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Sepsis is a clinical syndrome that can be caused by bacteria or fungi. Early knowledge

on the nature of the causative agent is a prerequisite for targeted anti-microbial

therapy. Besides currently used detection methods like blood culture and PCR-based

assays, the analysis of the transcriptional response of the host to infecting organisms

holds great promise. In this study, we aim to examine the transcriptional footprint of

infections caused by the bacterial pathogens Staphylococcus aureus and Escherichia

coli and the fungal pathogens Candida albicans and Aspergillus fumigatus in a human

whole-blood model. Moreover, we use the expression information to build a random

forest classifier to classify if a sample contains a bacterial, fungal, or mock-infection.

After normalizing the transcription intensities using stably expressed reference genes,

we filtered the gene set for biomarkers of bacterial or fungal blood infections.

This selection is based on differential expression and an additional gene relevance

measure. In this way, we identified 38 biomarker genes, including IL6, SOCS3, and

IRG1 which were already associated to sepsis by other studies. Using these genes,

we trained the classifier and assessed its performance. It yielded a 96% accuracy

(sensitivities>93%, specificities>97%) for a 10-fold stratified cross-validation and a 92%

accuracy (sensitivities and specificities >83%) for an additional test dataset comprising

Cryptococcus neoformans infections. Furthermore, the classifier is robust to Gaussian

noise, indicating correct class predictions on datasets of new species. In conclusion,

this genome-wide approach demonstrates an effective feature selection process in

combination with the construction of a well-performing classification model. Further

analyses of genes with pathogen-dependent expression patterns can provide insights

into the systemic host responses, which may lead to new anti-microbial therapeutic

advances.
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1. Introduction

Sepsis is a critical medical condition with high mortality rates. It
is characterized by a dysregulation of the inflammatory response
of the host due to a microbial infection. The uncontrolled inflam-
mation can lead to tissue and organ damage, eventually resulting
in death of the patient (Rittirsch et al., 2008). The incidence of
sepsis has been increasing worldwide (Engel et al., 2007; Martin,
2012). In fact, sepsis is the 10thmost common cause of death with
a mortality rate of 20–50% in the US (Martin et al., 2003). The
most frequent causative pathogens are bacteria, most commonly
staphylococci and Enterobacteriaceae like E. coli (Martin, 2012).
While the overall incidence of sepsis is increasing about 5–10%
every year, the cases of sepsis caused by fungi have increased by
more than 200% in the US between 1979 and 2000 (Martin et al.,
2003). Since both types of pathogens, bacteria and fungi, require
fundamentally different anti-microbial therapies, the early classi-
fication is crucial. Furthermore, it has been shown that prompt
treatment is a prerequisite for successful therapy, as each hour of
delay reduces the chances of survival on average by 8% (Kumar
et al., 2006). This direct relation emphasizes the necessity for
quick and reliable classification methods.

Blood cultures (BCs) and PCR-based assays are currently
the standard diagnosis techniques to detect causative pathogens.
While BCs aim for the isolation, identification, and suscepti-
bility tests of microorganisms (Westh et al., 2009), molecular
pathogen detection by PCR solely enables identification of the
pathogen (Schreiber et al., 2013). Numerous studies comparing
both methods conclude that the time BCs require to provide pos-
itive results is too slow for guiding therapy (Westh et al., 2009;
Bloos et al., 2010; Lehmann et al., 2010; Schreiber et al., 2013).
Thus, PCR-based assays, which exhibit a turnaround time of sev-
eral hours may be an important additive tool (Lehmann et al.,
2010).

Both methods, BC and PCR, identify the microorganisms
directly in the blood. However, at the time of diagnosis, the
pathogen may have left the bloodstream, while it still triggers
the dysregulated response of the immune system of the host.
Thus, another promising approach is to analyze the immuno-
logical imprint of the pathogen and infer the pathogen type
based on the transcriptional response to the infection. Previ-
ous studies have shown that genome-wide transcriptome anal-
ysis facilitates the identification of genes with specific expres-
sion signatures in sepsis data (Prucha et al., 2004; Shanley et al.,
2007). As these genes quantify the state of acute sepsis, they can
be considered as biomarkers for this condition. Other research
groups used biomarkers to distinguish the microorganisms caus-
ing the infection, or to predict the survival chances of infected
patients (Pachot et al., 2006; Pankla et al., 2009). Furthermore,
septic shock patients have been successfully classified into sub-
groups using whole-blood gene expression data frommicroarrays
(Wong et al., 2010). Therefore, incorporation of host response
transcription data holds great potential to get insights into the
systemic host reaction, thus leading to an improved pathogen
detection and differentiation. Especially with respect to the rapid
increase in incidence of fungal induced sepsis cases, an early
detection of fungal sepsis would be of great value.

The genome-wide approach of this study provides an unbi-
ased screening. This strategy facilitates the identification of tran-
scriptional biomarkers featuring distinct expression signatures
depending on whether the infectious pathogen is of bacterial
or fungal origin. A classifier based on these biomarkers enables
the classification of causative microorganisms in new samples.
Here, we apply a whole-genome approach for screening the tran-
scriptional response to blood infections and to identify biomark-
ers. For clinical application, however, a technology like west-
ern blot or PCR, which is faster and more accurate or relevant
would be advantageous for measuring expression intensities of
the biomarker genes. Nevertheless, the present study gives a start-
ing point for the development of a classification device such as
a biochip. We based this work on a whole-blood model, as this
model takes the in vivo complexity of immune responses into
account and, compared to other model organisms, the blood
components are similar to the human organism with respect to
their abundance and functioning (Maccallum, 2012; Hünniger
et al., 2014).

2. Materials and Methods

2.1. Microarray Data Generation and
Preprocessing
A human whole-blood model was used as described previously
(Hünniger et al., 2014). Briefly, HBSS (for mock-infected con-
trol) or the human pathogenic fungi Candida albicans SC5314
(Gillum et al., 1984) and Aspergillus fumigatus ATCC46645 (each
1× 106/ml), the Gram-positive bacterium Staphylococcus aureus
ATCC25923 (1 × 106/ml) and the Gram-negative bacterium
Escherichia coli ATCC25922 (4 × 103/ml) were added to anti-
coagulated blood of healthy human donors (male, ≤40 years
of age) and incubated at 37◦C with gentle rotation for 4 or
8 h. The samples of all pathogens cover three or four different
donors with one or two samples each. Infected blood was col-
lected and stored in PAXgene Blood RNA Tubes (PreAnalytiX)
to stabilize intracellular RNA until further use. RNA isolation
was performed using the PAXgene Blood RNA Kit (PreAnalytiX)
corresponding to the manufacturer’s instruction. The Illuminar

TotalPrep™RNA Amplification Kit (Ambion) was used for RNA
amplification and cRNA transcription. RNA concentrations and
quality were assessed by NanoDrop 1000 (Thermo Scientific)
and Agilent 2100 Bioanalyzer (Agilent Technologies). Expres-
sion levels of RNA samples were analyzed with Illuminar

HumanHT-12 v4 Expression BeadChip Kit (Illumina) follow-
ing manufacturer’s protocol. The chip data was background cor-
rected and log-transformed by applying the functions “lumiR”
and “lumiT” of the R package “lumi” (Du et al., 2008). Genes
with a detection p < 0.01 in at least one sample were consid-
ered as expressed. Putative and/or not well-characterized genes
(i.e., gene symbols starting with ENSG, NT_, LOC, MGC, HS.,
FLJ, KIAA, or CxORF) were removed, leaving 10449 genes for
analysis. The microarray data have been deposited in NCBI’s
Gene Expression Omnibus (Edgar et al., 2002), accession num-
ber GSE65088 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE65088).
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2.2. Reference Genes Based Normalization
The normalization followed the approach of Vandesompele et al.
(2002) which is based on non-normalized expression values
of all samples. From a list of putative control genes covering
housekeeping genes and reference genes suggested previously
by Stamova et al. (2009) and Kwon et al. (2009), genes with
most stable expression were selected. First, the gene stability
measure M as introduced by Vandesompele et al. was calcu-
lated for each control gene as the average pairwise variation
of a gene, i.e., the pairwise standard deviation of the ratios of
the control gene to all other control genes. Thus, genes with
lower M values are associated with a more stable expression.
Iteratively, the gene with the largest M value was removed
and the calculation was repeated. In this way, a ranking of
genes was obtained, representing their stability. The geomet-
ric mean of the expression values of the n best ranked genes
was then used as normalization factor (NFn)—as a vector for all
samples.

Initially, the three most stable genes (NF3) were used to deter-
mine the optimal number of genes for NF calculation. Then,
more genes were successively included (NF4, NF5, . . . ) as long
as the inclusion leads to significant changes on the normaliza-
tion factor. To quantify these changes, the pairwise variations of
each two consecutive NFs were computed. As threshold, 0.15 was
used as recommended by Vandesompele et al. A value surpass-
ing this threshold indicate that the inclusion of another gene into
calculation is necessary.

2.3. Selection of Differentially Expressed Genes
Differentially expressed genes were determined using the Bio-
conductor package “limma” (Gentleman et al., 2004; Smyth,
2005) of the statistical programming language R. Limma fits
linear models to the expression values of each gene and deter-
mines differential expression using moderated t-statistics. P-
values were adjusted according to the method of Benjamini
and Hochberg (1995). Genes with an adjusted p < 0.05 and a
log2-fold change of at least ±1 were regarded as differentially
expressed.

2.4. The Random Forest Classifier
The random forest classifier was built using the “randomFor-
est” package (Liaw and Wiener, 2002) for the R programming
language. There are two main parameters which may influence
the performance of the classifier: ntree and mtry. While ntree
describes the number of trees that are built by the random forest
algorithm,mtry represents the number of genes used at each split
when building a tree. Svetnik et al. (2004) and Díaz-Uriarte and
Alvarez de Andrés (2006) showed that the random forest algo-
rithm features high predictive performance, even without param-
eter adjustment. Only the number of trees needs to be sufficiently
large to get stable results. Therefore, the random forest classifier
was built growing 100,000 trees. A cross-validation examining the
effect of changingmtry and ntree showed that altering the param-
eters has no effect on the classification accuracy (Supplementary
Material). Thus, we kept the parameter mtry on its default value,
which is ⌊√g⌋, where g is the number of genes of the input
dataset.

For the selection of biomarker genes, the measure “mean
decrease in accuracy” was used for determining the variable
importance values for each gene. The importance values were
computed for each class (fungal, bacterial, and mock-infected
class) by building random forests with 100,000 trees. The nor-
malized dataset, which was reduced to the data of differentially
expressed genes, was used as input.

We scaled the certainty score to a range from 0 to 1. Before
scaling, the score represents the proportion of class predictions
from all trees of the random forest, which yield the same class as
the final classification by the classifier. Let p be this proportion
and let N be the number of possible classes (in this study, N = 3,
as we consider a fungal, a bacterial, and a mock-infected class),
then the certainty score is calculated as

certainty score =
p−

1

N

1−
1

N

. (1)

2.5. Performance Assessment
The C. neoformans (strain H99, provided by Robin May, Uni-
versity of Birmingham) dataset was generated identical to the
other fungi data and quantified using the same chip technol-
ogy. Expression levels were measured 4 h (3 donors) and 8 h
(3 donors) post infection. Mock-infected control samples were
simultaneously produced. Before classification, the expression
intensities were normalized based on the reference genes which
were determined previously without the C. neoformans data
(Figure 1).

Multidimensional scaling (MDS) was performed using the
“cmdscale” function of R. After determining the Spearman corre-
lation of the samples of the normalizedC. neoformans dataset, the
Euclidean distances between these samples were calculated based
on the correlation matrix and used as input for the MDS com-
putation. In this way, samples with high correlations are close to
each other in the MDS plot.

3. Results

3.1. Reference Genes Based Normalization
Our first step in building a classifier which discriminates between
bacterial and fungal infection is to normalize gene expression val-
ues with help of reference genes (Figure 1). The motivation of
using reference genes instead of the control samples for normal-
ization is that our classifier should be able to be applied in clinical
settings, i.e., for patients, where no control samples exist. To iden-
tify reference genes, we used a knowledge driven and data driven
approach. First, we considered 10 known housekeeping genes as
well as 17 reference genes which were previously suggested by
Kwon et al. (2009) and Stamova et al. (2009) (Table 1). Next,
we checked which of those genes have a stable expression profile
within our dataset. Therefore, we followed the method proposed
by Vandesompele et al. (2002), where the stability of a gene is
determined on the basis of ratios of raw gene expression values
(Materials and Methods). The normalization factor (NF) is then
calculated as the geometric mean of the most stably expressed
reference genes.
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FIGURE 1 | The workflow for biomarker identification, classifier construction and performance assessment.

From the 27 considered genes, we determined CTBP1, TBP,
and CRY2 as the most stable ones. When comparing the pair-
wise variations of all successive NFs, we found that using only the
three most stably expressed genes is sufficient for producing an
accurate NF (Supplementary Figure 2). Including a fourth refer-
ence gene leads to no significant changes of the NF, indicated by a
low pairwise variation of 0.0496. This value is below the threshold
of 0.15 that was recommended by Vandesompele et al. for includ-
ing more genes. Furthermore, the Spearman correlation between
NF3 and NF4 is >0.99, which also demonstrates that considering
a fourth gene is not necessary.

3.2. Selection of Biomarker Genes
The identification of biomarkers, i.e., genes with a specific expres-
sion pattern in case of a whole-blood infection, requires the
reduction of the gene set by so called feature selection. As gene
expression data is high-dimensional by nature, feature selection
is one of themost important tasks when building a classifier based
on genome wide transcription data. The aim of feature selection
is to pick the most informative genes and to remove irrelevant
predictors, thus resulting in a dimension reduction. In this way,
we can reduce the complexity of the classification while at the
same time the predictive performance can be increased. In gen-
eral, we can distinguish three types of feature selection: filter

methods, wrapper methods, and embeddedmethods (Saeys et al.,
2007).

We performed feature selection using the filter and the
embedded approach by first determining differentially expressed
genes (DEGs) and then selecting genes which are most important
for accurate classification (Figure 1). To identify genes showing
different expression patterns between the pathogen types rather
than between the species, we grouped data into three classes. The
fungal species C. albicans and A. fumigatus form the class “fun-
gal,” while the bacterial species S. aureus and E. coli were assem-
bled to the “bacterial” class. The samples of the control group are
represented by the class “mock-infected.”

3.2.1. Selection of Differentially Expressed Genes
To identify transcriptional responses related to blood infection
by fungi or bacteria we determined DEGs for the three classes.
A gene is regarded as a DEG for one class, if its expression
levels are significantly different to both other classes merged
together (Materials and Methods). In this way, we found 204
DEGs for the fungal class, 184 for the bacterial class, and 150
for the mock-infected class. Of these genes, 68 were identi-
fied as differentially expressed in all 3 classes simultaneously.
The union of the three sets of DEGs comprises a total of 402
genes.
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TABLE 1 | Housekeeping genes and putative reference genes suggested

by other studies were used as input for determining stably expressed

reference genes.

Housekeeping genes

listed at

Vandesompele et al.

Reference genes

suggested by

Stamova et al.

Reference genes

suggested by

Kwon et al.

ACTB TRAP1 ZNF207

B2M DECR1 OAZ1

GAPDH FPGS LUC7L2

HMBS FARP1 CTBP1

HPRT1 MAPRE2 TRIM27

RPL13A PEX16 GPBP1

SDHA GINS2 ARL8B

TBP CRY2 UBQLN1

UBC CSNK1G2 PAPOLA

YWHAZ A4GALT CUL1

DIMT1L

FBXW2

SPG21

The symbols in the genes FPGS, FARP1, PEX16, GINS2, A4GALT, and SPG21 could not

be found in our dataset and thus were not considered. The genes exhibiting the most

stable expression are bolded.

3.2.2. Selection by Importance Value
We further reduced the set of DEGs to genes being most impor-
tant for accurate classification. To identify these genes, we used
the variable importance measure integrated in the random for-
est algorithm (Materials and Methods). We selected the top 11,
6, and 21 genes for the classes fungal, bacterial, and mock-
infected, respectively, as these genes form groups covering the
highest importance values (Figure 2). They are biomarkers for
their respective group of pathogens.

3.2.3. Functional Annotation of Selected Biomarker

Genes
To get insights into the function of the biomarker genes, we per-
formed a Gene Ontology (GO) (Ashburner et al., 2000) enrich-
ment analysis. We employed the tool “GOrilla” (Eden et al., 2009)
to identify over-represented GO categories. This web-based tool
uses an hypergeometric model to test for enrichment and per-
forms p-value adjustment for multiple testing according to the
false discovery rate.

At a significance level of 0.05 we found 32 enriched
GO terms connected to the identified biomarker genes
(Supplementary Table 2). The list comprises terms from the areas
of signal transduction, activation of the immune system, response
to cytokine stimuli, and down-regulation of phosphorylation.
Besides that, GOrilla also identified the category “regulation of
sequence-specific DNA binding transcription factor activity” as
over-represented. Although numerous of the enriched GO terms
are connected to the immune response, we found that multiple
biomarkers are related to other processes. For example, genes
are involved in cellular growth (TBC1D7, GADD45B), vesicle
transport (VPS18), cell proliferation (PIM1, PIM3), cell adhesion
(VCAN), ion transport (FXYD6), or iron uptake (TFRC).

Many genes of our biomarkers are already linked to sepsis by
other studies. While IL6 was previously identified as biomarker
for sepsis (Pierrakos and Vincent, 2010), GADD45B, SOCS3, and
IRG1 were shown to be up-regulated in septic patients (John-
son et al., 2007; Li et al., 2013). Moreover, it has been shown
that IL1F9 is up-regulated by S. aureus cell wall proteins in
human peripheral blood mononuclear cells (Kang et al., 2012).
Furthermore, RGS1, CCL3, and SOCS1 were connected to sep-
sis in animal studies (Panetta et al., 1999; Takahashi et al., 2002;
Grutkoski et al., 2003), while for CTSD increased expression lev-
els were observed in mice with induced septic shock (Yoo et al.,
2013). MAP3K8 is linked to sepsis in mice, with being crucial
for the TNF production (Mielke et al., 2009). Furthermore, the
gene MIR155HG showed significantly higher expression values
in samples with bacterial or fungal infection than in the mock-
infected controls. This gene encodes for the microRNAmiR-155,
which is known to be involved in the regulation of antimicrobial
immune response (O’Connell et al., 2007; Rodriguez et al., 2007;
Das Gupta et al., 2014).

Examining the expression signatures of the selected genes
(Figure 3, Supplementary Figure 1), we discovered that for the
fungal and bacterial class, most genes are up-regulated, com-
pared to the respective other two classes. Of the six biomarkers
for bacterial blood infection, only one gene (CXXC5) was down-
regulated, while the other five genes showed up-regulation. For
the fungal class, all 11 selected genes were up-regulated. We
observed different patterns for the genes of the mock-infected
class. Twenty of the 21 genes were down-regulated in the control
samples and one gene (VCAN) was up-regulated.

Taken together, our feature selection approach was able
to identify biomarker genes, which have been shown to be
involved in sepsis and also cover a broad range of biological
processes.

3.3. Building the Classifier
To determine if an infecting pathogen of an unknown whole-
blood sample is of fungal or bacterial origin, the sample is clas-
sified using the expression data of the selected biomarkers. We
accomplish the classification by a random forest (Breiman, 2001)
classifier (the classifier can be found as R object as supplementary
file). Random forest is based on an ensemble of decision trees,
where each tree is built on a different random subset of the input
data. The output of the classifier is determined by the majority
vote of the class predictions of all trees. As we used 100,000 trees,
the algorithm provides us with 100,000 single classifications. We
utilized the votes of the trees to introduce a certainty score for
the final classification. This score represents the fraction of class
predictions identical with the final classification and was scaled
to a range from 0 to 1 (Materials and Methods). In case of a
certainty score of 1, all trees have predicted the same class for
a given sample and consequently this class was then output by
the classifier. On the other hand, the certainty score is 0, if all
tree votes are equally distributed across all possible classes. Thus,
the score indicates, how sure the classifier is about its decision.
Calculating the certainty score for the training data, we achieved
average values of 0.941, 0.966, and 0.99 for fungal, bacterial, and
mock-infected class, respectively.
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FIGURE 2 | The variable importance values were computed by the

random forest algorithm. A gene with larger values exhibits a higher

influence on the correct class predictions. The 50 highest importance

values of the measure “mean decrease in accuracy” are shown. Genes

above the dashed lines were selected as biomarkers for the

corresponding classes.

3.4. Performance Assessment
Having built our classifier, we next studied its performance in
distinguishing between fungal or bacterial blood infection. Our
aim was to accurately classify new samples by the given classifi-
cation model. Therefore, the performance assessment methods
have to yield unbiased accuracy rates. To get unbiased esti-
mates of accuracy, the samples for testing the classifier should
be independent from the samples for training the classifier. We
fulfilled this requirement with additionally independently cre-
ated data comprising RNA expression measurements of human
whole-blood samples infected with C. neoformans. An additional
approach to assess a classifiers performance is cross-validation.
Cross-validation emulates independent test sets in an iterative
technique and in this way resolves the need for true test data.
Furthermore, we evaluate the ability of the classifier to handle
fluctuations in the expression values by classifying samples after
adding random noise to the data (Supplementary Material).

3.4.1. Test Data of C. neoformans
To assess the performance of the classifier on an independent test
set, we created a new dataset of RNA expressionmeasurements of
human whole-blood infected with C. neoformans. The data com-
prises 6 samples of fungal infection and 6 mock-infected controls
(Materials andMethods). Being part of the phylum of Basidiomy-
cota, C. neoformans is a phylogenetically and morphologically
very different fungus compared to C. albicans and A. fumigatus,
both belonging to the phylum of Ascomycota (James et al., 2006).

When assessing the classification performance using the new
data, our model correctly classified 5 of the 6 fungal samples
(83.3%). One sample was wrongly classified as mock-infected. All
classifications of the mock-infected samples were performed cor-
rectly. In this way, we achieved an overall accuracy rate of 91.7%.
The sensitivities are 83.3 and 100%, while the specificities are
100 and 83.3% for fungal and mock-infected class, respectively
(Table 2). We examined the misclassification in more detail by
a correlation analysis using a multidimensional scaling (MDS)
plot (Figure 4). MDS is a dimension reduction technique, pro-
ducing an easy-to-visualize output showing relationships within
the data. The plot revealed that the misclassified sample shows
more similarity to the data of mock-infected class than the other
C. neoformans samples.

The difference in the accuracy values between the two classes
is also reflected in the certainty scores. We obtained an average
certainty of 0.475 (± 0.190) for all fungal samples, whereas for
the mock-infected samples we achieved an average score of 0.810
(± 0.165). When splitting the fungal specimen into falsely and
correctly classified ones, the observed certainty value for the mis-
classified sample is higher, 0.654, than for the right classifications,
0.439.

3.4.2. Cross-Validation
When the sample size of a study is relatively small, it is pre-
ferred to use all available samples in feature selection and train-
ing. However, this leads to a lack of test data. Cross-validation
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FIGURE 3 | Visualization of the expression patterns of the biomarker

genes. The samples are clustered according to their corresponding classes.

The heatmap colors correlate with the normalized expression intensities (see

key on right side). The colors of the gene symbols indicate the class for

which the gene was selected as biomarker (brown = fungal class, blue =
bacterial class, gray = mock-infected class).

TABLE 2 | Sensitivities and specificities for the performance assessments.

Sensitivity Specificity

Bacterial Fungal Mock- Bacterial Fungal Mock-

infected infected

C. neoformans

predictions

– 0.833 1.000 – 1.000 0.833

Cross-validation 0.950 0.938 1.000 0.973 0.976 1.000

The C. neoformans dataset does not comprise samples of the bacterial class. Thus, no

sensitivity and specificity could be calculated for this condition.

is a widely used method to overcome this problem by emulating
independent test sets without using additional datasets. It works
by iteratively setting aside samples for testing, while the remain-
ing samples are used to train the model. The split is performed in
the way that each sample of the data is exactly once in the test set.
In this way, cross-validation guards against overfitting.

To estimate how accurate the classifier will perform on inde-
pendent data, we carried out a stratified 10-fold cross-validation
(CV). It is important that CV encompasses all feature selec-
tion steps, as otherwise a selection bias is induced (Ambroise
and McLachlan, 2002). Therefore, we conducted the follow-
ing procedures on the training set in each CV iteration: deter-
mine DEGs, rank the DEGs according to their importance
value, select the top-scoring genes, and train a random forest
classifier.

In compliance with the CV procedure, the class of each sample
of our dataset was predicted and the accuracy of the classification
model was estimated. Of the 57 samples, only two were mis-
classified, while 55 classifications were correct. The two wrong
classifications appeared for one bacterial and one fungal sample.
All data of the mock-infected class was classified correctly. Thus,
the average accuracy of the CV is 96.49% (sensitivities: 93.8, 95,
100% for fungal, bacterial, and mock-infected class; specificities:
97.6, 97.3, 100% for fungal, bacterial, and mock-infected class;
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FIGURE 4 | The MDS plot based on the C. neoformans dataset, where

the relative positions in the plot represent the Euclidean distances of

the Spearman correlations of the samples. Small distances correspond to

high correlation coefficiens. Brown and gray circles indicate samples of the

fungal and the mock-infected class, respectively. The arrow marks the fungal

sample that was misclassified as mock-infected control.

Table 2). The average certainties of the classifications were 0.795
(± 0.169), 0.855 (± 0.18), and 0.937 (± 0.085) for the classes
fungal, bacterial, and mock-infected, respectively.

4. Discussion

Here we present an transcriptome analysis of human whole-
blood data comparing bacterial and fungal infections with mock-
infected control samples. Based on the regulatory differences, we
identified biomarker genes, which show characteristic expression
patterns according to their respective causative pathogen type.
The selection was not only based on statistical significance. It
also took into account to what extent the random forest classifi-
cation algorithm assesses these genes as important for separating
the given classes. In this way, we applied two different methods of
feature selection: the filter approach and the embedded approach.
With the detection of differentially expressed genes we are able to
remove most of the irrelevant genes and extract a set of poten-
tial transcriptional marker genes. The selection by differential
expression is a widely used method for identifying sepsis related
marker genes (Prucha et al., 2004; Pachot et al., 2006; Shanley
et al., 2007; Pankla et al., 2009). The subsequent calculation of
gene importance values using the random forest algorithm allows
us to identify the genes showing the strongest and most constant
up- or down-regulation as a consequence of the blood infection
by the particular type of microorganisms. In this way, we were
able to remarkably reduce a set of whole-genome expressionmea-
surements to significant signatures distinguishing bacterial from
fungal infections and mock-infected controls. The genes iden-
tified as biomarkers for the mock-infected class exhibit similar
signatures for both infection types, fungal and bacterial. Most of
these genes show down-regulation in the mock-infected samples.
However, at the same time they were up-regulated in the infected
samples, irrespective of the infecting pathogen type. Therefore,

they possibly reflect cellular regulations to respond microbial
infections in general. Thus, they can be considered as pathogen-
independent markers for whole-blood infections. Studies inves-
tigating a broader range of pathogens should be carried out to
confirm this hypothesis.

Using a human whole-blood model in this work is sup-
ported by several advantages. First, as opposed to purified human
immune cells, it also considers the in vivo complexity of the
immune response in blood (Hünniger et al., 2014). Next, there
are no differences in proportions and functioning of the periph-
eral blood components between this model and the target organ-
ism, the human, in contrast to other model organisms like mice
(Maccallum, 2012). Furthermore, human whole-blood infection
models have been successfully used previously to identify factors
of virulence (Echenique-Rivera et al., 2011) and to analyze human
immune responses (Tena et al., 2003).

Following a genome-wide approach allows us to consider all
genes as potential biomarkers for pathogen type recognition,
even if they are not related to immune response. Therefore, with
respect to the screening for biomarkers, using a whole-genome
method is more promising than techniques which are limited
to a small number of candidates, like serum cytokine analysis.
Indeed, the selected biomarker genes cover a broad range of
functions. In this way, these genes may facilitate the recogni-
tion of bloodstream infections even when the immune system
of the patient is affected by additional diseases. Besides that,
we found the gene MIR155HG as up-regulated in the samples
with infections. Recently, Das Gupta et al. (2014) have shown
that miR-155 up-regulation is not specific to host response on
bacterial pathogens. They also detected increased expression lev-
els as reaction to A. fumigatus infections. As we observed up-
regulations for all considered species, fungi as well as bacteria, our
results confirm the findings that miR-155 is involved in a general
host response to infections, covering a wide range of pathogens.
Besides, numerous of the selected biomarkers were previously
associated to sepsis in either human or animal studies. This find-
ing indicates, that although our results are based on an exper-
imental model instead of patient data, we could identify char-
acteristic gene regulations in response to microbial bloodstream
infections.

Preceding the feature selection steps, we successfully identified
the three most stable genes from a set of published control genes
and used them as reference for normalizing the dataset. In this
way, we do not use absolute gene expression values to train our
classifier. Instead, we use expression values relative to the geomet-
ric mean of the reference genes. Regarding the application case,
a user of the classifier aims to identify the pathogen type using
only a single blood sample without mock-infected controls for
comparison. It is well known that the intensity values onmicroar-
rays are influenced by technical variations and errors connected
with wet lab hand handling of samples as well as hybridization
and scanning of the chip. These differences can not be detected
on a single sample, but they do affect the absolute intensity val-
ues. With normalizing relative to reference genes, we control for
this effect, as all genes on the chip are influenced in the same
way. Furthermore, this method can easily be adapted to other
quantification methods like PCR.
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Using the biomarker genes, we trained a random forest clas-
sifier to classify the pathogen type in whole-blood samples. Ran-
dom forest provides several advantages making it suitable for this
study. It is fast in training and testing, supports multiclass clas-
sifications and provides the variable importance for evaluating
the input features. With this embedded measure, we were able
to select the best class-separating genes leading to a small set of
biomarkers. There are further classification methods like support
vector machines or naïve Bayes classifiers, which were success-
fully applied on microarray data in other studies (Kelemen et al.,
2003; Howrylak et al., 2009). For comparison, we tested the clas-
sification performance of these two techniques on both the C.
neoformans dataset and the cross-validation, using the previously
selected biomarkers (Supplementary Material). The support vec-
tor machine as well as the naïve Bayes method yielded the same
classifications of all samples as the random forest model. The
fact that the three classification methods are very different in
their functional principles and the results are unaffected by the
choice of the model indicates that the selected biomarker genes
are robust.

The certainty score based on the votes of the trees provides
an easy-to-compare measure for assessing the classification qual-
ity. It directly reflects the ability of the classification model to
properly classify the input data. This means, a class prediction
with a high certainty score is more likely to be correct, than one
with a low score. One possible application case for this measure
is the introduction of a threshold, followed by the removal of
low-scoring classifications.

We tested the classifier with an additional dataset compris-
ing whole-blood samples of fungal infection and mock-infected
controls. The medically important fungus used for these addi-
tional samples, C. neoformans, is phylogenetically very different
from C. albicans and A. fumigatus. These differences can lead
to varieties in the transcriptional response of the host. How-
ever, the accuracy value of about 92% indicate that the selected
biomarker genes are largely unaffected. Therefore, these genes
are general indicators for whole-blood infections caused by fungi.
The MDS analysis revealed that the misclassified fungal sample
shows a greater similarity to the specimen of the mock-infected
class than to the fungal cases. Although the divergence with
the other fungal samples is only small, the differences are suf-
ficient for wrong classification. Consequently, the correct clas-
sifications of the C. neoformans samples are possibly unsure.
Indeed, the certainty values are much lower for the fungal class,
compared to the mock-infected controls. Furthermore, we were
surprised to find the certainty score of the misclassified sam-
ple being higher than the average score of the remaining fun-
gal specimen. This observation confirms the assumption that the
prediction of C. neoformans as fungal infected blood sample is
a difficult task for the classifier, but still leads to mostly correct
results.

High accuracy values were not only achieved when validat-
ing the classifier with the additional C. neoformans dataset, but
also when testing it with stratified 10-fold CV. This broadly
used performance assessment technique iteratively estimates the
accuracy of a prediction model without an independent dataset.
The two misclassifications in this test appeared for fungal and

bacterial class. The predictions of the fungal and the bacte-
rial class also exhibit the lowest values and the largest fluc-
tuations of the certainty scores. However, it should be noted
that the average scores are still high, as 0.795 is the smallest of
them.

In summary, the results of the assessments by using an addi-
tional dataset of fungal infection, i.e., the external validation,
as well as by performing a CV, i.e., the internal validation, are
promising. Most of the tested samples were correctly classified,
although in some cases right classifications were accompanied by
low certainty scores.

We also performed a noise-robustness test to examine
whether the classifier can compansate fluctuations in the expres-
sion data. The high accuracy rates indicate that the indentified
biomarkers are robust with respect to changes in their expression
intensities. This robustness is important for a potential clinical
application, where patients are of different age, sex, medication,
and health condition and thus expression intensities of the same
genes will vary between these patients.

The experimental model of this work comprises the infec-
tion of blood from healthy human donors with typical sepsis
causing microorganisms. Although we gained important insights
into the transcriptional response on the pathogens, our find-
ings possibly can not be directly utilized for clinical applica-
tion. To achieve that, further analyses on gene expression data
from septic patients as well as functional follow-up studies have
to be performed. Unfortunately, whole-genome expression data
from septic patients where the causing pathogen is known is rare
in publicly accessible databases. Especially, datasets comprising
the transcriptional response to fungal induced sepsis are scarce.
Thus, we lack the basis for more clinical relevant investigations,
which is why it remains an open task for future research. Fur-
thermore, it should be noted that the presented classifier can not
be used to identify the infecting species. Rather it is supposed to
answer the question if the pathogen is of bacterial or fungal ori-
gin and whether or not it is necessary to administer antimycotics
instead of antibiotics. To initiate a species dependent therapy,
more requirements have to be fulfilled, e.g., in case of a bacte-
rial infection, the appropriate antibiotic has to be determined by
an antibiogram.

In this study we present an effective selection of genes
showing characteristic expression patterns depending on the
type of the infectious organism. The resulting small gene set
was used to train a fast and accurate random forest classifier,
which performs well in predicting the class of the pathogen.
Examining the transcriptional footprint of the sepsis caus-
ing microorganism in the blood of the host is a promis-
ing approach for quick pathogen identification. With the pre-
sented classification model we meet the increasing challenge
of fungal induced septic infections requiring novel detection
methods.
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