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Abstract

Motivation: Large biomedical datasets, such as those from genomics and imaging, are increasing-

ly being stored on commercial and institutional cloud computing platforms. This is because

cloud-scale computing resources, from robust backup to high-speed data transfer to scalable com-

pute and storage, are needed to make these large datasets usable. However, one challenge for

large-scale biomedical data on the cloud is providing secure access, especially when datasets are

distributed across platforms. While there are open Web protocols for secure authentication and au-

thorization, these protocols are not in wide use in bioinformatics and are difficult to use for even

technologically sophisticated users.

Results: We have developed a generic and extensible approach for securely accessing biomedical

datasets distributed across cloud computing platforms. Our approach combines OpenID Connect

and OAuth2, best-practice Web protocols for authentication and authorization, together with

Galaxy (https://galaxyproject.org), a web-based computational workbench used by thousands of

scientists across the world. With our enhanced version of Galaxy, users can access and analyze

data distributed across multiple cloud computing providers without any special knowledge of ac-

cess/authorization protocols. Our approach does not require users to share permanent credentials

(e.g. username, password, API key), instead relying on automatically generated temporary tokens

that refresh as needed. Our approach is generalizable to most identity providers and cloud comput-

ing platforms. To the best of our knowledge, Galaxy is the only computational workbench where

users can access biomedical datasets across multiple cloud computing platforms using best-

practice Web security approaches and thereby minimize risks of unauthorized data access and cre-

dential use.

Availability and implementation: Freely available for academic and commercial use under the

open-source Academic Free License (https://opensource.org/licenses/AFL-3.0) from the following

Github repositories: https://github.com/galaxyproject/galaxy and https://github.com/galaxyproject/

cloudauthz.

Contact: jalili@ohsu.edu or goecksj@ohsu.edu

1 Introduction

Genomics has become an essential tool in many biomedical areas,

including developmental biology, human evolution and precision

medicine. As DNA sequencers become more affordable and pervasive,

increasing volumes of sequencing data are being generated and stored

on a variety of computing platforms. Genomics is expected to be an

exabase-scale big data domain by 2025, posing data acquisition and

storage challenges on par with astronomy, YouTube and Twitter—the

other major generators of big data (Stephens et al., 2015). Large and
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distributed genomics data poses key challenges for making effective

use of the data, especially for the increasingly important tasks of data

integration and joint analysis.

The emergence of cloud-based computing platforms such as

Amazon Web Services (AWS) and Microsoft Azure have paved the

path for online, scalable, cost-effective, secure and shareable big data

persistence and analysis with a growing number of researchers and

laboratories hosting (publicly and privately) their genomics big data

on cloud-based services (Langmead and Nellore, 2018). Most compu-

tational analyses of genomics data requires complex workflows that

include many steps and analysis tools. Computational workbenches

such as Galaxy (Afgan et al., 2018c) and GenePattern (Reich et al.,

2006) make it simple to create and execute analysis workflows.

Consequently, these systems need to seamlessly access cloud-based

genomics data to execute workflows.

Perhaps the first challenge of integrated genomic data analysis

on cloud-based platforms is getting access to the data. Data access

involves authentication—verifying a user’s identity—and authoriza-

tion—determining what data/resources a authenticated user can ac-

cess. Given that genomics data, especially from clinical samples, is

often highly sensitive—as it may contain protected health informa-

tion (PHI) or personally identifiable information (PII) (Datta et al.,

2016)—protocols are needed to implement secure authentication

and authorization.

Several systems such as Globus (Tuecke et al., 2016; Chard

et al., 2017) use cloud-based platforms for data storage and transfer;

these systems use state-of-the-art protocols for their user authentica-

tion and authorization. Such protocols endeavour to ensure the iden-

tity of users with these platforms in a number of ways. For instance,

they can guarantee that users identity cannot be exploited to imper-

sonate them, or that systems are granted with least privileges that

can be restricted independent from user’s privileges and cannot be

exploited if exposed, while the means of authorization are valid for

a short period of time that can be refreshed by the trusted parties

only (detailed discussion is available from sections 2 and 3). In con-

trast, some systems may rely on storing permanent user credentials

for a given cloud platform. Delegating a user’s private credentials to

a third-party service is a privacy and security risk for the user and a

liability risk for the service provider. These challenges highlight the

need for a robust solution to securely delegate access to and enable

analysis on cloud-based genomics data.

While systems such as Globus focus on data transfer and storage,

they do not enable data analysis. We have developed an approach

for federating identity and access management and implemented it

in the Galaxy framework, an integrated (genomic) data analysis

platform. Our approach enables a secure and seamless delegation of

privileges without sharing users’ login and/or access credentials.

With this approach, Galaxy users can securely access genomics data

across a wide variety of cloud computing platforms. The advantages

of our approach are twofold: (i) leveraging OpenID Connect

(OIDC) protocol to allow users to login to Galaxy using existing

third-party identities, and (ii) ability to securely grant Galaxy au-

thorization to access genomic data on the cloud. Leveraging the

OIDC protocol for user authentication paves the path for the

Galaxy-as-service model (Afgan et al., 2018b) where a user can

login to all Galaxy servers using a single identity. In addition to sim-

plifying the login process, this model protects users’ identity and cre-

dentials should any Galaxy server suffer a security breach.

The second advantage of this approach is that a user can securely

grant Galaxy authorization to access genomic data on the cloud.

Previously, users needed to share their permanent cloud credentials

with Galaxy (Afgan et al., 2018a), which is problematic because

those credentials grant Galaxy the same privileges as the user,

Galaxy must store and secure those credentials and users must

manually obtain those credentials. We have developed a new ap-

proach that leverages on-demand and automatic generation of tem-

porary access credentials to assume minimum delegated privileges.

This approach reflects best-practice approaches on the web, and it

minimizes risk and difficulty for users when accessing data on the

cloud. This approach was implemented for multiple cloud providers

in a reusable library called CloudAuthz (https://github.com/

galaxyproject/cloudauthz).

The described approach is integrated into the Galaxy application

framework (https://galaxyproject.org), making it possible for

Galaxy users to securely access and analyze cloud-based genomics

data. Galaxy users can access cloud data that they own or have ac-

cess to by specifying a provider name (e.g. AWS) and a resource

name [e.g. an Amazon Simple Storage Service (S3) bucket], but share

neither login nor access credentials (see Section 2). Being able to per-

form these steps without requiring the user to supply their perman-

ent access credentials has the following advantages:

• Galaxy does not ask for or store user access credentials, and

users can authenticate using available Web identity providers

such as Google. Thus our approach is both user-friendly and

secure;
• User identity is authenticated via security tokens that cannot be

exploited to impersonate them.
• Authorization to data follows the principle of least privilege, so

Galaxy can read/open given datasets but does not have access to

other user data or compute resources;
• Delegated privileges for Galaxy, which are defined by short-term

authentication/authorization tokens, are independent from a user’s

credentials, hence their scope can be restricted independently;
• Can leverage the role-based access control model (Sandhu et al.,

1996), which enables segregating duties and provide Galaxy

with the least privileges required for data access;
• The short-term authentication/authorization tokens issued for

Galaxy are refreshed automatically and can be revoked by the

user, either from the identity provider (e.g. Google)or the cloud

platform;
• Privileges for a Galaxy server cannot be used by a different client

(e.g. another Galaxy server, or a different web app). This is guar-

anteed by OIDC protocol.

1.1 Motivating application
Cloud-based services have become a ubiquitous storage solution due

to their scalability, availability and cost efficiency, which make them

an ideal storage solution for the genomics big data that are commonly

studied in a collaborative setting. Accordingly, a growing number of

datasets are publicly hosted on cloud service providers. For instance,

Tabula Muris is a single-cell transcriptomic dataset comprising more

than 100 000 cells of 20 organs and tissues of Mus musculus

(Consortium et al., 2018) and it is publicly hosted on AWS (accessible

through the following Amazon Resource Name: arn: aws: s3::: czb-

tabula-muris). In addition to Tabula Muris, 87 additional datasets

exist from various disciplines that are all publicly available via the

AWS registry of open data (https://registry.opendata.aws).

Among them are The Human Microbiome Project (arn: aws: s3:::

human-microbiome-project), The International Cancer Genome

Consortium (arn: aws: s3::: oicr.icgc.meta/metadata), Nanopore

Reference Human Genome (arn: aws: s3::: nanopore-human-wgs)

and 1000 Genomes (arn: aws: s3::: 1000genomes).
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A common scenario that demonstrates the need for robust authen-

tication and authorization to cloud-based genomics data is joint ana-

lysis of public and private datasets. For instance, an active area of

research in precision oncology is using omics data to statistically learn

biomarker signatures to guide selection of therapies (Ching et al.,

2018; McGrail et al., 2017; Wang et al., 2016; Zitnik et al., 2019)

most likely to be effective for a particular tumor. In these studies,

both private as well as public datasets such as The Cancer Genome

Atlas (TCGA) require authorized access. Currently this kind of re-

search requires copying private and public datasets on the same insti-

tutional computing cluster or cloud computing platform and running

analyses on that cluster/platform. Moving omics data is costly, diffi-

cult, and can be insecure depending on how access credentials are

used. Our approach greatly simplifies joint analyses by providing a

secure way for users to access data on one or more clouds. With the

described new feature of Galaxy, users can securely access and com-

bine both private and public datasets on a single Galaxy server where

they can be analyzed together. This server can live behind an institu-

tional firewall or on a commercial cloud computing platform and

hence provide flexibility about where the final analysis is run.

Large-scale collaboration is another scenario where secure cloud-

based authorization to genomics data is critical. For instance, collab-

orating labs across different institutes can host their data on the cloud

and grant each member of those labs read (and write) access to the

data. The challenge, however, is the ability to readily access that data

for analysis. Typically, this is accomplished by either downloading

the data onto on-premises resources or ‘mounting’ it on cloud-based

compute platforms. With Galaxy being widely adopted as a scalable,

transparent and reproducible data analysis platform, it is essential to

enable Galaxy users to load their cloud-hosted, private data into their

Galaxy history in an attestable and auditable manner. Accordingly, a

resource owner can share cloud-hosted data with a user who is

authenticated using their social or institutional identities. The user

can then login to Galaxy using their specified identity, and request

copying shared data into their history. Having analyzed the data, the

user can request copying analysis results from the Galaxy history to

the cloud-hosted storage, which enables them to share the analysis

results with their collaborators. An illustration of this scenario is

given in Figure 1, and a detailed discussion of the method is available

in Section 2. For example, it is now possible to authenticate with

Galaxy using a Google identity. Given a one-time, out-of-band setup

where that identity is associated with an AWS S3 bucket role, the

authenticated Galaxy user can seamlessly download and upload data

to a private S3 bucket. All this is done without ever prompting the

user for their AWS credentials.

2 Materials and methods

Linking a cloud-based storage to Galaxy without requiring user cre-

dentials is realized by leveraging the OIDC protocol and the

CloudAuthz library; this is implemented as a two-step authentica-

tion and authorization procedure. Authentication allows a user’s

identity to be validated while authorization verifies the privileges the

given user has. Galaxy currently supports user authentication

through <3000 identity providers, and supports secure authoriza-

tion delegation for AWS, Microsoft Azure and Google Cloud

Platform (see Fig. 2).

2.1 User authentication
Galaxy leverages the authorization code flow of the OIDC protocol

to authenticate (and authorize) a user. In this flow, a user’s identity

Fig. 1. Galaxy adopts and integrates best-practice Web protocols to access secured data stored on cloud platforms (discussed in details in Section 2). In this ap-

proach, a resource owner shares protected data with collaborators (User) leveraging the role-based access model (Sandhu et al., 1996) and OpenID Connect

protocol (OIDC). Accordingly, a resource owner defines a role with (read or write) access to protected data (e.g. see Fig. 3), and specifies a Galaxy instance

(defined using OIDC audience ID) that can assume the role upon presenting the user’s identity token issued by their specified institute (OIDC IdP) for that Galaxy

instance (e.g. see Fig. 4). Upon successfully assuming the role, Galaxy receives cloud-provider-specific temporary credentials, and uses them to sign API requests

to protected data. Note that following the OIDC requirements, all the discussed communications are TLS-protected (see Section 3.1). Additionally, a resource

owner and user are not required to belong to a same trust group (e.g. institute)
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is first verified by an IdP, then Galaxy receives security tokens (e.g.

ID token and access token) from the IdP, which contains claims

about the authentication and authorization of the user. The tokens

are represented in cryptographically signed JavaScript Object

Notation (JSON) Web Tokens, JWTs, which ensures their integrity

and immutability. In general, this flow is a two-step procedure

described as follows.

First, the admin of a Galaxy instance sets up the instance for the

authorization code flow by registering the instance with the IdP, and

obtains security credentials for the instance (e.g. Client ID and

Client secret as provided by Google). These credentials are used to

ensure the authenticity of communications between the parties.

For instance, an identity token issued for a user contains an audience

claim (the Client ID of that Galaxy instance), which ensures that the

token is issued for and can be used by the specified audience only.

Second, Galaxy authenticates a user (who wants to login to

Galaxy using their third-party identity) by sending a request to an

IdP. Among other information, the request incorporates:

• Security tokens of the Galaxy instance obtained when registering

the instance (e.g. client ID and client secret as used with Google);
• Redirect URL; to be called upon successful authentication;
• Anti-forgery claims [e.g. state and nonce to prevent respectively

cross-site request forgery (XSRF) and replay attacks].

Upon a successful authentication, an IdP sends an authorization

code and the state token to the Galaxy instance. The Galaxy in-

stance uses the state token to validate the authenticity of the redirect

message, and associate the authorization code with a user of the

Galaxy instance. Then the Galaxy instance exchanges the authoriza-

tion code for an ID token and a refresh token (which can be used to

refresh an expired ID token) from the IdP.

2.2 Authorization grant
In general, cloud-based resource providers leverage the role-based ac-

cess control (RBAC) model (Sandhu et al., 1996) to grant

authorization. However, each resource provider implements a propri-

etary procedure to authorize a client to assume a role. For instance,

while an AWS role can be assumed using access key and secret key, a

client has to provide subscription ID, client ID, client secret and ten-

ant ID to assume a role (service principal) on Microsoft Azure.

However, the presented method is generic and can be used on any

RBAC and OIDC-compliant resource provider. The following sec-

tions explain the method on AWS and Azure for defining and assum-

ing a role, where a role is defined via the resource provider’s web

portal and it is assumed in Galaxy leveraging CloudAuthz.

2.2.1 AWS temporary credentials

An AWS role is an identity that can be assumed by an OIDC

Relying Party (RP)—Galaxy in our scenario—on behalf of a user

who is authenticated by an IdP. A role has certain permissions to

specific resources (e.g. read access to a S3 object) that are defined

using policies attached to it (e.g. see Fig. 3). Through the AWS iden-

tity and access management web portal, a resource owner defines a

role and a policy and attaches the policy to the role. The resource

owner then defines a trust relation for the role, which defines the

principals who are authorized to assume the role. The trust relation

is defined using the audience ID of an RP, and authorizes the RP to

assume the role on behalf of an IdP-authenticated user (e.g. see

Fig. 4).

The audience ID is a required claim of an ID token that AWS se-

curity token service (STS) uses to assert if the token presented for

assuming a role is issued for the RP defined in the trust relation.

This mechanism prevents assuming a role using an ID token that is

issued for a RP other than the one defined in the role’s trust relation.

A user defines an AWS role for Galaxy using its Amazon

resource name (ARN). Galaxy assumes the role by submitting a

request to Amazon STS, which contains the role ARN and the user’s

ID token. AWS STS asserts the authenticity of the request by verify-

ing with the IdP if the ID token is not expired and is issued for the

audience specified in the ID token, and if the audience is trusted to

Broker/Interface InterfaceInter-Federation Service

Federations
(60 nation-wide federations) Identity Providers

(<3000 providers)
Cloud-based 
Resource 
Providers

Amazon Web Services

CloudAuthz

Microsoft Azure

Google Cloud Platform

User Authentication and Authorization Cloud Authorization Delegation

Python Social Auth

Custos/CILogon

eduGAIN

U.S. (InCommon)

Brazil (CAFe)

France (Federation 
Education-Recherche)

United Kingdom 
(UK federation)

Universidade De Sao Paulo
ORCID

Johns Hopkins

Google

Globus

University of Oxford

Github

Université de Recherche 
Paris Sciences & Lettres

ElixirAAI

Fig. 2. Galaxy has enabled users to login using their identities with a wide-range of identity providers, spanning from Google, Github, ORCID, ElixirAAI and

Globus, to <3000 world-wide educational institutes. Accordingly, Galaxy leverages CILogon and Python Social Auth for users authentication, and these brokers

interface with a number of (social and institutional) identity providers, and CILogin interfaces with eduGAIN that federates 60 nation-wide federations of educa-

tional identity providers. For instance, top-4 federations in terms of the IdPs they integrate are United Kingdom (UK federation), U.S. (InCommon), France

(Fédération Éducation-Recherche) and Brazil (CAFe), and one institute per federation is highlighted in the figure. Additionally, Galaxy leverages CloudAuthz to ob-

tain authorization to cloud-based resource providers, such as AWS, Azure and Google Cloud Platform
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assume the role. After a successful validation AWS STS responds to

Galaxy, which among other information includes access key ID,

secret access key and session token. These credentials can be used to

assume delegated privileges (e.g. read an AWS bucket) as defined in

the policy attached to the role (see Fig. 5). The temporary credentials

are automatically refreshed by Galaxy, and can be restricted (update

policy) and revoked by the resource owner.

2.2.2 Azure service principal

Azure resource manager leverages RBAC model (Sandhu et al., 1996)

to enforce permissions. The operations an Azure role is authorized to

perform are defined by its permissions and scope. Azure defines sev-

eral built-in roles (e.g. the Storage Blob Data Reader role has read ac-

cess to data and containers of Blob storage), and allows defining

custom roles using Azure PowerShell or Azure CLI. An Azure role is

assigned to a security principal, which defines a user, a group of users,

or a service principal. A service principal is an identity used by appli-

cations or services. Accordingly, to authorize a Galaxy instance to ac-

cess protected Azure resources, the resource owner defines a service

principal and assigns an appropriate role to it.

A client can assume a service principal leveraging the client cre-

dentials grant flow of OAuth 2.0 protocol. This is a non-interactive

flow and it is specifically designed for application-to-application com-

munication. In this flow, client authentication (ID and secret of the

service principal) is used as the authorization grant. Accordingly, nei-

ther the resource owner nor a Galaxy user is asked for a consent

when client attempts to assume a service principal by a client, hence,

this flow should be established between confidential clients only.

To assume an Azure role, a client requests an access token from

Azure’s authorization server using its client credentials (see Fig. 6).

Upon a successful client authentication, the authorization server

issues an access token for the client. The access token is issued for

the application, independent from a user, and grants the client with

privileges as defined by the role attached to the service principal.

Following the client credentials grant flow, Azure’s authorization

server does not provide a refresh token; hence, an expired access

token is refreshed by repeating the authorization process.

Additionally, the authorization is revocable by removing the service

principal, or changing its secret, or updating the role’s assigned to it.

3 Results

Galaxy federates users identity and authentication using the OIDC

protocol, which is the current industry standard. With this model, an

identity provider authenticates a user to a Galaxy instance using tem-

porary identity token. Galaxy then uses this token to obtain cloud-

native credentials and use resource provider’s API to access protected

resources (a detailed discussion is postponed to Section 3.2.2). To con-

tinue operating on user’s behalf beyond the validity of the initial token,

Galaxy automatically refreshes the token as a trusted party. To simplify

the process, manual intervention for users is minimized (see Figs 1, 5

and 7) and the tokens/secrets are never handed-out to end users.

In the remainder of this section, we discuss the advantages of the

proposed method, related security challenges, and compare existing

authentication and authorization protocols with our choices.

3.1 Countermeasures against eavesdropping attack
The eavesdropping attack is a type of the man-in-the-middle attack

where the attacker sniffs and relays communication between parties

(e.g. between Galaxy and AWS) and steals sensitive information such

as identity tokens and/or access credentials. A common practice that

we leverage to effectively thwart eavesdropper revolves around two

principles: (i) cryptographically secured communication channel be-

tween the parties, and (ii) use of OIDC access tokens. Built into the

OAuth2.0 protocol, transmitting tokens mandates using Transport

Layer Security (TLS) protocol (see Sections 10.3 and 10.4 at tool-

s.ietf.org/html/rfc6749). Accordingly, we recommend

employing TLS to secure the communication between Galaxy and

both identity and resource providers. The OIDC tokens are short-

term credentials with least priviledge. Leverage those tokens shortens

the time-frame during which an eavesdropper can impersonate a

Galaxy user when the TLS connection is exploited and tokens are sto-

len. The maximum age of tokens and cloud-native credentials is con-

figurable in Galaxy by instance administrators, and we recommend

setting it to their minimum values (the default value is 3600 s). The

exp claim of JWTs sets the expiration time of tokens; and since the

tokens are cryptographically signed, the value of exp claim (among

other claims) cannot be changed without invalidating the token. The

expired tokens can be refreshed only by trusted parties using their

secrets (e.g. audience ID and secret) and refresh tokens.

3.2 State-of-the-art of fine-grained medical data access

control in cloud computing
As the interest in data-driven healthcare continues to intensify, data

security and privacy become imperative, which demands more ro-

bust and transparent data governance. Additionally, with the prolif-

eration of biobanks and comparative data analysis methods, data

sharing across institutes is becoming essential, which escalates data

governance challenges. Siloing of datasets across organizations

Fig. 3. A sample of an AWS policy, which can be attached to a role to enable it

to retrieve (‘Action’: ‘s3: GetObject’) all the objects in the bucket gxy-

bucket1 and only the object hgmm_100_R2.fastq from bucket gxy-bucket2,

if the request is made from a server with 1.2.3.4 IP address. Sid: statement ID

Fig. 4. An example of a trust relationship defined for an AWS role, which allows

a Galaxy instance, identified by the 8936. . .apps.googleusercontent.com

(part of the client ID), to assume the role in exchange of a user’s ID token issued

for that Galaxy instance by Google
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impedes data usage because accessing each requires a researcher to

separately apply for access through a data access committee. This

ecosystem raises multiple challenges. For example, there has been a

great deal of controversy evolving around consent. The Global

Alliance for Genomics and Health (GA4GH) is fostering ‘consent

codes’ to facilitate data sharing, which divides data access condi-

tions into nineteen empirical ‘categories’ and ‘requirements’ for con-

sistent interpretation of data access and consent (Dyke et al.,

2016a). However, lack of consensus on the legal and ethical

appropriateness of existing strategies hinders their adoption

(Caulfield and Murdoch, 2017).

Another example is determination and automatic enforcement

of data usage restrictions and user authorizations. The Data Use

Oversight System (duos.broadinstitute.org) is an attempt to de-

fine and enforce an ontology of data access restrictions. The GA4GH has

launched a pilot study, named ‘library card’ (Cabili et al., 2018), to stand-

ardize a role-based authentication and authorization of researchers by

augmenting the widely adopted protocols such as OIDC; it is envisioned
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Fig. 5. Identity federation and authorization grant flow in the proposed method for AWS. The flow is a three-step procedure; first, a Galaxy admin registers the in-

stance as an OIDC client with and OIDC IdP (e.g. Google), and a resource owner configures an AWS role that can be assumed by the Galaxy instance (specified

using its OIDC client ID, see Fig. 4) to perform a certain operations on their resources (see Fig. 3). Second, the user logs in to Galaxy (either as a new user, or in as-

sociation with their existing account) using their identity with the OIDC IdP with which the Galaxy instance is registered as a client (e.g. Google), and they define a

cloud authorization record using the AWS role ARN the resource owner has shared with them. Third, Galaxy communicates with Amazon Secure Token Service

(STS), presents all the necessary information to assume the role, and obtains access key, secret key and session token, which can be used to sign API requests to

AWS resources. Note that a Galaxy user and a Google user can refer/belong to a same person; however, they are not necessarily the same identities, as a Galaxy

user can be associated with multiple identities on different IdPs
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to encode ‘bona fides’ of researchers as a set of standardized claims.

Additionally, GA4GH has defined ‘registered access’, an empirical data

access model that leverages ‘consent codes’ and ‘library card’ for authen-

tication, attestation and authorization of researchers access to protected

data (Dyke et al., 2016b, 2018). The different protocols for authentica-

tion and authorization are discussed in the following sections.

3.2.1 User authentication protocols

A principle component to data sharing and their access control is

user identification and authentication across institutes and resource/

service providers. There has been a number of protocols developed

for this purpose, such as Lightweight Directory Access Protocol

(LDAP), Security Assertion Markup Language (SAML), OASIS

WS-* (Security, Trust and Federation), OAuth and OpenID Connect

(OIDC). These protocols are used in widely adopted services such as

Shibboleth, which leverages SAML protocol to enable single sign-on

across organizations. For instance, using Shibboleth, a university X

(Shibboleth Identity Provider) with subscription to a publisher Y

(Shibboleth Service Provider) can enable its students to login to Y

and access subscription-required articles.

Galaxy supports LDAP, SAML and now OIDC (see https://

galaxyproject.org/authnz/). For the scenarios described in this

manuscript, addition of the OIDC protocol was necessary to enable

role-based access controls. Namely, the OIDC allows a consistent

model for interfacing with major cloud-based resource providers (e.g.

AWS, Google Cloud Platform and Microsoft Azure) when accessing

private resources of users by a third party (i.e. Galaxy). Leveraging

OIDC-certified libraries (see openid.net/developers/certi-

fied/ for their list), any platform can act as an OIDC identity pro-

vider; however, to allow users to login to Galaxy using their

institutional or social identities, and security challenges of implement-

ing and maintaining an OIDC IdP for developers and Galaxy instance

admins (e.g. counterfeits weaknesses covered in tools.ietf.org/

html/rfc6819), we are keen to rely on external identities.

There exist two architectural approaches for user authentication

using their external identities: direct and brokered (Hogg, 2005;

Perlman et al., 2016). In the direct authentication pattern, a client

(e.g, Galaxy instance) directly establishes a trust relation (i.e. com-

municate following a standard protocol such as OIDC) with an IdP,

acting as an RP, where the IdP issues identity tokens with aud claim

being the audience ID of that Galaxy instance. The direct authenti-

cation is a decentralized pattern, where users are authenticated to

different Galaxy instances independently. Using a decentralized

pattern, a breached trust relation is isolated and cannot affect other

trust relations. Additionally, admins of Galaxy instances can inde-

pendently choose IdPs following their institutional policies.

However, to interface with multiple IdPs following this pattern,

Galaxy needs to implement every IdP-specific trust relation.

The brokered pattern leverages an authentication broker; an

intermediary service of a single sign-on architecture that establishes

a trust relation between multiple IdPs and service providers, and it is

trusted by both parties independently. In other words, a broker can

use different authentication and authorization protocols to commu-

nicate with IdP and Galaxy. A broker may decouple parties using an

internal user identity, and vouches for the user by issuing its

own identity tokens to the clients (see Fig. 7) (Perlman et al., 2016).

An advantage of this design is the ability to impersonate a user by

masking their login username by the internal identity of the broker

to Galaxy. Additionally, an authentication broker can negotiate

trust between Galaxy and IdPs, which removes the need for direct

relation with IdPs. However, the brokered pattern is a centralized
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Fig. 6. Identity federation and authorization grant flow for Azure. Accordingly, a

resource owner defines a service principle (SP) and assigns a role with necessary

permissions (e.g. read a bucket) to it, and obtains its client ID and client secret,

and shares them, along with tenant ID, with a Galaxy user. (A resource owner

and a Galaxy user can potentially be the same person; however, they are not ne-

cessarily the same identities.) The user can then define a cloud authorization re-

cord in Galaxy using the tenant ID, client ID and client secret, which Galaxy can

use to assume the role and obtain OAuth2.0 access token. Note that, this is the

client credentials grant flow of OAuth 2.0 protocol that allows assuming a role

using the aforementioned information only, and without needing for user’s OIDC

identity token (unlike the flow presented for AWS in Fig. 5)

Fig. 7. Illustrates three patterns of user authentication and cloud authorization.

The Option 1 is based on direct authentication protocol, which we currently im-

plement. The Option 2 is based on brokered authentication pattern, and since

methods implementing this protocol can map an authenticated user to a local

identity (see steps 4 and 5 of Option 2: the broker emits its own authentication

instead of relaying the IdP’s proof), this protocol cannot be used for authoriza-

tion grant to cloud-based resource providers. In other words, the broker can

emit an identity (e.g. ‘Meryl85’) that is different from the identity expected by

the resource provider (e.g. ‘Meryl’), resulting authorization failure by the re-

source provider (see step 7 of Option 2). The Option 3 also follows brokered au-

thentication pattern, but since it also provides authorization grant service

(Amazon Cognito is such a broker), it can be used as an alternative to Option 1
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approach, where users are authenticated to various Galaxy instances

using shared identities. Accordingly, a brokered pattern establishes a

single point of failure and a central breach point; a security and liabil-

ity concern (Erl et al., 2011). If compromised, it can jeopardize the se-

curity of users on all connected Galaxy instances. If it fails, none of

the parties can communicate; however, with the cost of increased de-

sign complexity, this problem can be mitigated by significant number

of redundant and mirrored brokers. Additionally, some Galaxy

instances may not be commissioned to interface brokers or use shared

identities due to institutional policies and consent concerns.

In spite of the plain core premise of direct and brokered patterns

[as described in Perlman et al. (2016)], the specification has a myriad

of options and variations, which makes it difficult to draw clear

boundaries between the available implementations. Some IdPs pro-

vide libraries for direct user authentication, for instance Google

(developers.google.com/identity/protocols/OAuth2) and

Microsoft (docs.microsoft.com/en-us/azure/active-dir-

ectory/develop/reference-v2-libraries). Python Social

Auth (github.com/python-social-auth/social-core) imple-

ments IdP-specific trust relations for common social identity providers

and exposes them via a common interface, which simplifies using the

direct authentication pattern with multiple IdPs. A decent number of

services are available for the brokered pattern authentication, spanning

from commercial products such as Amazon Cognito (aws.amazon.-

com/cognito/) and Okta (www.okta.com), to free and open-source

services such as Keycloak (www.keycloak.org), CILogon (Basney

et al., 2014) and Fence (github.com/uc-cdis/fence).

Galaxy needs to authenticate users in a heterogeneous environ-

ment of authentication and authorization approaches. An authenti-

cation broker can negotiate trust between Galaxy and IdPs (and

service providers), which removes the need for direct relation with

IdPs. Meanwhile, using libraries such as Python Social Auth, Galaxy

can establish a trust relationship with multiple IdPs through a com-

mon interface, without the need for an IdP-specific implementation.

For the time being, we leverage the direct authentication pattern and

use the Python Social Auth library to establish a trust relation with

IdPs.

3.2.2 Protocols for user authorization to cloud-based resources

Cloud-based resource providers commonly implement two methods

to authorize access rights to secured resources: signed URLs and

cloud-native credentials. Signed URLs grant a party in possession of

the URL particular access to specific resources determined at the

URL generation by the resource owner. Signed URLs allow resource

owners to grant temporary access to users who are not required to

be authenticated by the resource provider. While signed URLs sim-

plify data sharing, it is challenging to audit the access to the data

shared using signed URLs. Additionally, the enforcement of a fine-

grained access control on a large scale would be challenging since

the URLs are generated on a per-resource basis.

Cloud-native credentials, as the name implies, are provider-

specific secrets to sign programmatic requests to the provider (e.g.

API requests). Providers commonly offer long and short-term creden-

tials. A resource owner can obtain long-term secrets from the pro-

vider’s portal and use them to authorize a client’s (e.g. a web or

native app) access to secured resources. However, such credentials are

commonly obtained via a manual intervention that demands a degree

of familiarity with the resource provider’s portal. Additionally, the

long-term nature of such credentials can encourage scenarios where

the tokens are embedded or distributed in applications, which in-

crease the risk of tokens being hijacked.

To address these issues some cloud-based resource providers

(e.g. Amazon and Microsoft) implement security token service

(STS), with the service specifications defined as part of OASIS

WS-Trust and WS-Federation protocols (Nadalin et al., 2008). The

STS issues short-term security credentials upon a successful assertion

of user authentication (see Fig. 1) and it is intended to be used by na-

tive and web applications as an (OAuth2.0) authorization server.

Since such tokens are emitted on-the-fly as per API requests, obtain-

ing them does not require a manual intervention of the resource

owner. Additionally, these are short-term credentials with a limited

lifetime, thwarting issues described in Section 3.1.

An additional concern is the scope of access for the issued

tokens, which should ideally have an option of not being equivalent

as the owner’s account. Some resource providers (e.g. Amazon) use

federated identities and leverage RBAC model to enable assuming a

role using authentications issued for specified clients by determined

IdPs (see Fig. 4). Leveraging this model, a client can obtain short-

term credentials on behalf of users which—critically—are not neces-

sarily part of the resource owner’s cloud subscription account. This

is advantageous for sharing data without adding collaborators to a

cloud subscription account, for example.

To support this usage models, Galaxy obtains user authorization

to protected cloud-based resources leveraging the RBAC model

from the resource provider’s STS. Since resource providers expose

STS and RBAC differently, we have developed a library called

CloudAuthz, which provides a common interface to various re-

source providers. The library currently supports AWS and Azure,

with support for the Google Cloud Platform (GCP) under develop-

ment (see Fig. 8). Leveraging CloudAuthz internally allows Galaxy

to implement a single interface toward all supported providers.

4 Discussion

In this paper, we have described a robust, generalized and secure

approach for an application accessing biomedical data stored on

Fig. 8. Illustrates a subset of available methods and implementations for user

authentication and authorization grant to cloud-based resource providers,

and the back-ends each method supports. The figure is scoped to only OIDC-

based authentication and authorization grant using cloud-native credentials.

The method and implementations we use in Galaxy are highlighted in purple,

which are Python Social Auth for user authentication, and CloudAuthz for

granting cloud authorization
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cloud computing platforms on behalf of a user. We use best-

practice Web protocols so that user credentials are never

requested, transmitted, or stored. We have implemented our ap-

proach in the Galaxy platform, which is used across the world for

large-scale biomedical analyses. By leveraging role-based access

controls and the OIDC protocol, Galaxy users can enable a Galaxy

server to access private datasets on a cloud platform using best-

practice authentication and authorization approaches. Our ap-

proach follows the principle of least privilege and allows a user to

revoke Galaxy’s access at any time to one or all datasets. Galaxy’s

federated identity and access management features enable users to

securely and seamlessly access their protected cloud-hosted (and

often sensitive) genomic data and use that data in Galaxy for com-

plex, integrated analyses.

Our work extending Galaxy to use OIDC protocols and RBAC

data access to securely access biomedical datasets across cloud

platforms is a first step toward developing a user-friendly compu-

tational workbench for analysis of distributed biomedical data

(Afgan et al., 2018b). Our next step is to implement a common

identity across Galaxy servers. A common identity paves the path

toward a coherent user experience across different Galaxy instan-

ces, where users’ data, workflows and analysis histories are unified

and accessible from any Galaxy server. A common identity can be

implemented by integrating Galaxy with an external user authenti-

cation and authorization service such as Keycloak (https://www.

keycloak.org/) or Amazon Cognito (https://aws.amazon.com/cog

nito/).

Another future direction is improving sharing of cloud-based

datasets through Galaxy. With our current approach, cloud-based

datasets are copied to the Galaxy server, where they can be shared

with individual users, by web link, or published to a public list using

Galaxy’s collaboration framework. This is problematic because

cloud datasets must be replicated to the Galaxy server for sharing,

which is time-consuming and can make version and provenance

tracking more difficult. We plan to extend Galaxy’s federated iden-

tity and access functionality to make it possible for users to share

datasets directly via cloud storage by changing the role-based access

settings on the cloud storage. Galaxy users could then access shared

datasets directly in cloud storage.

Finally, we are adding support for open-source software cloud

computing platforms. Globus, Elixir and Keycloak are incorporated

for user authentication in Galaxy, and Galaxy will soon support

OpenStack (https://www.openstack.org/) for RBAC to data on

OpenStack. Integrating these platforms will ensure that Galaxy’s

federated identity management and data access features can be wide-

ly used in academia and other projects that rely on open-source

software.
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