeranylation. Using these inhibitors, we found that chemical inhibition of
protein farnesylation, but not geranylgeranylation, significantly impaired temperature stress
recovery (Fig. 1E; Fig. S2).

Taking advantage of the fact that FSM inhibits production of all isoprenoid products
downstream of IPP, we employed chemical supplementation in order to determine which
isoprenoids are required for temperature stress survival in malaria parasites. We found that
supplementation with IPP or farnesol (F-OL), a 15-carbon farnesyl alcohol, rescued FSM-
treated parasites after both heat and cold stress (Fig. 2B to D and F to H). In contrast, sup-
plementation with geranylgeraniol (GG-OL), a 20-carbon geranylgeranyl alcohol, did not
rescue growth of FSM-treated parasites after temperature shock (Fig. 2E and I). Altogether,
these data establish that loss of isoprenoid biosynthesis or protein farnesylation sensitizes
malaria parasites to changes in temperature. Protein farnesylation is thus required for para-
site survival following moderate, nonlethal temperature stress, in which heat shock pro-
teins have a classic biological role. Only 4 farnesylated proteins have been identified in P.
falciparum, 2 SNARE proteins (PF3D7_1324700, PF3D7_0910600), a PI3P binding protein
(PF3D7_1460100), and the sole canonical HSP40 (PF3D7_1437900) (30, 31). Since HSP40 is
predicted to modulate the activity of HSP70, a cellular chaperone required for heat survival
(32), these data raise the possibility that farnesylation of HSP40 might have a vital role in
parasite thermotolerance.

HSP40 is resistant to disruption in P. falciparum. We next examined the specific
role of HSP40 in asexual parasite growth. HSP40 is one member of an expanded Hsp40
chaperone family in P. falciparum. While the majority of these Hsp40 family members
do not have assigned biological functions, HSP40 is considered the canonical member
of this family and directly interacts with HSP70 (PF3D7_0818900) (36). Based on for-
ward genetic screening in P. falciparum, HSP40 is predicted to be essential during
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FIG 1 Growth under temperature stress requires IPP synthesis and protein farnesylation. (A)
Prenylphosphate substrates for protein prenylation are derived from the nonmevalonate MEP
pathway. MEP pathway products, IPP and dimethylallyl pyrophosphate (DMAPP), serve as precursors
to FPP used by FTase and GGPP used by GGTase in protein prenylation. FSM treatment inhibits
production of IPP and DMAPP. Farnesyltransferase inhibitors (FTI or BMS) inhibit protein farnesylation,
while geranylgeranyltransferase inhibitors (GGTI) prevent protein geranylgeranylation. (B) Parasites
were treated with FSM (5uM), farnesyltransferase inhibitors (FTI [10 «M] and BMS [200nM]), or
geranylgeranyltransferase inhibitor GGTI (2 uM) for 24h prior to a 6-h heat (40°C) or cold (25°C)
shock. (C and D) FSM-treated parasite growth is significantly reduced after heat shock (C) and cold
shock (D). (E) Inhibition of farnesylation by treating parasites with FTI or BMS significantly reduced
growth after temperature stress. Growth in GGTl-treated parasites is unchanged after heat or cold
shock. (C to E) n=6; **, P=0.01; ***, P=0.001; ****, P = 0.0001. (C and D) 2-way ANOVA, P values
adjusted for multiple comparisons using Sidak’s multiple-comparison test. (E) Within each treatment
group, the normalized control was compared to temperature shock sample by unpaired t test with
Welch’s correction. Abbreviations: ctrl, control, hs, heat shock, cs, cold shock.
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FIG 2 Supplementation with IPP and F-OL rescues growth in FSM-treated parasites after temperature stress. (A) Parasites
were treated with FSM (5 uM) for 24 h prior to a 6-h heat (40°C) or cold (25°C) shock. Cultures were supplemented with
isoprenoid products (IPP [250 uM], F-OL [10 uM], or GG-OL [10 wM]) for the entire length of experiment. (B) FSM-treated
parasites are sensitive to heat shock. (C and D) Supplementation with IPP (C) or F-OL (D) rescues heat sensitivity. (E) GG-
OL supplementation is unable to rescue growth after heat stress. (F to I) IPP or F-OL, but not GG-OL, supplementation is
similarly able to rescue FSM-treated parasite growth after cold shock. (B to I) n = 3 to 6; *, P=<0.05; **, P=0.01; ***, P=
0.001; ****, P=0.0001. Two-way ANOVA, P values adjusted for multiple comparisons using Sidak’s multiple-comparison
test. Abbreviations: ctrl, control, hs, heat shock, cs, cold shock.

asexual blood-stage growth (45). To address the role of HSP40 in asexual development,
we sought to disrupt the HSP40 locus directly. Using single-crossover homologous
recombination (as previously used to validate the MEP pathway genes, Dxr and IspD)
(20, 46), we successfully integrated a control plasmid into the HSP40 genetic locus
(Fig. S3A and B). However, even after 7 months of continuous culture, integration of a disrup-
tion construct did not occur (Fig. S3A). Our data support an essential role for HSP4Q in the par-
asite during blood-stage growth.

HSP40 can stimulate ATPase activity of its cochaperone HSP70 in vitro. In con-
trast to the highly expanded HSP40 protein family, the P. falciparum genome encodes
only 6 Hsp70-like proteins (34, 47). HSP70 (PF3D7_0818900), the major cytosolic Hsp70
in P. falciparum, possesses ATPase activity and is itself important for thermal tolerance
in the parasite (32, 48-50). Select Hsp40 cochaperones interact with Hsp70 through a
protein domain called a J domain (51-55). To determine whether HSP40 interacts with
HSP70 to promote ATP hydrolysis, recombinant 6xHis-HSP40 and 6 xHis-HSP70 were
expressed and purified from Escherichia coli (Fig. S4A). We found that the addition of
purified recombinant HSP40 stimulates the basal ATP hydrolytic activity of HSP70
(Fig. S4B and Q). Increasing the amount of HSP70 in the reaction increases ATP turn-
over (Fig. S4D); however, the addition of HSP40 increases the ATPase activity of HSP70
nearly 3-fold (Fig. S4C). These data, along with previous observations by Botha et al.
(36), confirm the functional interaction between HSP40 and HSP70.
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FIG 3 Localization of HSP40 in P. falciparum. (A) Immunofluorescence confocal microscopy of
trophozoite, stained with anti-HSP40 (1:5,000) and Hoechst 33258 nuclear stain. HSP40 appears
cytosolic. (B) Electron micrograph of immunolabeling: primary, rabbit anti-HSP40 (1:250), mouse anti-
PDI (1:100); secondary, goat anti-rabbit IgG 18 nm colloidal gold, goat anti-mouse 12nm. HSP40
(orange arrowheads) looks cytosolic in the parasites, with some apparent membrane association. A
portion of HSP40 colocalizes with PDI, an established ER marker (white arrowheads). Scale, 500 nm.

Robust HSP40 membrane association requires IPP synthesis and protein
farnesylation. Using purified recombinant 6xHis-HSP40 (Fig. S4A), polyclonal antisera
were generated. Immunoblotting with anti-HSP40 antisera revealed a single band in parasite
lysate, which is not present in uninfected red blood cells (RBCs) (Fig. S4E and F). Antisera
specificity was confirmed by immunoprecipitation (IP) and mass spectrometry, demonstrat-
ing exclusive immunoprecipitation of HSP40 without cross-reactivity to other Hsp40 family
members in P. falciparum (Fig. S4G).

Since heat shock proteins help mediate export of parasite proteins through the
PTEX complex (56-58), we performed immunofluorescence localization of HSP40 in
asexual P. falciparum. HSP40 localizes to the parasite cytosol in trophozoite-stage parasites
and is not detected in the host cell (Fig. 3A). Immuno-electron microscopy (immuno-EM)
was performed to further characterize the subcellular localization of HSP40. We found that
HSP40 is distributed throughout the cytosol and excluded from the nucleus and host cell
cytoplasm (Fig. 3B). Because farnesylation marks small GTPases for localization to the cyto-
solic face of the endoplasmic reticulum (ER) (59, 60), we predicted that some portion
of HSP40 may be ER localized. In addition to anti-HSP40, parasites were labeled with
anti-protein disulfide isomerase (anti-PDI), an established ER marker (61, 62). A subset
of HSP40 (48.7% of all labeling) is localized alongside PDI in the ER (Fig. 3B). These
data indicate that HSP40 is both cytosolic and ER localized.

HSP40 is found in the membrane fraction (Fig. 4A and B), following detergent frac-
tionation of parasite lysate. While overall levels of HSP40 protein remain unchanged
with inhibition of IPP synthesis or farnesylation, the percentage of membrane-associ-
ated HSP40 is significantly reduced (Fig. 4C and D). Treatment with farnesylation inhibi-
tors (such as FTI or BMS), but not the geranylgeranylation inhibitor GGTI, reduces mem-
brane-associated HSP40 (Fig. S5). Subcellular localization of HSP40 is changed after
treatment with FTI (Fig. 4E). Quantification of immuno-EM micrographs confirms a
reduced membrane association of HSP40 in inhibitor-treated cells (Fig. 4F). Overall,
these observations provide evidence that a subset of HSP40 is membrane associated
and that this membrane association requires farnesylation.
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FIG 4 Inhibition of either IPP synthesis or protein farnesylation results in reduced membrane association of HSP40. (A and B)
Representative anti-HSP40 immunoblots of control- and FSM (20 wM)-treated (A) or FTI (10 wM)-treated (B) P. falciparum total
lysate and membrane fractions. (C and D) Quantification of several immunoblots adjusted to loading control. HSP40 is
significantly reduced in the membrane fraction after inhibition of IPP synthesis (C) and inhibition of farnesylation (D). Anti-HAD1
and anti-Exp-2, loading controls for total lysate and membrane fractions, respectively. **, P=<0.01; ***, P=<0.001 unpaired t test
with Welch’s correction. (E and F) HSP40 membrane association is reduced after FTI treatment. Apparent membrane-associated
HSP40 (10nm gold particles) is reduced after inhibition of farnesylation. The number of membrane-associated HSP40 per
micrograph is quantified for control and treated parasites (F). A single control cohort was quantified. A decrease in the number of
membrane-associated HSP40 particles is observed. *, P = 0.05, unpaired t test with Welch's correction. Scale, 500 nm.

Palmitoylation contributes to HSP40 membrane association but not thermoto-
lerance. Farnesylation is not the only posttranslational modification that is expected
to bring HSP40 to the membrane, as HSP40 is also palmitoylated (63). To evaluate the
role of palmitoylation in the membrane association of HSP40 and parasite thermotoler-
ance, we employed the palmitoylation inhibitor, 2-bromopalmitate (2BP) (64). While
overall levels of HSP40 remained unchanged upon inhibition of palmitoylation, the
proportion of membrane-associated HSP40 was significantly reduced (Fig. 5A and B).
Combined treatment with 2BP and FTI (to inhibit both palmitoylation and farnesyla-
tion) further reduced the levels of membrane-associated HSP40 compared to either
treatment alone (Fig. 5A and B). We tested whether inhibition of palmitoylation influ-
enced parasite growth following heat (40°C) or cold (25°C) stress. Consistent with our
previous observations, untreated parasites readily recovered after modest heat or cold
shock (Fig. 5C and G), while inhibition of farnesylation significantly impaired recovery
after temperature stress (Fig. 5D and H). In contrast, treatment with 2BP did not sensi-
tize parasites to temperature stress, as growth was unchanged following heat and cold
shock (Fig. 5E and I). Loss of protein palmitoylation was also not protective, as parasites
treated with both FTI and 2BP remained sensitive to temperature shock (Fig. 5F and J).
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FIG 5 Both farnesylation and palmitoylation contribute to HSP40 membrane association, but only farnesylation is required for
thermotolerance. (A) Representative anti-HSP40 immunoblots of control, FTI (10 «M), 2BP (100 uM), and combination of FTI-
and 2BP-treated P. falciparum total lysate and membrane fractions. (B) Quantification of several immunoblots adjusted with
loading control. The membrane-associated proportion of HSP40 is significantly reduced upon inhibition of farnesylation (FTI) or
palmitoylation (2BP). Inhibition of both farnesylation and palmitoylation (FTI+ 2BP) reduces HSP40 membrane association
further than does single inhibitor treatment. Anti-HAD1 and anti-Exp-2, loading controls for total lysate and membrane
fractions, respectively. n=3; *, P<0.05; **, P=<0.01; ***, P=<0.001 unpaired t test with Welch’s correction. (C to J) Parasites
were treated with FTI (10 uM), 2BP (100 uM), or both prior to heat (40°C) or cold (25°C) shock. FTl-treated parasite growth is
significantly reduced after heat (D) and cold shock (H). Growth in 2BP-treated parasites is unchanged after heat or cold shock
(E and I). Parasites treated with both FTI and 2BP were sensitive to temperature stress (F and J). n=3; *, P=0.05; **, P=0.01;
¥** P=0.001; ****, P=0.0001, 2-way ANOVA, P values adjusted for multiple comparisons using Sidak’s multiple-comparison
test. Abbreviations: ctrl, control; hs, heat shock; cs, cold shock.

Therefore, while palmitoylation helped facilitate membrane association of HSP40, farnesylation,
not palmitoylation, was required for parasite stress survival.

Chemical inhibition of protein farnesylation alters the HSP40 interactome.
HSP40 is expected to interact with numerous cochaperones and client proteins.
Protein prenylation is known to drive association with the ER and is likely to alter
accessibility to client proteins (65). Therefore, we determined whether loss of prenyla-
tion alters the array of cellular client proteins that bind to HSP40. We used immunopre-
cipitation and mass spectrometry to identify HSP40-interacting proteins from parasites
under normal prenylation conditions (wild-type controls) and when prenylation was
chemically impaired either through inhibition of isoprenoid biosynthesis (with FSM) or
through inhibition of farnesyl transferase activity (with FTI).

We found that HSP40-interacting proteins mediated a number of essential biological
functions in the parasite, including cytoskeleton organization, glycolysis, and translation
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FIG 6 Both IPP synthesis and protein farnesylation influence HSP40 protein-protein interactions.
Candidate protein interactors were determined by mass spectrometry after IP of parasite lysate with
anti-HSP40. Results for FSM (5uM)- and FTI (10 uM)-treated parasites are compared to untreated
controls (n=3). UniProt and GenelDs are provided in Table S2. Heat map of normalized log.-
transformed data was generated using NG-CHM Heat Map Builder. Gene Ontology (GO) annotations
are indicated by colored bars.

(Table S1; Fig. 6; Table S2). When prenylation was reduced, either by reducing production of
isoprenyl groups (with the isoprenoid biosynthesis inhibitor FSM) or by reducing transfer of
prenyl groups (with the farnesyl transferase inhibitor FTI), the overall profile of client protein
interactions was markedly altered. When prenylation is reduced, HSP40 had a reduced associa-
tion with membranes and with the ER (Fig. 4). Loss of prenylation reduces association with a
number of ribosomal proteins, consistent with reduced association with the rough ER. In addi-
tion, the interaction of HSP40 with the glycolytic enzyme GAPDH (glyceraldehyde-3-phosphate
dehydrogenase) was reduced after treatment with either FSM or FTI (Fig. 6).

HSP40 farnesylation influences GAPDH localization but not its glycolytic function.
The farnesylation-dependent interaction between HSP40 and GAPDH (PF3D7_1462800)
drew special attention because GAPDH is essential for the glycolytic breakdown of glu-
cose to produce ATP in the parasite. Isoprenoid biosynthesis is immediately metabolically
downstream of glycolysis, and therefore we further investigated the role of prenylation
in mediating membrane association and function of GAPDH. Using purified recombinant
6xHis-GAPDH, specific polyclonal antisera were generated (Fig. S6A and B). As observed
for HSP40, we found that GAPDH was, in part, membrane associated, as has been previously
observed (66, 67). We found that this association was dependent on both IPP synthesis and
farnesylation (Fig. 7A to C).

To understand whether interrupting IPP synthesis and protein prenylation directly
affects glycolytic function in the parasite, we quantified glycolytic intermediates in the
presence and absence of IPP synthesis and protein prenylation. We found that the cellular
levels of the products of glycolysis including pyruvate and lactate were unchanged after
treatment with either FSM or FTI (Fig. 8). Substrate availability to the pentose phosphate
pathway also did not change upon FSM or FTI treatment (Fig. 8). Our data indicate that,
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FIG 7 Localization of GAPDH, but not its glycolytic function, is IPP- or farnesylation-dependent. (A to
C) Inhibition of IPP synthesis and farnesylation reduced membrane association of GAPDH. (A)
Representative anti-GAPDH immunoblots of control-, FSM (20 uM)-, and FTI (10 wM)-treated P.
falciparum. (B and C) Quantification of several immunoblots adjusted with loading control. Anti-Hsp70
(1:5,000) and anti-PM-V (1:500) were used as loading controls for total lysate and membrane fractions,
respectively. n=5 to 6; ****, P<0.0001, unpaired t test with Welch’s correction.

although the interaction between HSP40 and glycolytic enzymes is prenylation-dependent,
farnesylation does not directly influence glycolytic function in the parasite.

DISCUSSION

Temperature change is a critical environmental signal and an integral environmen-
tal stress of the P. falciparum life cycle. In addition, antimalarial activity of the first-line
artemisinin-based therapies may be sensitive to heat or cold stress (6, 8). However, the
mechanisms by which the parasite copes with thermal stress are not well understood,
and the inherent host temperature fluctuations during clinical malaria may be
exploited to improve malaria treatment. In this study, we reveal that survival during
heat or cold shock in P. falciparum requires both de novo isoprenoid biosynthesis and
the posttranslational 15-carbon isoprenyl modification called farnesylation. Chemical
inhibitors that reduce protein farnesylation, by reducing either isoprenoid biosynthesis
or farnesyltransferase activity, sensitize P. falciparum to otherwise nonlethal tempera-
ture stresses, even at otherwise subinhibitory doses. Our observations are supported
by a parallel study by Zhang et al. (68), which also identified isoprenoid biosynthesis as
critical for survival of P. falciparum at febrile temperatures, using a large-scale piggyBac
transposon mutant phenotypic screen. Together, these observations suggest that iso-
prenoid and prenylation inhibitors might be particularly valuable in the setting of ma-
larial fever, a nearly universal characteristic of symptomatic P. falciparum infection (69).

Housed within the apicoplast organelle, isoprenoid biosynthesis through the MEP
pathway is necessary for intraerythrocytic development of P. falciparum (18-20).
Isoprenyl modification of proteins is a key essential function of the MEP pathway, as
prenylation itself is essential for asexual development (23-27). However, the pleio-
tropic downstream effects brought on by loss of protein prenylation have not been
fully elucidated. Kennedy et al. recently proposed a mechanistic model of “delayed
death,” a phenotype of parasite demise during the second erythrocytic cycle following
drug treatment, exhibited by antimalarials that target apicoplast maintenance. In this
model, disruption of Rab protein geranylgeranylation and interruption of subsequent
cellular trafficking are responsible for the growth arrest caused by loss of IPP produc-
tion or protein prenylation (70). Geranylgeranylated Rab GTPase family members com-
prise the majority of prenylated proteins in P. falciparum (30, 31). Rab GTPases are also
believed to contribute to the structural integrity of the digestive food vacuole of the
parasite (23), which is linked to thermal tolerance (32). However, our data suggest that
the phenotype in malaria parasites caused by loss of isoprenoid biosynthesis or protein
prenylation is more complicated and that interruption of protein farnesylation (even
when geranylgeranylation is preserved) also plays an important role. Both geranylgeranylation
of Rab GTPases and farnesylation, likely of HSP4Q, are key to the essential nature of prenylation
in P. falciparum.
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FIG 8 Glycolytic and pentose phosphate pathway metabolite levels remain constant under IPP- and
farnesylation-deficient conditions. Levels of glycolytic and pentose phosphate pathway intermediates
were measured by liquid chromatography with tandem mass spectrometry and normalized based on
parasitemia of each individual sample to give concentration per cell. No significant changes are
observed after treatment with FSM (5 uM) or FTI (10 uM). n=3, unpaired t test with Welch’s correction.

Our data also suggest the presence of several distinct cellular pools of HSP40 that
have different posttranslational modifications, subcellular localizations, and client pro-
tein interactomes. Maximal membrane association of HSP40 requires posttranslational
palmitoylation. Palmitoylation may guide HSP40 to a membrane subcompartment that
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FIG 9 Isoprenoid biosynthesis and farnesylation affect membrane association and client protein
assembly of HSP40.

is different from that of farnesyl-HSP40. Similar findings have been described for mam-
malian Ras proteins, which, as for HSP40, are both farnesylated and palmitoylated. For
Ras proteins, both posttranslational modifications are needed for stable plasma mem-
brane association (71). As palmitoylation is not required for parasite thermotolerance,
palmitoyl-HSP40 appears to have other, yet-unidentified functions in malaria parasites.

While heat shock proteins are found across taxa, not all organisms possess preny-
lated Hsp40s (72). HSP40 orthologs in human, yeast, Plasmodium spp. (P. vivax, P. yoelii,
P. chabaudi, and P. berghei), and plants (Arabidopsis thaliana and Atriplex nummularia)
have been experimentally demonstrated to be prenylated or are predicted to be pre-
nylated based on the presence of canonical C-terminal prenylation sequence motifs
(37, 73-75). It is unclear how the function of Hsp40 orthologs might differ in organisms
that lack prenylated Hsp40s. However, our data, in conjunction with studies in yeast
and plants, provide compelling evidence that prenylation of Hsp40 has evolved for sur-
vival during environmental stress, including growth after temperature or drought
stress (37-39, 74, 76, 77). HSP40 is one of only 4 farnesylated proteins in P. falciparum
and the sole farnesylated heat shock protein (30, 31). We find that farnesylation con-
trols membrane association of HSP40 on the endoplasmic reticulum, modulates access
to its client proteins, and is necessary for survival during temperature stress (Fig. 9).
Together, these observations suggest that prenylation of Hsp40 is a marker that distin-
guishes a distinct functional subclass of Hsp40s which appear to play similar cellular
roles in animals, plants, and fungi and have essential functions in environmental stress
responses that are conserved across the domains of life.

Our data suggest that compounds that target IPP synthesis or farnesylation may be
more effective in vivo than in vitro, as parasites cycle through host temperature changes. As
Hsp40 cochaperone family members are amenable to small molecule inhibition (78, 79), a
combination therapy that targets both protein prenylation and heat shock proteins directly
has the potential to be highly parasiticidal. In addition, Hsp40 function is likely important to
survival under artemisinin treatment. Whole-genome sequencing of clinical parasite samples
collected during the emergence of artemisinin resistance in Thailand revealed a nonsynony-
mous mutation in Hsp40 that may provide a suitable background for artemisinin resistance
mutations (80). A recent study indicates that the P. falciparum transcriptional response to heat
stress and artemisinin are highly correlated (68). Targeting apicoplast function, prenylation, or
heat shock also hold promise as adjunctive therapies to reverse artemisinin susceptibility.

MATERIALS AND METHODS

Materials. All buffer components, salts, and enzyme substrates were purchased from Millipore Sigma
(Burlington, MA), unless otherwise indicated.

Statistical analysis. We plotted all data and performed all statistical analyses in GraphPad Prism
software (version 8). All data are expressed as the mean = standard error of the mean (SEM). For
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statistical analysis, we used 2-way analysis of variance (ANOVA), t test with Welch'’s correction, and multi-
ple unpaired t test to compare results. To understand the interaction between treatment and tempera-
ture stress, we utilized a 2-way ANOVA and then adjusted P values for multiple comparisons using
Sidak’s multiple-comparison test. For direct comparisons between control and treatment groups, we
employed t test with Welch’s correction because standard deviations were not the same between groups. Mass
spectrometry data were analyzed using multiple t tests to efficiently compare results across conditions for each
protein.

Drug inhibitors and isoprenoids. Fosmidomycin (50 mM; Millipore Sigma), FTI-277 (5 mM; Tocris
Bioscience, Bristol, UK), and IPP (30 mM; Echelon Biosciences, Salt Lake City, UT) were each dissolved in
water at concentrations indicated. GGTI-298 (20 mM; Cayman Chemical, Ann Arbor, MI), BMS-388891
(20 mM; kindly provided by Wesley Van Voorhis, University of Washington), 2-bromopalmitate (100 mM;
Millipore Sigma), farnesol (50 mM; Millipore Sigma), and geranylgeraniol (50 mM; Echelon Biosciences)
were each dissolved in 100% dimethyl sulfoxide (DMSO) at concentrations indicated.

Parasite strains and culture. Unless otherwise indicated, parasites were maintained at 37°C in 5%
0,-5% CO,-90% N, in a 2% suspension of human erythrocytes in RPMI medium modified with 27 mM
NaHCO;, 11 mM glucose, 5mM HEPES, 0.01 mM thymidine, 1 mM sodium pyruvate, 0.37 mM hypoxan-
thine, 10 ug/ml gentamicin, and 5 g/liter Albumax (Thermo Fisher Scientific, Waltham, MA). All experi-
ments were conducted in wild-type strain 3D7 (MRA-102) obtained through the MR4 as part of the BEI
Resources Repository, NIAID, NIH.

Heat and cold shock P. falciparum growth assays. Asynchronous cultures were diluted to 1% para-
sitemia. Cultures were treated with indicated drugs 24 h prior to a 6-h heat shock (40°C) or cold shock
(25°C). Media (no drug) were exchanged post temperature shock. Cultures were split 1:6 after the collec-
tion of the day 2 sample. IPP, F-OL, and GG-OL were supplemented in fresh media every second day.
Samples were taken at indicated time points and fixed in phosphate-buffered saline (PBS)-4% parafor-
maldehyde. Cells were stained with 0.01 mg/ml acridine orange, and parasitemia was determined on a
BD Biosciences LSRII flow cytometer (Thermo Fisher Scientific). All data represent means of results from
=3 independent experiments using biological replicates.

pCAM-BSD HSP40 plasmid construction. Functional genetic validation of HSP40 (PF3D7_1437900)
was performed as described previously for PfDXR (20) and PflspD (46). pCAM-BSD-HSP40X° and pCAM-
BSD-HSP40°" vectors were derived from pCAM-BSD (gift from David Fidock, Columbia University), which
includes a blasticidin-resistance cassette under transcriptional control by the P. falciparum D10 calmodu-
lin 5’ untranslated region (UTR) and the 3’ UTR of HRP2 from P. berghei. To construct pCAM-BSD-
HSP40%°, the coding sequence for a segment of HSP40 near the N terminus (bp 29 to 878) was inserted
directly into 5" of the P. berghei dihydrofolate reductase (DHFR)-thymidylate synthase 3" UTR. This insert
was constructed by PCR using primers (A) 5'-CCCGGGACTCTATGGGTGGTCAACAAG-3" and (B) 5'-CTCG
AGTCTCATGTAGGTCTTGGTTCC-3’ and restriction cloned using Xmal and Xhol sites. pCAM-BSD-HSP40<"
contained the coding sequence for the C-terminal end of HSP40 (bp 963 to 1619) and 237 bp of the 3’
UTR, generated using (C) 5'-CCCGGGGAGGAACCAAGACCTACATGAG-3' and (D) 5'-CTCGAGCATTTCACA
GACACACACACAC-3' as primers. This sequence was inserted at the same site, 5’ of the P. berghei DHFR-
thymidylate synthase 3’ UTR. All constructs were verified by Sanger sequencing.

Parasite transfections. Transfections were performed as described previously (46). Briefly, 150 ng of
plasmid DNA was precipitated and resuspended in Cytomix (25 mM HEPES [pH 7.6], 120 mM KCl,
0.15mM CaCl,, 2mM EGTA, 5 mM MgCl,, 10 mM K,HPO,). A ring-stage P. falciparum culture was washed
with Cytomix and resuspended in the DNA/Cytomix solution. Cells were electroporated using a Bio-Rad
Gene Pulser Il electroporator at 950 uF and 0.31 kV. Electroporated cells were washed with media and
returned to normal culture conditions. Parasites expressing the construct were selected by continuous
treatment with 2 ug/ml blasticidin S HCI (Thermo Fisher Scientific). Transfectants were cloned by limiting
dilution, and diagnostic PCRs were performed using genomic DNA from resultant transfectants using
primer sets specific for episomal plasmids or genome integrants. Primer A and D sequences are as fol-
lows: (X) 5'-TAAGAACATATTTATTAAACTGCAG-3’; (Y) 5'-GAAAAACGAACATTAAGCTGCCATA-3'.

Southern blotting. Southern blotting was used to assay the integration of the pCAM-BSD-HSP40<"
plasmid. To assay the integration of pCAM-BSD-PfHsp40°™, genomic DNA was harvested from wild-type
3D7 P. falciparum and from the continuously cultured pCAM-BSD-HSP40°™ transfectants 1, 2, 3, and 4 from
Fig. S3. These genomic DNA samples, along with pCAM-BSD-HSP40! plasmid, were digested with Smll
(New England Biolabs). The control probe was prepared from PCR product generated using primers
(HSP40_Ctrl_F) 5'-GAGGAACCAAGACCTACATGAG-3" and (HSP40_Ctrl_R) 5'-ATGATCTTCATCGTCGTATGC-
3’ (HSP40 bp 856 to 1,574) prior to Southern blotting.

Generation of recombinant HSP40, HSP70, and GAPDH. An E. coli codon optimized HSP40 was
produced (Genewiz, South Plainfield, NJ) and inserted via ligation-independent cloning into the isopro-
pyl-B-p-1-thiogalactopyranoside (IPTG) inducible BG1861 expression vector. This created an N-terminal
6xHis tag fusion protein used for nickel purification. The expression plasmid was transformed into One
Shot BL21(DE3)pLysS E. coli cells (Thermo Fisher Scientific). Overnight, starter cultures were diluted
1:1,000 and grown to an optical density (OD) of ~0.6 where 1 mM IPTG was added for 16 h at 16°C. Cells
were spun and stored at —80°C. Recombinant HSP70 (PF3D7_0818900) was expressed using the same
conditions. In a similar manner, an E. coli codon optimized GAPDH (PF3D7_1462800) was produced with
a few minor experimental differences. The GAPDH expression plasmid was transformed into One Shot
BL21(DE3) E. coli cells (Thermo Fisher Scientific). One mM IPTG was added for 2 h at 37°C.

Expressed proteins were purified from cells using a sonication lysis buffer containing 1 mg/ml lyso-
zyme, 20 mM imidazole, 1 mM dithiothreitol, 1 mM MgCl,, 10 mM Tris-HCI (pH 7.5), 30 U benzonase, 1 mM
phenylmethylsulfonyl fluoride (PMSF), and cOmplete EDTA-free protease inhibitor tablets (Roche, Basel,
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Switzerland). Lysates were clarified using centrifugation, and proteins were purified via nickel agarose
beads (Gold Biotechnology, Olivette, MO), eluted with 300 mM imidazole, 20 mM Tris-HCl (pH 7.5), and
150 mM NaCl. Eluted proteins were further purified via size exclusion chromatography using a HiLoad 16/
60 Superdex 200 gel filtration column (GE Healthcare, Chicago, IL) using an AKTAExplorer 100 fast protein
liquid chromatography (FPLC) system (GE Healthcare). Fast protein liquid chromatography buffer con-
tained 100 mM Tris-HCI (pH 7.5), 1 mM MgCl,, 1 mM dithiothreitol (DTT), and 10% wt/vol glycerol. HSP70
and GAPDH fractions containing purified protein were individually pooled, concentrated to ~2 mg/ml as
determined via Pierce BCA protein assay kit (Thermo Fisher Scientific), and stored by adding 50% glycerol
for storage at —20°C. HSP40 fractions containing purified protein were pooled and further purified via
anion exchange using a Mono Q anion exchange chromatography column (GE Healthcare) using an
AKTAExplorer 100 FPLC (GE Healthcare). Anion exchange buffer contained 100 mM Tris-HCl (pH 8.0), 1 mM
MgCl,, and 100 mM NaCl. Purified fractions were concentrated to ~2 mg/ml as determined via Pierce BCA
protein assay kit (Thermo Fisher Scientific), glycerol was added to reach a concentration of 10% (wt/vol),
and protein solutions were immediately flash frozen and stored at —80°C.

HSP70 ATPase activity assays. Hydrolysis of ATP by HSP70 was measured using an EnzChek phos-
phate assay kit (Thermo Fisher Scientific). All reaction mixtures contained 50 mM ATP. HSP70 was added
to the reaction ranging from 9 to 45 ug. HSP40 was used in reactions at 8.9 ug. Absorbance was meas-
ured every 12s for 40 min. Slopes were calculated by using the nonlinear regression analysis tool in
Prism (GraphPad Software). All data represent means of results from =3 independent experiments using
biological replicates and performed with technical replicates.

HSP40 and GAPDH antiserum generation. HSP40 and GAPDH rabbit polyclonal antisera was gen-
erated by Cocalico Biologicals (Reamstown, PA) using their standard protocol. Purified 6xHis-HSP40 or
6xHis-GAPDH was used as the antigen and TiterMax was used as an adjuvant. Antiserum specificity was
confirmed by immunoblotting of parasite lysate, RBCs, and purified protein. Further confirmation of
anti-HSP40 specificity was conducted by performing immunoprecipitation (IP) analysis (discussed in
“Immunofluorescence and immuno-EM,” below).

Immunofluorescence and immuno-EM. For immunofluorescence labeling, infected RBCs at ~8%
parasitemia were fixed with 4% paraformaldehyde diluted in PBS. Cultures were treated with indicated
drugs 24 h prior to collection. Fixed cells were washed with 50 mM ammonium chloride, permeabilized
by treatment with 0.075% NP-40 in PBS, and blocked using 2% bovine serum albumin in PBS. Cells were
incubated with 1:5,000 rabbit polyclonal anti-HSP40 (described in “HSP40 and GAPDH antiserum genera-
tion,” above). Hoechst 33258 (Thermo Fisher Scientific) was used as a nuclear counterstain. Dilutions of
1:1,000 of Alexa Fluor 488 goat anti-rabbit IgG (Thermo Fisher Scientific, A11008) were used as a second-
ary antibody. Images were obtained on an Olympus Fluoview FV1000 confocal microscope. For all im-
munofluorescence, minimal adjustments in brightness and contrast were applied equally to all images.

For immuno-EM, parasites were cultured at 2% hematocrit until they reached ~6 to 8% parasitemia.
Cultures were treated with indicated drugs 24 h prior to collection. Parasites were magnetically sorted
from uninfected RBCs and ring-stage parasites via MACS LD separation columns (Miltenyi Biotech,
Bergisch Gladbach, Germany). Parasites were collected by centrifugation and fixed for 1 h on ice in 4%
paraformaldehyde in 100 mM PIPES [piperazine-N,N’-bis(2-ethanesulfonic acid)]/0.5 mM MgCl, (pH 7.2).
Samples were then embedded in 10% gelatin and infiltrated overnight with 2.3 M sucrose/20% polyvi-
nylpyrrolidone in PIPES/MgCl, at 4°C. Samples were frozen in liquid nitrogen and then sectioned with a
Leica Ultracut UCT7 cryo-ultramicrotome (Leica Microsystems, Wetzlar, Germany). Fifty-nm sections were
blocked with 5% fetal bovine serum/5% normal goat serum for 30 min and subsequently incubated with
primary antibody for 1h at room temperature. Primary antibodies used include anti-HSP40 (1:250) and
anti-PDI (1D3) mouse 1:100 (ADI-SPA-891-D; Enzo Life Sciences, Farmingdale, NY). Secondary antibodies
were added at 1:30 for 1h at room temperature. Secondary antibodies included 12 nm Colloidal Gold
AffiniPure goat anti-mouse 1gG (H + L) (115-205-146; Jackson ImmunoResearch, West Grove, PA) and
18 nm Colloidal Gold AffiniPure goat anti-rabbit IgG (H + L) (111-215-144; Jackson ImmunoResearch).
Sections were then stained with 0.3% uranyl acetate/2% methyl cellulose and viewed on a JEOL 1200 EX
transmission electron microscope (JEOL USA Inc., Peabody, MA) equipped with an AMT 8 megapixel dig-
ital camera and AMT Image Capture Engine V602 software (Advanced Microscopy Techniques, Woburn,
MA). All labeling experiments were conducted in parallel with controls omitting the primary antibody.
Quantification of membrane-associated HSP40 was performed in micrographs where both a nucleus
and food vacuole were present. Images were blinded and scored for total number labeled HSP40 and
membrane-associated HSP40 (defined as being on or directly touching a well-visualized membrane).

Membrane fraction preparation and immunoblotting. Cultures were treated with indicated drugs
24 h prior to collection. Asynchronous parasites were released from RBCs with 0.1% saponin, washed in
cold PBS, and resuspended in 100 to 300 ul deionized (DI) water with 1T mM PMSF and cOmplete EDTA-
free protease inhibitor tablet (Roche). Resuspended pellets were freeze-thawed three times with liquid
nitrogen/37°C water bath. A total lysate sample was taken at this point in the protocol. The membranes
were pelleted (14,000 RPM, 30 min, 4°C), and the supernatant was collected as the soluble fraction.
Pellets were washed once with ice-cold PBS and pelleted (as before) before pellets were resuspended in
100 to 300 wl (depending on sample amount) radioimmune precipitation assay (RIPA) buffer (Cell
Signaling Technology, Danvers, MA) containing 1% CHAPS {3-[(3-cholamidopropyl)-dimethylammoniol-
1-propanesulfonate} and 1% ASB-14 (amidosulfobetaine-14). Samples were sonicated three times with a
microtip and incubated at 42°C with shaking at 800 RPM for 45 min. The samples were then centrifuged
(14,000 RPM, 30 min, 4°C), and the resulting supernatant was collected as the membrane fraction. A sample
buffer of 4x SDS was added, and samples were boiled for 10 min and loaded on 4 to 20% mini-PROTEAN
TGX gradient gels (Bio-Rad Laboratories, Hercules, CA).
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For immunoblotting, proteins were transferred onto PVDF using wet transfer with 20% methanol.
Blots were blocked either 1 h at 25°C or overnight at 4°C with 2% bovine serum albumin-0.1% Tween 20—
PBS. Primary antibodies were used at the following dilutions: 1:5,000 rabbit anti-HSP40, 1:5,000 rabbit anti-
GAPDH, 1:10,000 rabbit anti-HAD1 (81), 1:5,000 rabbit anti-Hsp70 (AS08 371; Agrisera Antibodies, Vannds,
Sweden), 1:500 mouse anti-PM-V (82), and 1:5,000 mouse anti-EXP-2 clone 7.7 (83). For all blots, 1:20,000
horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG antibody (Thermo Fisher Scientific, 65-6120)
or 1:5,000 HRP-conjugated goat anti-mouse IgG antibody (Thermo Fisher Scientific, G-21040) was used as
the secondary antibody. Anti-HAD1 or anti-Hsp70 and anti-PM-V or anti-Exp-2 were used as loading con-
trols from total lysate and membrane fractions, respectively. All blot images are representative of results of
a minimum of 3 independent experiments using biological replicates.

Immunoprecipitation of HSP40 from parasite lysate and protein mass spectrometry. Preinoculated
rabbit antisera and anti-HSP40 were coupled to magnetic beads using the Dynabeads antibody coupling
kit as per the manufacturer’s protocol (Thermo Fisher Scientific, 14311D). Asynchronous parasite pellets
(100 ml at 4% hematocrit and roughly 10% parasitemia) were harvested from RBCs using 0.1% saponin.
Cultures were treated with indicated drugs 24 h prior to collection. Isolated parasite pellets were lysed in 300 !
of buffer containing 25 mM Tris-HCI (pH 7.5), 100 mM NacCl, 5 mM EDTA, 0.5% Triton-X 100, and 1 cOmplete mini
EDTA-free protease inhibitor tablet (Roche) (per 10 mL of buffer). Resuspended pellets were homogenized using
a LabGEN homogenizer (Cole-Parmer, Vernon Hills, IL) in 3 rounds of 30-s intervals with 60's of rest on ice. Lysate
was centrifuged at 14,000 RPM for 10 min at 4°C. The resulting soluble lysate was diluted by adding 450 ul of
binding buffer containing 25mM Tris-HCl (pH 7.5) and 150 mM NaCl. Diluted lysate was added to antisera-
coupled beads that were previously washed three times with the same binding buffer. Lysate and beads were
rotated for 2h at 4°C. Beads were then washed three times with wash buffer (25 mM Tris-HCI [pH 7.5] and
500 mM Nacl) and flowthrough was discarded. Immunoprecipitated proteins were eluted using elution buffer
with 200 mM glycine (pH 2.5) for 305, and eluted sample was neutralized with 1 M Tris-HCl (pH 7.5). Samples
were then flash frozen and stored at —80° for immunoprecipitate identification via protein mass spectrometry.

Immunoprecipitates were identified via protein mass spectrometry by the Proteomics and Mass
Spectrometry Core at the Donald Danforth Plant Science Center (St. Louis, MO) and analyzed by the
Proteomics Core facility of the Children’s Hospital of Philadelphia. Stored samples were submitted in solu-
tion for protein mass spectrometry. Protein and peptide identification/quantification was performed with
MaxQuant (1.6.14.0) using a Plasmodium falciparum reference database from UniProt (UP000001450).
Carbamidomethyl of Cys was defined as a fixed modification. Oxidation of Met and acetylation of protein
N-terminal were set as variable modifications. Trypsin/P was selected as the digestion enzyme, and a maxi-
mum of 3 labeled amino acids and 2 missed cleavages per peptide were allowed. Fragment ion tolerance
was set to 0.5 Da. The tandem mass spectrometry (MS/MS) tolerance was set at 20 ppm. The minimum
peptide length was set at 7 amino acids. The false discovery rate for peptides and proteins was set at 1%.
The rest of the parameters were kept as default.

Perseus (1.6.14.0) was used for proteomics data processing and statistical analysis. The MaxLFQ inten-
sity values were used to analyze the whole-cell proteome data. Protein groups containing matches to
decoy database or contaminants were discarded. The data were log, transformed and normalized by sub-
tracting the median for each sample. Proteins with fewer than two values in each group were filtered out.
Nonspecific binding proteins were removed by filtering proteins that were enriched in pull-downs from
prebleed sera. A heat map of normalized log,-transformed data was generated using NG-CHM Heat Map
Builder (84). PANTHER 16.0 was used to annotate Gene Ontology (GO) terms for each gene (85, 86)

Metabolite profiling. A total of 60 ml of sorbitol-synchronized early trophozoites cultured at 4% hemato-
crit until it reached ~7 to 11% parasitemia was isolated using 0.1% saponin, washed with ice-cold PBS, and fro-
zen at —80°C. Glycolysis and pentose phosphate pathway intermediates were extracted via the addition of
glass beads (212 to 300 um) and 600 wl chilled H,0-chloroform-methanol (3:5:12 vol/vol) spiked with PIPES
[piperazine-N,N'-bis(2-ethanesulfonic acid)] as the internal standard. The cells were disrupted with the TissueLyser
Il instrument (Qiagen, Hilden, Germany) using a microcentrifuge tubes adaptor set prechilled for 2 min at 20 Hz.
The samples were then centrifuged at 16,000 x g at 4°C, the supernatants were collected, and the pellet extrac-
tion was repeated once more. The supernatants were pooled, and 300 x| of chloroform and 450 ul of chilled
water were added to the supernatants. The tubes were vortexed and centrifuged. The upper layer was trans-
ferred to a new tube and dried using a speed-vac. The pellets were redissolved in 100 u| of 50% acetonitrile.

For liquid chromatography (LC) separation of the glycolysis/pentose phosphate pathway intermediates, an
InfinityLab Poroshell 120 HILIC (2.7 um, 150 by 2.1 mm, Agilent) was used flowing at 0.5 ml/min. The gradient of
the mobile phases A (20 mM ammonium acetate [pH 9.8], 5% acetonitrile [ACN]) and B (100% acetonitrile) was as
follows: 85% B for 1 min, to 40% B in 9 min, hold at 40% B for 2 min, then back to 85% B in 0.5 min. The liquid
chromatography (LC) system was interfaced with a Sciex QTRAP 6500+ mass spectrometer equipped with a
TurbolonSpray (TIS) electrospray ion source. Analyst software (version 1.6.3) was used to control sample acquisi-
tion and data analysis. The QTRAP 6500+ mass spectrometer was tuned and calibrated according to the manu-
facturer's recommendations. Metabolites were detected using MRM (multiple reaction monitoring) transitions
that were previously optimized using standards. The instrument was set up to acquire in negative mode. For
quantification, an external standard curve was prepared using a series of standard samples containing different
concentrations of metabolites and fixed concentration of the internal standard. The limits of detection for glycoly-
sis and pentose phosphate pathway intermediates were as follows: glucose 6-phosphate and glucose 1-phos-
phate/fructose 6-phosphate, 0.5 uM; glyceraldehyde 3-phosphate and ribulose 5-phosphate, 1 uM; erythrose-4-
phosphate, 1.5uM; pyruvate, 2/3-phosphoglycerate, phosphoenolpyruvate, and sedoheptulose-7-phosphate,
2 uM; fructose 1,6-bisphosphate, 3.9 .M. Resulting metabolite levels were normalized to parasitemia levels for
each individual sample and reported as attogram per cell (ag/cell). Levels were averaged between three biologi-
cal replicates and compared between control, FSM (5 uM for 24 h), and FT1 (10 wM for 24 h).
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