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ABSTRACT

Objective: A key component for precision medicine is a good prediction algorithm for patients’ response to

treatments. We aim to implement machine learning (ML) algorithms into the response-adaptive randomization

(RAR) design and improve the treatment outcomes.

Materials and Methods: We incorporated 9 ML algorithms to model the relationship of patient responses and

biomarkers in clinical trial design. Such a model predicted the response rate of each treatment for each new pa-

tient and provide guidance for treatment assignment. Realizing that no single method may fit all trials well, we

also built an ensemble of these 9 methods. We evaluated their performance through quantifying the benefits

for trial participants, such as the overall response rate and the percentage of patients who receive their optimal

treatments.

Results: Simulation studies showed that the adoption of ML methods resulted in more personalized optimal

treatment assignments and higher overall response rates among trial participants. Compared with each individ-

ual ML method, the ensemble approach achieved the highest response rate and assigned the largest percent-

age of patients to their optimal treatments. For the real-world study, we successfully showed the potential

improvements if the proposed design had been implemented in the study.

Conclusion: In summary, the ML-based RAR design is a promising approach for assigning more patients to

their personalized effective treatments, which makes the clinical trial more ethical and appealing. These features

are especially desirable for late-stage cancer patients who have failed all the Food and Drug Administration

(FDA)-approved treatment options and only can get new treatments through clinical trials.
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Lay Summary

In a typical controlled clinical trial, patients are equally randomized to receive different treatments. However, it is possible

that one treatment demonstrates advantages over others during the trial. Utilizing that information can benefit subsequent

patients. This is why response-adaptive randomization (RAR), which allows uneven treatment assignment probabilities

based on existing knowledge, has become popular recently. A key component of RAR is a good prediction algorithm for

patients’ response to treatments. Previous works have explored using machine learning (ML) to predict treatment response,

but few incorporated ML methods into RAR. This study implements 9 commonly used ML methods into RAR trial designs.

We further present an ML-ensemble RAR design that builds upon the majority consensus of the 9 ML methods’ predictions.

Extensive simulation studies and real-world applications show that using ML methods in RAR leads to the assignment of

more patients to their optimal treatments, increasing the overall response rate. The proposed method will become a useful

tool for future clinical trial design in the era of precision medicine.

INTRODUCTION

It is known that patients respond differently to the same treat-

ments.1 The demand for selecting the optimal treatment for each

and every patient has resulted in a rapidly developing field called

precision medicine, also known as personalized medicine.2 This field

aims to provide guidance to select the most effective treatment based

on distinctive patient biomarkers. As clinical trials also evolve in the

age of precision medicine, there is a substantial need for novel trial

designs to deliver more ethical and precise care. Compared with

classical nonadaptive trials, adaptive trials have become popular

among clinicians as they integrate accumulating patient data to

modify the parameters of the trial protocol, provide personalized

treatment assignment, and ultimately optimize patients’ outcomes.

For example, the adaptive designs in phase 2/3 clinical trials take ad-

vantage of the interim treatment response data during the course of

the trial and allocate more patients to the presumably more effective

treatments.3

Among different adaptive designs, one common adaptation is

response-adaptive randomization (RAR). It refers to the adjustments

of treatment allocations based on intermediate patient responses

and new patients’ characteristics collected during the clinical trials.

This RAR design is useful when the interaction between biomarkers

and treatments are only putative or not known at the beginning of a

trial, and it is also practical when there are multiple treatments to be

considered. Its ultimate objective is to provide more patients with

their personalized optimal therapies according to their biomarker

profiles. The starting point of RAR can be traced back to Thomp-

son,4 who proposed employing a posterior probability estimated

from the interim data to assign patients to the more effective treat-

ment. Following his idea, the application of Bayesian methods with

an inherent adaptive nature has boomed in area of RAR designs.5–13

Currently, there are several major successes in applying Bayesian

RAR concepts in clinical trials, from protocol development through

legitimate registration. The BATTLE-1 trial (Biomarker-integrated

Approaches of Targeted Therapy for Lung Cancer Elimination) for

patients with advanced non–small cell lung cancer (NSCLC) and the

I-SPY 2 trial (Investigation of Serial Studies to Predict Your Thera-

peutic Response with Imaging and Molecular Analysis) for patients

with breast cancer in the setting of neoadjuvant chemotherapy are 2

biomarker-based, Bayesian RAR clinical trials.14,15 However, Bayes-

ian RAR designs have a number of challenges and limitations. Due

to the modeling restrictions, Bayesian RAR methods usually con-

sider only a very small number of biomarkers. With complex dis-

eases or symptoms, hundreds or even thousands of biomarkers may

need to be considered at the same time for treatment assignment.16

Also, some Bayesian RAR methods adjust the design by separating

the cohort based on the existence of biomarker(s), and thus these

methods rely heavily on how well the biomarker(s) interact(s) with

the treatments. If the biomarker is chosen incorrectly, it is possible

to make wrong adjustments afterwards.1,17

As the development of modern sequencing technology, clinicians

have faced a massive volume of high dimensional data with a com-

plex, nonlinear structure. How to build an effective and scalable algo-

rithm for randomization becomes a fundamental question for the

research of RAR trial designs. Machine learning (ML) methods have

been applied to solve many real-world problems and have successfully

demonstrated their strengths in processing large data sets, as well as

capturing nonlinear data structures. With the expectations and resour-

ces to analyze this large amount of complex healthcare data, ML

methods have established their supremacy in disease prediction,18 dis-

ease classification,19 imaging diagnosis,20 drug manufacturing,21 medi-

cation assignment,22 and genomic feature identification tasks.23

Although several supervised ML approaches have been applied

to drug response prediction,10,24–34 little of the work has explored

incorporating ML methods into RAR trial designs. In this study, we

implemented 9 ML algorithms into RAR designs and further pre-

sented an ML-ensemble RAR design combining these 9 ML algo-

rithms. Specifically, ML methods help to match patient biomarker

profiles with prediction of treatment outcomes and, in turn, have

determined treatment allocation for future patients. These ML

methods are able to address large data and complex structures. We

have successfully demonstrated, in both simulation study and a

real-world example, that ML-based RAR designs have higher re-

sponse rates as there are more patients receiving effective treat-

ments. The ensemble method outperformed all other single ML

methods.

MATERIALS AND METHODS

Adaptive design: response-adaptive randomization
In clinical trial design, adaptive design means making changes to the

trial protocol after the trial has started and some data have been col-

lected. These changes are based on the information from the col-

lected data, including (1) the total sample size, (2) interim analyses,

(3) patient allocation to different treatment arms, and more.35 For

(3), it refers to the RAR design in which the treatment allocation

probability varies in order to favor the treatment estimated to be

more effective and to increase the response rate in patients. The ini-

tial concept can be traced back to Thompson4 and Robbins,36 and

led to others. Some famous RAR trials include the extracorporeal

membrane oxygenation (ECMO) trial, which tested the efficacy of

ECMO in patients with severe acute respiratory distress syndrome
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(ARDS),37 and the first large-scale double-blind, placebo-controlled

study which tested the superiority of fluoxetine over placebo in chil-

dren and adolescents with depression.38 A general scheme of the

RAR designs is shown in Figure 1.

Benchmark design: equal randomization
Randomization as a standard means for addressing the selection

bias in treatment assignments has been extensively used in clinical

trials.35 It helps to achieve balance among treatment groups and

accounts for the genuine uncertainty about which treatment is better

at the beginning of the trial. Randomly assigning patients to treat-

ment arms on a 1:1 basis is known as equal randomization (ER).

Friedman et al39 (p. 41) presented that equal allocation in principle

maximizes statistical power and is consistent with the concept of

equipoise that should exist before the trial starts. Here, we used the

ER design as a benchmark randomization design to evaluate the per-

formance of ML-based RAR designs.

Allocation rule
The key of the proposed method is to model the relationship of pa-

tient responses and biomarkers. Such a model will then predict the

response rate of each treatment for each new patient and provide

guidance for treatment assignment. In detail, current enrolled

patients’ biomarker profiles and treatment response data were used

to train ML models, which later were used to predict future patients’

treatment responses based on their biomarker profiles. Given treat-

ment A and B, the probability of allocating each treatment for pa-

tient i is shown as below:

piA ¼
piA

piA þ piB

piB ¼
piB

piA þ piB

where piA and piB, respectively, denote the response probability of

treatment A and B for patient i predicted by the ML model.

ML algorithms and a ML ensemble
We selected 9 mainstream ML algorithms and implemented them in

the RAR design to predict treatment response. The prediction models

were built using the best-fitting parameters for each model, which

were obtained by the grid search method with a 10-fold cross-valida-

tion.40,41 Grid search is a standard method which allows us to try a va-

riety of tuning parameter combinations for the model within a

reasonable amount of time. The 10-fold cross-validation performs the

fitting process for a total of 10 times with randomly selected nine-

tenths of the data (90%) to train the model in each fit and the rest of

the data to validate. By doing this, we avoid bias from using a random

single split. The selected model will generalize better to all of the sam-

ples in the dataset. Combining grid search with cross-validation, we

evaluate the performance of each parameter combination and select

the best parameters for each ML model. Here we conducted this

hyperparameter tuning procedure in R using the “Caret” package42;

similar techniques are available in the scikit-learn Python ML li-

brary.43 These selected ML algorithms can be roughly divided into 2

categories:

1. Parametric models: logistic regression,44 LASSO regression,45

and Ridge regression.46

2. Nonparametric models: gradient boosting machine (GBM),47

random forest (RF),48 support vector machine (SVM),49 Naive

Bayes,50 k-nearest neighbors (KNN),51 and artificial neural net-

works (NNs).52

For logistic regression, Ridge regression and Lasso regression,

they are all considered parametric models. In detail, logistic regres-

sion assumes the linearity of independent variables and log odds. It

is a particular form of GLM.24 Ridge regression and LASSO regres-

sion assume that there is a linear relationship between the

“dependent” variable and the explanatory variables. They are 2 reg-

ularization methods of GLM to prevent an over-fitting issue by add-

ing penalties on the predictor variables that are less significant.46,53

KNN, which classifies data points based on the points that are

most similar to it, is a typical nonparametric model such that there

is no assumption for underlying data distribution, and the number

of parameters grows with the size of the data.51 With NNs, how-

ever, there has been some debate regarding whether they belong to

parametric or nonparametric methods. NNs typically consist of 3

layers: input layer, hidden layer, and output layer. Here we classify

NNs as a nonparametric method, as the network architecture grows

adaptively to match the complexity of given data.52

Both GBM and RF are nonparametric methods that consist of sets

of decision trees. Specifically, GBM builds one tree at a time and each

new tree helps to correct errors made by previously trained tree by

adding weights to the observations with the worst prediction from the

previous iteration; RF trains each tree independently using a random

sample of the data, and the results are aggregated in the end.47,48

NB and SVM can be either parametric or nonparametric depend-

ing on whether they use kernel tricks. For the NB classifier, it

becomes nonparametric if using a kernel density estimation (KDE)

to obtain a more realistic estimate of the probability of an observa-

tion belonging to a class.50 And for SVM, the basic idea is finding a

hyperplane that best divides a dataset into 2 classes. It is considered

a nonparametric when using the kernel trick to find this hyperplane.

This is because the kernel is constructed by computing the pair-wise

Figure 1. Response-adaptive randomization (RAR) design. The number of adaptive randomization is adjustable per application.
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distances between the training points, and the complexity of the

model grows with the size of the dataset.49

Combing these 9 models, an ML ensemble method was built and

implemented in the RAR design to obtain a better treatment alloca-

tion rule. We defined the treatment allocation probability function

for patient i as follows:

pi ¼
pt; if m � h

m=M; otherwise

(

where m is the number of agreed models, M ¼ 9 is the total number of

models, h is the threshold number of agreed models, and pt is the

threshold treatment allocation probability. Here we chose h ¼ 7 and pt

¼ 0:85 for m � h; these threshold values can be adjusted accordingly

for different application purposes. To further understand the impacts of

selecting different parameter values, we did simulations using different

threshold number of agreed models h ¼ 5=6=7=8ð Þ and different

threshold allocation probabilities pt ¼ 0:7=0:75=0:8=0:85=0:9ð Þ. The

results are shown in Supplementary Figures S1–S4. In Supplementary

Figures S1 and S3 right-sided figures, when the treatment main effect is

high, as the threshold parameter increases, the response rate of the en-

semble method increases and the individual loss decreases. This intui-

tively makes sense because when the consensus method reaches the

correct decision, increasing pt will increase the probability of patients

receiving their optimal treatments (Supplementary Figure S2). When the

treatment main effect is low, the increments of the response rate are not

very significant (Supplementary Figure S1, left), but we still observe ob-

vious differences regarding the optimal treatment percentage and the in-

dividual loss (Supplementary Figures S2 and S3, left). Meanwhile, it is

still desirable to maintain some randomness of treatment assignment in

a clinical trial and thus an allocation probability of 1 for the optimal

treatment is not recommended. For Supplementary Figure S4, we show

the results of the response rate and the optimal treatment percentage,

and we can see that the difference of using different threshold values of

agreed ML models is minor.

Apart from comparing with the ER “benchmark” design, the

current study also examined whether the ML ensemble could assign

more patients to the best available treatment beyond other ML

methods in adaptive design with the same assessment of individuals.

Inverse probability of treatment weighting
Similar to the observational study in which certain outcomes are

measured without attempting to change the outcome, the treatment

selection of future patients in RAR trials is often influenced by indi-

vidual characteristics of the initial block of patients.25 As a result,

when estimating the impact of treatment on responses, systemic var-

iations in baseline characteristics between differently treated individ-

uals must be taken into account. Here we applied the inverse

probability of treatment weighted (IPTW) method to decrease or re-

move the effects of confounding when using the observational data

to estimate the treatment effects. The idea of IPTW is to use weights

based on the propensity score to create a synthetic sample in which

the distribution of baseline characteristics is independent of treat-

ment.54 The propensity score refers to the probability of treatment

allocation tied to the observed individual characteristics. And the

weight based on it is defined as follows:

wi ¼
Zi

ei
þ 1� Zið Þ

1� ei

where Zi is the treatment indicator and ei is the propensity score for

the ith subject. Different estimators for treatment effects based on

IPTW have been developed; here we used an estimator of the aver-

age treatment effect (ATE), which is defined as E Zi 1ð Þ �Zi 0ð Þ½ �
where Zi 1ð Þ � Zi 0ð Þ is the effect of treatment.53 Incorporated with

the IPTW idea, the ATE estimator is defined as follows:

1

n

Xn

i¼1

ZiYi

ei
� 1

n

Xn

i¼1

1�Zið ÞYi

1� ei

where Yi denotes the response variable of the i th subject, n denotes

the total number of subjects, and ei still denotes the propensity score.55

Evaluation metrics
Two commonly used criterion in the field of precision medicine,

namely the overall response rate and the percentage of individuals

receiving optimal treatments, are our primary evaluation metrics.

The formulas of the response rate and the optimal treatment per-

centage are as follows:

Response rate ¼ No: of patients who responded

No: of patients in the trial

Optimal treatment percentage

¼ No: of patients receiving their personalized optimal treatments

No: of patients in the trial

The power and the average treatment effect (ATE) adjusted by the

IPTW method were also reported to thoroughly evaluate each meth-

ods’ performance. The power of a clinical trial refers to the probabil-

ity of detecting a difference between different treatment groups when

it truly exists; ATE was defined in the previous section. Additionally,

we proposed a new criterion, the individual loss to quantify the loss

for each patient due to receiving suboptimal treatments. For the indi-

vidual loss, we first define a match for the enrolled patients. A match

occurs when the patient’s actual treatment received is the same as the

best treatment from the true model. For an enrolled patient i with sig-

nature x; let bPi Y ¼ 1 j T; xð Þ denote the probability of responding to

the received treatment T. Let bPi Y ¼ 1 j T ¼ OPT; xð Þ denote the

probability of responding to the optimal treatment determined by the

true model. Then we define the personalized loss function as follows:

Loss ið Þ ¼
0 if it is a matchbPi Y ¼ 1 j T;xð Þ � bPi Y ¼ 1 j T ¼ OPT;xð Þ if there is not a match

(

A low individual loss value suggests that the majority of patients

have received the treatment and will respond at least as well as the

real model’s optimal therapy.

RESULTS

Simulation
We used simulation studies to evaluate the proposed methods.

Setting

We generated the ith patient’s response from a logistic regression

model with 10 biomarkers:

logit gið Þ ¼ aTi þ
X10

j¼1

bkfj Xji

� �
þ
X10

j¼1

cjTiXji þ �i; i ¼ 1; . . . ;300; j

¼ 1; . . . ;10

where Ti is the treatment indicator (either treatment 0 or treatment

1), a is the treatment main effect coefficient, Xji is the jth biomarker
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for patient i, and fj Xji

� �
incorporates some polynomial and step

function terms. cj is the biomarker-treatment interaction coefficient

and X5 � X6 were assumed to interact with the treatment. A ran-

dom noise for each subject is denoted as ei. In detail, each biomarker

Xji was assumed to follow a normal distribution with a mean of 0

and a standard deviation of 1. Among these 10 biomarkers, X2

� X4 contributed to the true model as third-degree polynomials,

while X7 � X10 contributed to the true model as step functions:

s xð Þ ¼
0 x < 0

1 x � 0

(

Seven scenarios of different treatment main effects (a¼0, 0.5,

0.7, 1, 1.3, 1.5, 1.7) and a fixed treatment-biomarker interaction

(c ¼ 0:5) were considered. We conducted 1000 Monte Carlo simula-

tions for each scenario and compared the results obtained by the

ML-based and ML-ensemble RAR designs with the results from the

ER design.

Response rate and optimal treatment percentage

The response rate results and the percentage of receiving the optimal

treatment are shown in Figure 2. Overall, the performance of ML-

based RAR designs is better than the performance of the ER design.

When the treatment main effect is zero, the differences for both re-

sponse rate and the optimal treatment percentage between ML-

based RAR designs and the ER design are not significant. As the

treatment effect increases, these differences become more obvious.

Among these 9 ML algorithms, the neural network has the highest

response rate and the highest proportion of patients receiving their

optimal treatments. Additionally, the ensemble method combining

these 9 ML methods outperforms all other methods and achieves an

approximate 5% higher response rate and a more than 20% larger

optimal treatment percentage compared to the ER design.

Individual loss, ATE, and power

The individual loss and the ATE results are shown in Figure 3. The

interpretation of the individual loss results coincides with the previ-

ous response rate results and the optimal treatment percentage

results such that the ML-ensemble RAR design has the lowest indi-

vidual loss value among all scenarios, which is preferred in the trial.

The ATE has been adjusted by the IPTW method to account for con-

founding effect of using observational data. The logistic regression

method now has the highest ATE, followed by the NN method. The

ensemble method has a relatively low ATE, but it is higher than the

ER method when the treatment main effect becomes larger. This

shows that the average effect of changing the entire population from

untreated to treated using RAR designs is better than that of using

the ER design.

Power

The power results are shown in Figure 4. The power is also weighted

by the IPTW method to address potential bias. For the power analy-

sis, the Type I error is controlled at 0.05. Several papers have shown

in their simulation studies that the correlation among treatment

assignments was inevitable when performing inference on the data

from RAR design-implemented studies.56,57 This correlation can in-

crease the binomial variability and lower the power. In our simula-

tion, the RAR design using the NN method has the lowest power,

followed by using the logistic regression method. However, other

ML-based RAR designs have comparable or even higher power than

that of the ER design. The ensemble method has a relatively low

power, but it is still better than the NN method.

Real-world example
We analyzed a publicly available acute myeloid leukemia (AML)

dataset from Kornblau et al58 where most of the clinical biomarkers

are expression levels of cellular proteins. Kornblau et al sequenced

protein expressions in leukemia-enriched cells from 256 newly diag-

nosed AML patients with a primary goal of eventually establishing a

proteomic-based categorization of AML. The treatment and the re-

sponse variables were carefully adjusted to binary variables. Specifi-

cally, the treatments were binarized to high-dose ara-C (HDAC)–

based treatments and non-HDAC treatments; the responses were

binarized to complete response (CR) and non-CR.

We first performed a feature selection to decide what interaction

terms should be included in the model. We used each protein-

treatment interaction term to build the generalized linear model

(GLM) model and reported the p-value for each interaction to assess

Figure 2. Simulation result: response rate (left), percentage of patients receiving their optimal treatments (right). The treatment-biomarker interaction, c is fixed at

0.5. Boxplots display the median (middle line), the interquartile range (hinges), and 1.5 times the interquartile range (lower and upper whiskers) based on 1000

times simulation. The mean (over 1000 simulations) response rate ranges from 0.53 to 0.69, and the mean of optimal treatment percentages ranges from 0.50 to

0.71.
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whether it has strong correlation with the dependent variable/the

treatment response. The top 10 proteins whose interaction variables

have the smallest P-values were selected. We then performed a gene

network analysis on the genes that code for these proteins using

GeneMANIA (http://genemania.org).26 This analysis helps to illus-

trate the hidden interaction and network of the corresponding genes.

Additionally, it shows other genes that have been reported to associ-

ate with the input 10 genes, using extensive existing knowledge such

as protein and genetic interactions, pathways, co-expression, co-lo-

calization, and protein domain similarity. The results are presented

in Figure 5. The top 10 genes corresponding to the biomarkers iden-

tified in our study are highlighted with red circles.

Using a cut-off P-value of 0.1 among 71 proteins, the expression

levels of 3 of them were found to have the most significant interac-

tions with the treatment, that is, the strongest correlation with the

treatment outcomes: phosphothreonine 308 of Akt (Thr 308 p-Akt),

the mechanistic target of rapamycin (mTOR), and signal transducer

and activator of transcription 1 (STAT1). Studies have shown that

these 3 proteins play critical roles in human AML. The level of Thr

308 p-Akt is associated with high-risk cytogenetics and predicts

poor overall survival for AML patients.27 In AML, the mTOR sig-

naling pathway is deregulated and activated as a consequence of ge-

netic and cytogenetic abnormalities. The mTOR inhibitors are often

used to target aberrant mTOR activation and signaling.59,60 The

Figure 3. Simulation result: individual loss (left), average treatment effect (ATE, right). The treatment-biomarker interaction, c is fixed at 0.5. Boxplots display the

median (middle line), the interquartile range (hinges), and 1.5 times the interquartile range (lower and upper whiskers) based on 1000 times simulation. The

mean (over 1000 simulations) individual loss ranges from 0.04 to 0.10, and the mean ATE ranges from -0.12 to 0.30.

Figure 4. Simulation result: power. The treatment-biomarker interaction, c is fixed at 0.5. The Type I error is controlled at 0.05. The power ranges from 0.04 to

0.97.
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STAT1 transcription factor is constitutively activated in human

AML cell lines and might contribute to the autonomous prolifera-

tion of AML blasts. The inhibition of this pathway can be of great

interest for AML treatments.61,62 Hence, we chose these 3 proteins

to build ML models in our proposal.

The whole dataset (256 observations) was randomly shuffled

and divided into 2 equal-sized blocks: block 1 and block 2. Each

block was taken in turn as either the training set or the testing set.

The results were aggregated after 100 repetitions. Since this clinical

trial is already completed and it is not possible to get actual treat-

ment responses using our methods, we separated the enrolled

patients into 2 groups: a consistent group whose real treatments are

the same as the treatments using the ML-based RAR designs and an

inconsistent group whose real treatments are different from the

treatments using the ML-based RAR designs. We compared the re-

sponse rates in these 2 groups to elucidate the potential gain if the

proposed RAR had been implemented. The results of each method

are shown in Figure 6. In the consistent group, the response patient

percentages are at least 10% higher than 50%; while the response

patient percentages in the inconsistent group are all lower than

50%, that is, we observe higher response rates in the consistent

group. This means that patients in the inconsistent group may likely

benefit from the RAR method we developed.

DISCUSSION

Patients are accrued in groups sequentially. RAR designs determine

the treatment allocation for new groups of patients based on the ac-

crued information of how previous groups of patients responded to

their treatments. The number of RAR implementations, k, should be

predefined. The choice of k may depend on the total sample size,

trial length, and other logistics and practical considerations. Our

simulation study used k ¼ 2 for a total sample size of 300. In the

real data analysis with a smaller sample size of 256 subjects, we

used k ¼ 1.

We developed novel methods for RAR designs by incorporating

9 ML methods to predict treatment response and assign treatments

accordingly. We showed that our ML-based RAR designs can effec-

tively improve treatment response rates among patients. We further

proposed an ensemble approach based on the consensus of the 9 ML

methods to improve the prediction and decision making. Our pro-

posed ML-ensemble RAR design builds on the predictive ability of 9

ML methods and can further improve predication accuracy and pa-

tient outcome. Specifically, suppose m out of 9 models indicate that

treatment A is better than treatment B for patient i, then we let piA

¼ m=9 for 2 � m � 7, let piA ¼ 0:85 for m � 7, and piA ¼ 0:15

for m � 2. For m � 7, we keep the assignment probability as a con-

stant of 0.85 because we still want to reserve some randomness in

Figure 5. AML data: the gene network analysis. The input 10 genes, namely the genes coding for top 10 proteins that significantly interacted with the treatment,

were highlighted using red circles. Other genes that were presumably involved in AML were returned by GeneMANIA.
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the trial. These settings can be tuned based on prior knowledge of

the treatment selections.

We also tried the combination of NN and GLM algorithms as

another binary-combination method and conducted additional sim-

ulations. Since these 2 models may not always be in consensus re-

garding optimal treatment selection for each individual, we took the

average of the treatment assigning probabilities of the NN and

GLM methods. Similar as we have done previously for the 9 ML

methods and the ensemble approach, we evaluated its performance

through the overall response rate in simulated trials, the percentage

of patients receiving their individually optimal treatment, and the

average individual loss for all trial participants. We have provided

the results in the Supplementary Figure S5. Although the perfor-

mance of this combination is slightly better than using either NN or

GLM alone, it is still substantially worse than that of the ensemble

using 9 ML algorithms, especially when the treatment main effect is

high.

While we only considered settings of 2 treatment options in this

work, ML-based RAR design can extend to multiple targeted treat-

ments. Given L treatments, the lth treatment allocating probability

of patient i is shown as pil ¼ pil=
PL
l¼1

pil; l ¼ 1; . . . ;L, where pil

denotes the response probability of lth treatment for patient i pre-

dicted by the ML algorithm. For example, NN can naturally adapt

to a multiclass classification problem by replacing the binary cross-

entropy loss to a categorical cross-entropy loss.63

Although our work can effectively improve the treatment out-

comes in the clinical trial, there are a few limitations that we would

like to point out as directions for further research. First, equal

weight was given to each of the 9 ML algorithms in the ensemble

method. However, it is likely that different ML methods have dis-

tinct prediction accuracy at different scenarios. Incorporating such

information by attaching different weights for different ML algo-

rithms in the ensemble method could potentially lead to better adap-

tation to the data and may provide more precise treatment

suggestions for personalized medicine. Second, although our method

has been extensively evaluated using simulated and real data, we did

not consider the setting with high-dimensional data, for example,

the data from omics experiments. With the development of modern

sequencing technology, more clinical trials seek to include such in-

formation in clinical decision making and trial design. With high-

dimensional data, there are more challenges, such as adding appro-

priate feature selection steps, etc. Moreover, our current model did

not consider the situation when complex interactions between treat-

ment and individualized biomarkers exist in the dataset. When this

problem is of interest, we might resort to other models that are spe-

cifically designed to address the heterogeneous treatment effect

caused by these interactions, such as the honest causal forest

model,64 that are specifically designed to address the heterogeneous

treatment effect caused by these interactions.

CONCLUSION

ML methods have successfully demonstrated their superior predic-

tion performance in many applications, but have not been applied to

conduct RAR in clinical trials. In this study, we developed novel

methods for RAR designs by incorporating ML algorithms to pre-

dict treatment response and assign treatments accordingly. We

showed that the ML-based RAR designs have better performance

than that of the traditional ER design. And the ensemble approach

Figure 6. AML data result: the response percentage. Patients in the consistent group (left) were assigned to the same treatments using our ML-based RAR

designs, while patients in the inconsistent group (right) were assigned to different treatments using our ML-based RAR designs. The 50% response percentage is

marked with a black dashed line.
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demonstrated better results than the ER design at the greatest extent.

As the ML field is getting mature and abundant packages are avail-

able on different programming software, our method is easy to im-

plement in current clinical trial systems.
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