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Abstract: Hiyama cross-coupling is a versatile reaction in synthetic organic chemistry for the con-
struction of carbon–carbon bonds. It involves the coupling of organosilicons with organic halides
using transition metal catalysts in good yields and high enantioselectivities. In recent years, hectic
progress has been made by researchers toward the synthesis of diversified natural products and phar-
maceutical drugs using the Hiyama coupling reaction. This review emphasizes the recent synthetic
developments and applications of Hiyama cross-coupling.

Keywords: Hiyama coupling; transition metals; organocatalysts; palladium nanoparticles;
natural products

1. Introduction

Biaryl scaffolds are the prevailing structures that exist in numerous natural prod-
ucts [1–3], sensors [4], pharmaceuticals [5,6], ligands [7,8], polymers [9], agrochemicals [10],
organocatalysts [11], fine chemical industries [12–15] and are scrutinized as the valuable
intermediates in organic synthesis [16]. Several transition metal-catalyzed coupling proto-
cols for the generation of the C-C bond have been reported in this regard, including Suzuki,
Stille, Negishi, Kumada, and Hiyama coupling [17–20]. Among different protocols, Hiyama
cross-coupling achieved remarkable attention by researchers for attaining biaryl moieties
possessing a broad spectrum of pharmacological activities. For example, valsartan and
losartan are used to treat high blood pressure and diabetic kidney disease. Felbinac is a non-
steroidal anti-inflammatory drug (NSAID) used to cure muscular pain, inflammation, and
sprains. Telmisartan is utilized as an alternative source for treating COVID-19 patients, and
imatinib is a tyrosine kinase inhibitor (TKI) to inhibit cancer cell growth [21–23]. Hiyama
coupling reveals to be an effective and convenient method of synthesizing stilbenoids.
Stilbenoids have been found in medicinal plants and foods and exhibit potent biologi-
cal activities such as antiviral, antifungal activity [24], anti-inflammatory property [25],
neuroprotection [26], antioxidative property [27], and anticarcinogenic effect [28,29].

Aryl C-glucosides belong to a substantial class of natural compounds [30] and syn-
thesized drugs [31,32]. Access to C-glycosides, which is an inhibitor of sodium–glucose
cotransporter-2, via protecting a group-free Hiyama coupling reaction, has been developed.
This strategy has been reported to synthesize pharmaceutically significant dapagliflozin
compound that is useful to cure type 2 diabetes mellitus [33]. Hiyama cross-coupling offers
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2-functionalized indoles formation by means of rhodium metal catalyst [34]. Furthermore,
Hiyama coupling methodologies have been employed for the synthesis of diarylmethanes.
Diarylmethane scaffolds containing natural products and drugs include segontin 1 (to
cure the coronary heart disease) [35], benadryl 2 and tolpropamine 3 (antiallergic) [36,37],
bifemelane 4 (antidepressant) [38] and piritrexim 5 (anticancer agent) [39]. Likewise, the
diarylmethane containing marine natural product avrainvilleol 6 exhibits both antibacte-
rial [40] and antioxidant [41] activities (Figure 1).

1 
 

 

 
 

Figure 1. Structures of bioactive natural products and drugs containing diarylmethane units.

Hiyama cross-coupling finds applications in synthesizing retinoids, benzofuran deriva-
tives, benzoxocane, and picropodophyllin analogs, which impart a critical role in cell growth,
embryo development, vision, immune response, and high affinity for tubulin [42–48].

Keeping the wide applications of the Hiyama coupling reaction in mind, here we have pro-
vided a comprehensive compilation of recent methodologies of the Hiyama coupling reaction.

2. Mechanistic Consideration

The mechanism of the Hiyama coupling reaction was proposed by Foubelo et al. in
detail. The initial step of the mechanism involves oxidative addition of halide to Pd metal,
resultantly converting palladium(0) to palladium(II). The transmetalation step leads to the
splitting of the C-Si bond, and the cycle moves towards the construction of a new bond
between carbon and palladium. In reductive elimination, the C-C bond is established, and
a zero-valent state of palladium is achieved to restart a new cycle (Scheme 1) [49].
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3. Palladium-Catalyzed Hiyama Cross-Coupling
Palladium Acetate as Catalyst

Palladium-catalyzed Hiyama cross-coupling reactions have extensively been em-
ployed for the synthesis of biaryl derivatives due to characteristic features of organosilane
reagents such as non-toxicity, ease of access, high sustainability, and low cost [50–52]. Li
and coworkers evaluated the catalytic efficacy of Pd(OAc)2/DABCO for the reaction of aryl
halides and aryltrimethoxysilanes. This methodology covered a wide substrate scope by
the addition of aryl bromides and iodides to aryl trialkoxysilanes giving biaryl derivatives
in a moderate to excellent yield range (20–100%). Different solvents, including dioxane,
MeCN, THF, acetone, and DMF, were investigated, and dioxane gave the highest yield.
Out of the three different bases (KF, TBAF, and K2CO3), TBAF was selected as a suitable
base for this reaction. A reference example is highlighted in Scheme 2. p-Iodonitrobenzene
7 was coupled with phenyl trimethoxysilane 8, affording the corresponding cross-coupled
product 9 with quantitative yield. The coupling proceeded at 80 ◦C for 1 h using Pd(OAc)2
(3 mol%), DABCO (6 mol%), and tetrabutylammonium fluoride (TBAF) in dioxane [53].
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A facile and effective protocol for the synthesis of symmetrically and asymmetrically
functionalized (E)-1,2-diarylethenes by sequential one-pot Hiyama–Heck reactions was
disclosed by Gordillo et al. The reaction proceeded in aqueous and ligand-free condi-
tions. The symmetric (E)-1,2-diarylethene 12 was synthesized via one-pot Hiyama vinyla-
tion and Heck arylation of triethoxy(vinyl)silane 10 and aryl bromide 11 using Pd(OAc)2
(0.3 mol%) and NaOH in 98% yield with selectivities (100:0), respectively (Scheme 3). For
the synthesis of asymmetric (E)-1,2-diarylethene via one-pot Hiyama vinylation reaction,
a different strategy was developed in which treatment of 3-bromopyridine 13 with tri-
ethoxy(vinyl)silane 10 by using Pd(OAc)2 aqueous NaOH and PEG followed by the Heck
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arylation in H2O afforded 100% conversion with 91% yield of corresponding asymmetric
(E)-1,2-diarylethene 14 (Scheme 4). Bromoarenes containing electron-donating and electron-
withdrawing groups provided asymmetric (E)-1,2-diarylethenes in a moderate to excellent
(71–91%) yield range [54].
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Heck arylation.

The combination of palladium acetate with XPhos exhibits high efficacy in Hiyama
cross-coupling of aryl mesylates and arylsilanes to generate corresponding biaryl deriva-
tives in a 40–97% yield range. Wu and coworkers developed a general and efficient synthetic
route for synthesizing the substituted biaryl compounds by palladium-catalyzed Hiyama
cross-coupling reaction of unactivated aryl mesylates with arylsilanes. Various substituted
aryl mesylates containing either electron-rich or electron-poor groups furnished the corre-
sponding biaryl products in 40–97% yields. Maximum yield (97%) was attained in the case
of coupling of methoxy substituted aryl mesylate 15 with triethoxy(phenyl)silane 16 using
4 mol% of Pd(OAc)2 as a catalyst, 10 mol% of XPhos 17 as ligand, and 2.0 equivalents of
tetra-n-butylammonium fluoride (TBAF) as an additive in THF/t-BuOH mixture at 90 ◦C
(Scheme 5) [55].
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Molander and Iannazzo outlined an impressive synthetic approach toward the synthe-
sis of biaryls and heterobiaryl derivatives by Hiyama cross-coupling reactions of aryltriflu-
orosilanes with aryl and heteroaryl chlorides using a palladium catalyst. Aryl chlorides,
bearing both electron-donating and withdrawing substituents, afforded corresponding
derivatives in 70–98% yields. Phenyltrifluorosilane 19 was allowed to couple with methyl
3-chlorobenzoate 20 in the presence of 2.5 mol% palladium acetate and 5 mol% XPhos 17
using TBAF (2.5 equiv) as fluoride activator and t-BuOH as solvent. The reaction proceeded
at 60 ◦C, providing the targeted product 21 in 98% yield (Scheme 6). The coupling of a wide
range of substituted heteroaryl chlorides with aryltrifluorosilanes provided the desired
products in good to excellent yields (71–94%) [56].

Molecules 2022, 27, x FOR PEER REVIEW 6 of 77 
 

 

ivatives in 70–98% yields. Phenyltrifluorosilane 19 was allowed to couple with methyl 3-chlorobenzoate 20 in the 
presence of 2.5 mol% palladium acetate and 5 mol% XPhos 17 using TBAF (2.5 equiv) as fluoride activator and 
t-BuOH as solvent. The reaction proceeded at 60 °C, providing the targeted product 21 in 98% yield (Scheme 6). The 
coupling of a wide range of substituted heteroaryl chlorides with aryltrifluorosilanes provided the desired products in 
good to excellent yields (71–94%) [56]. 

 
Scheme 6. Pd(OAc)2 catalyzed coupling in the presence of XPhos 17. 

Arenediazonium salts are the most reactive and efficient electrophiles for palladi-
um-catalyzed synthetic organic chemistry [57–62]. Considering their importance, Qi and 
coworkers achieved the Hiyama coupling of dimethoxydiphenylsilane with mono or 
disubstituted arenediazonium tetrafluoroborate salts in a 65–89% yield range under mild 
reaction con 

Scheme 6. Pd(OAc)2 catalyzed coupling in the presence of XPhos 17.

Arenediazonium salts are the most reactive and efficient electrophiles for palladium-
catalyzed synthetic organic chemistry [57–62]. Considering their importance, Qi and
coworkers achieved the Hiyama coupling of dimethoxydiphenylsilane with mono or
disubstituted arenediazonium tetrafluoroborate salts in a 65–89% yield range under mild
reaction conditions. The dimethoxydiphenylsilane 22 was allowed to couple with bromo
substituted arenediazonium tetrafluoroborate salt 23 using 5 mol% Pd(OAc)2 in methanol
at room temperature for 6 h to obtain the targeted bromo substituted biaryl derivative 24 in
89% yield (Scheme 7). The cross-coupling of 4-methylbenzenediazonium tetrafluoroborate
salt with various organosilanes yielded the desired cross-coupling products in 78–87%
yields [63].
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Scheme 7. Reaction of dimethoxydiphenylsilane 22 with arenediazonium tetrafluoroborate salt 23
using Pd(OAc)2 as catalyst.

Yuen et al. carried out a facile synthetic protocol for the formation of biaryl derivatives
by Hiyama coupling reaction of aryl and heteroaryl chlorides with phenyl trimethoxysilane
catalyzed by 0.2 mol% Pd(OAc)2/26 to attain the cross-coupling products in moderate
to good yield range (44–99%). The phenyl(trimethoxy)silane 8 was coupled with aryl
chlorides 25 and 28 under H2O and solventless conditions, respectively, to obtain the
desired products 27 and 29 in 97% and 99% yields, respectively. The reaction proceeded
smoothly by using a 1:4 mixture of highly efficient Pd(OAc)2/26 and TBAF·3H2O as the
base at 110 ◦C under an N2 atmosphere (Scheme 8). The aryl chlorides having electron-
withdrawing groups (F, CF3, CO2Me, and CN) afforded a 47–99% yield range. Under
solvent-free conditions, the reaction of heteroaryl chlorides and alkenyl chlorides with
aryl trialkoxysilanes gave a 63–99% yield range, while in the case of H2O, a 36–97% yield
range was attained. On the other hand, a 54–81% yield range was observed in the case of
heteroaryl trialkoxysilanes [64].
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Azetidines are distinctly comprised of four-membered azaheterocycle motifs due to
possessing numerous chemical properties and ring strain [65,66]. Arylazetidine scaffolds
are significant building modules and exhibit a diverse range of biological activities [67–72].
A convenient approach toward the synthesis of a variety of 3-arylazetidines derivatives
through Hiyama coupling of 3-iodoazetidines with arylsilanes in mild reaction conditions
was reported by Zou and coworkers. Triethoxy(phenyl)silane with electron-donating and
-withdrawing substituents afforded the products moderate to excellent yields (30–88%).
1-Boc-3-iodoazetidine 30 was allowed to couple with 4-methylphenyltriethoxysilane 31
in the presence of Pd(OAc)2 catalyst (5 mol%), phosphine ligand (10 mol%) 32, tetra-n-
butylammonium fluoride (TBAF in THF) and dioxane under argon atmosphere to obtain
the targeted product 33 in an excellent (88%) yield along with 34 in 99:1 ratio, respectively
(Scheme 9). The substrate scope of heterocycloalkyl iodides was observed under optimized
conditions. The desired coupling products were obtained in a 33–85% yield range [73].
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Scheme 9. Synthesis of 3-arylazetidine derivative 33 from 3-iodoazetidine 30.

Dihetaryl disulfides possessing pyrimidine rings exhibit diversified biological and
pharmacological activities [74–76], such as antifungal, antibacterial, and calcium-channel
modulation [77]. An interesting and modular strategy for the formation of carbon–carbon
bonds to produce potent biologically active compounds through palladium-catalyzed
copper-promoted Hiyama cross-coupling reaction has been reported by Liu et al. Dihetaryl
disulfides containing electron-rich and electron-poor substituents in the para-positions of
benzene rings afforded corresponding products in moderate yield range. A maximum
yield (78%) of 36 was observed in the case of cross-coupling of dihetaryl disulfide 35 with
trimethoxy(phenyl)silane 8 using 3 mol% Pd(OAc)2 catalyst, an efficient activator copper
(I) thiophene-2-carboxylate (CuTC), TBAF and 6 mol% PCy3 ligand using THF as the only
solvent (Scheme 10) [78].
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Scheme 10. Dihetaryl disulfides 35 and trimethoxy(phenyl)silane 8 using PCy3 as ligand.

The palladium NNC-pincer complex was found to be an efficient catalyst precursor
for the generation of monomeric palladium(0) species. The applications of palladium
NNC-pincer complex as a catalyst in the allylic arylation of allyl acetates with sodium
tetraarylboronates [79] and in the Heck reaction of aryl halides with activated alkenes [80]
gained tremendous importance in recent years. Keeping its efficiency under consideration,
Ichii et al. synthesized corresponding biaryls via palladium NNC-pincer complex catalyzed
Hiyama coupling reactions of aryl bromides with aryl(trialkoxy)silanes. Bromobenzenes
having electron-donating and electron-withdrawing substituents resulted in a moderate
to excellent yield range (39–99%) of biaryl products. The substituted aryl bromide 11 was
allowed to couple with phenyl trimethoxysilane 8 using 5 mol ppm of palladium complex
37. KF was selected as a suitable base for the corresponding reaction. The maximum yield
(99%) of biaryl derivative 38 was observed using propylene glycol as an effective solvent
(Scheme 11) [81].
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Scheme 11. Aryl bromide 11 and phenyl trimethoxysilane 8 coupling reaction using palladium
NNC-pincer complex as catalyst.

Amide is the versatile and valuable functionality widely utilized as a building block
in biologically important compounds such as proteins and enzymes due to the sturdy
nature of the amide C-N bond [82,83]. Highlighting the significance of the amide C-N
bond, Idris and Lee devised a route for the Pd-catalyzed transformation of amides to
corresponding aryl ketones. A number of different substituted N-acylglutarimides were
reacted with phenyl triethoxysilanes to give targeted products in (0–98%) yield. The highest
yield (98%) was observed by coupling of N-4-fluorobenzoylglutarimide 39 and phenyl-
triethoxysilane 16 using palladium acetate (2 mol%), PCy3 (4 mol%) in 1,4-dioxane/H2O,
Et3N.3HF and LiOAc at 90 ◦C for 6 h (Scheme 12). N-Acylglutarimide bearing sterically
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bulky tert-butyl group provided no desired coupling product. The coupling of substituted
N-acylglutarimides with a broad range of arylsiloxanes afforded corresponding coupled
products up to 93% yield [84].
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Scheme 12. Synthesis of ketone 40 from N-4-fluorobenzoylglutarimide 39.

The trapping of σ-alkylpalladium intermediate using arylsilanes under palladium-
catalyzed Domino Heck/Hiyama coupling was disclosed by Wu and coworkers. This
approach demonstrated the broad substrate scope and compatibility with various func-
tional groups. Different aryl-tethered activated or unactivated alkenes were treated with
substituted arylsilanes by means of palladium acetate catalyst in MeCN at 80 ◦C under
argon atmospheric conditions. Consequently, the corresponding products were obtained
in 62–88% and 53–81% yields, respectively. Excellent results were observed in the case
of coupling of N-(2-iodo-4-methoxyphenyl)-N-methylmethacrylamide 41 and methoxy
substituted phenyl triethoxysilane 42 using an effective ligand PPh3 (10 mol%) and Bu4NF
giving 88% yield to furnish the respective product 43 (Scheme 13). This methodology
was employed to yield the ezetimibe, a cholesterol absorption inhibitor, analogs using
N-(2-iodophenyl)-N-methylmethacrylamide and ezetimibe-derived arylsilane [85].
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Scheme 13. Synthesis of 43 by coupling of N-(2-iodo-4-methoxyphenyl)-N-methylmethacrylamide
41 and arylsilane 42.

The azaindoline framework is a nitrogen-bearing heterocycle that exists in several
complex compounds and exhibits numerous biological and pharmaceutical attributes [86].
Keeping these characteristics in mind, Ye et al. disclosed the formation of azaindoline
derivatives, which was carried out by the Domino Heck cyclization/Hiyama coupling
protocol. A number of functionalized azaindoline derivatives were achieved in 46–85%
yields. A series of ligands (PPh3, P(2-furyl)3, XPhos, SPhos, P(4-MeOC6H4)3 were screened,
and the electron-rich P(4-MeOC6H4)3 was declared as a suitable ligand for the correspond-
ing reaction. The reaction of Bn-protected aminopyridine 44 and 4-methoxy substituted
phenyltriethoxysilane 42 was progressed in 1,4-dioxane using 5 mol% Pd(OAc)2 catalyst
and 2.0 equivalents of Bu4NF. The targeted coupling product 45 was furnished in 85% yield
by maintaining the temperature at 80 ◦C (Scheme 14). Excellent results (46–85%) were
obtained in the case of electron-donating (phenyl, OMe, CH3) and -withdrawing (F, CF3,
Cl) substituents. Moreover, heteroarylsilanes, including 2-thienylsilane and 3-thienylsilane,
provided access to targeted products in 77% and 82% yields, respectively [87].
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Scheme 14. Pd(OAc)2 catalyzed formation of (hetero)aryl-functionalized azaindoline-derived compounds.

4. Palladium Chloride as Catalyst

Clark, in 2005, reported the Hiyama cross-coupling under microwave irradiation for
the first time. The microwave-assisted reaction of 3-bromotoluene 46 was accomplished
with phenyl trimethoxysilane 8 in the presence of 1.25% [Pd(allyl)Cl]2, ligand 47/N-mepip
solution and tetra n-butylammonium fluoride (TBAF) promoter (1 M soln. in THF) to
achieve the targeted coupling product 48 in >95% yield with >99% conversion (Scheme 15).
A fascinating application of Hiyama coupling involves the synthesis of arylalkenes. In this
regard, para-chloroacetophenone 49 underwent cross-coupling with vinyltrimethoxysilox-
ane 50 utilizing catalyst derived from 1.25% [Pd(allyl)Cl2] and ligand 47/N-mepip solution
using TBAF in THF at 110 ◦C under microwave irradiation to afford colorless styrene
derivative 51 in 95% yield (Scheme 16) [88].
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Organosilanes have attracted the attention of research groups due to their assorted ben-
efits (such as low cost, ease of availability, nontoxic byproducts, and stability) as compared
to the other organometallic precursors (organoboron, organostannane, organozinc, organ-
otin). Unsuccessful attempts to couple 2-trimethylsilylpyridine with 4-iodoanisole diverted
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the attention of researchers towards sustainable liquids, i.e., chloropyridyltrimethylsilanes
for Hiyama cross-coupling reaction. Chloropyridyltrimethylsilanes could be afforded either
by halogen or hydrogen lithium exchange of chloropyridines followed by the reaction with
chlorotrimethylsilane. Pierrat et al., in 2005, disclosed the Hiyama cross-coupling of chloro-
substituted pyridyltrimethylsilanes with aryl halides. 1-Fluoro-4-iodobenzene 52 was
allowed to react with chloro substituted pyridyltrimethylsilanes 53 using 5% PdCl2(PPh3)2,
10% PPh3, and copper iodide (1 equiv) to carry out the coupling in DMF solvent. The
reaction was conducted using two equivalents of tetra-n-butylammonium fluoride (TBAF
in THF) as a suitable base at room temperature for 12 h, affording the targeted biaryl
product 54 in 95% yield (Scheme 17) [89].
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Scheme 17. Reaction of 1-fluoro-4-iodobenzene 52 with chloro substituted pyridyltrimethylsilane 53
using PdCl2(PPh3)2.

The phosphine-free palladium-catalyzed synthesis of para-substituted biaryl scaffold
using air-insensitive PdCl2/hydrazone ligand was reported by Mino and coworkers. Sev-
eral functionalized substituted biaryls were obtained in a 50–90% yield range via the
reaction of aryl bromides with different siloxanes. An excellent result (90%) was attained
by the reaction of phenyl bromide 55 with para-substituted phenyl triethoxysilane 56 in
the presence of air-stable phosphine-free PdCl2/hydrazone ligand 57 using TBAF in THF
under argon atmosphere. After screening a variety of solvents (DMSO, dioxane, t-BuOH,
toluene, and DMF), toluene was selected as a suitable solvent for the corresponding reaction
(Scheme 18) [90].
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Scheme 18. PdCl2 catalyzed Hiyama cross-coupling using phosphine-free hydrazone ligand.

Multicomponent assembly protocol fascinates synthetic chemists due to its efficacy in the
synthesis of molecular complexity and is acceptable for diversity-oriented synthesis [91,92].
An efficient approach for the synthesis of multisubstituted unsymmetrical biaryls was
reported by Akai and coworkers in 2008. The reaction of substituted 8-TBDMS-1-naphthols
with a wide range of aryl iodides afforded the biaryl derivatives moderate to excel-
lent yields (46–81%). The fluoride-free Hiyama coupling of 59 was accomplished with
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4-cyanoiodobenzene 60 giving a multisubstituted asymmetrical biaryl through the forma-
tion of pentacoordinate silicate 61 as an intermediate. [(allyl)PdCl]2, AsPh3, Cs2CO3, and
dimethoxyethane (DME) were selected as an appropriate catalyst, ligand, base, and solvent,
respectively, to afford the maximum yield (81%) of targeted asymmetrical biaryl derivative
62 under argon atmosphere (Scheme 19) [93].
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Scheme 19. Synthesis of asymmetrical biaryl derivative 62 by Hiyama cross-coupling reaction.

Pincer-type palladium complexes are intriguing due to their promising reactivity
and stability. Inés et al. synthesized the non-symmetric PCN pincer-type palladium com-
plex by the reduction of 1-(3-nitrophenyl)pyrazole to amine, which upon treatment with
ClPPh2 provided an unreliable and air-sensitive ligand. The ligand further reacted with
Pd(COD)Cl2 to yield a targeted non-symmetric pincer-type complex that efficiently cat-
alyzed the Hiyama cross-coupling reaction in eco-friendly reaction media. Excellent results
were achieved using two methods in the presence of an efficient catalyst. The first pathway
was concerned with the reaction of phenyl trimethoxysilane 8 with 11 catalyzed by 2 mol%
63 using NaOH in H2O at 140 ◦C for 3 h to obtain the corresponding biaryl derivative 38 in
82% yield. The alternative developed method involved the coupling of phenyl trimethoxysi-
lane 8 with 11 in the presence of 4 mol% of catalyst 63 using n-Bu4NF and o-xylene at 80 ◦C
for 4 h to afford the required biaryl product 38 in 61% yield (Scheme 20) [94].
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Chen et al. synthesized the sustainable cationic bipyridyl ligand by reacting 4,4′-
bis(bromomethyl)-2,2′-bipyridine with 50% aqueous solution of trimethylamine in CH2Cl2
that catalyzed the Hiyama cross-coupling reaction efficiently. 4-Bromoanisole 64 was
reacted with phenyl triethoxysiloxane 16 in H2O using Pd(NH3)2Cl2/65 (0.1 mol%) as a
catalyst. NaOH was screened as a suitable base to attain the desired biaryl derivative 66 in
99% yield (Scheme 21). The Hiyama cross-coupling of several aryl bromides with a variety
of triethoxy(aryl)silanes gave substituted biaryl derivatives in (35–99%) yield range [95].
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Scheme 21. Use of Pd(NH3)2Cl2 catalyst in Hiyama cross-coupling reaction with bipyridyl ligand 65.

Aryl imidazol-1-ylsulfonates are the electron-deficient substrates that promote the
palladium-catalyzed Hiyama and Sonogashira cross-coupling under copper-free conditions,
as reported by Williams and coworkers. Several functionalized biaryl derivatives were
obtained by the reaction of aryl imidazylates with (2-hydroxymethylphenyl) dimethyl silane
(HOMSi) reagent in 72–99% yields. The 2-naphthyl imidazol-1-ylsulfonate 67 was coupled
with 4-methoxyphenyl HOMSi reagent 68 in the presence of Pd(dppf)Cl2 (0.05 equiv)
in dry DMSO with K2CO3 at 65 ◦C giving the cross-coupling product 69 in 99% yield
(Scheme 22) [96].
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Scheme 22. Hiyama cross-coupling of 2-naphthyl imidazole-1-ylsulfonate 67 and 4-methoxyphenyl
HOMSi reagent 68 using K2CO3 as base.

A research group by Hughes also reported a facile and convenient methodology for
the palladium-catalyzed synthesis of biphenyls in 2011 using the HOMSi® reagent. In this
methodology, the aryl bromides and iodides were proved to be more efficient substrates to
couple with the HOMSi® reagent in DMF solvent. Excellent (>98%) conversion was achieved
by the reaction of HOMSi® reagent 71 with 72 using PdCl2 as the catalyst, 73 as ligand using
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CuI, and K2CO3 as the base at 80 ◦C for 15 h. DMF was selected as the optimal solvent by
observing the results with THF, MeOH, 1,4-dioxane, and DMSO (Scheme 23). Compatibility
with functional groups, reactions under fluoride-free conditions, and recycling of organosilicon
byproducts are the salient features of the HOMSi® reagent [97].
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Stilbenes and their hydroxylated derivatives are of tremendous interest as they exhibit
diversified biological activities such as fungistatic, antibacterial and anticancer [98–101].
Due to their extended conjugation system, stilbenes have been utilized to assemble elec-
tronic and optoelectrical devices, i.e., solar cells, LEDs, and dye lasers [102,103]. Resveratrol
and combretastatin A-4 are a few bioactive derivatives of stilbene that can be obtained
naturally from the extraction of plants. An effective catalytic system was established
for the stereoselective formation of substituted E-stilbenes using Heck cross-coupling
reaction while studying the catalytic activity of Pd complexes with H-spirophosphane
ligands. Hiyama coupling reaction emerged to be a more effective route to synthesize
substituted E-stilbenes. Keeping these considerations in mind, Skarżyńska and coworkers,
in 2011, proposed an efficient synthesis of E-stilbenes via Hiyama coupling reactions of
substituted styrylsilanes with aryl halides catalyzed by an efficient and stereoselective
precatalyst. The styrylsilanes possessing either electron-deficient groups or para-substituted
electron-rich groups resulted in an excellent yield range (87–99%). A 100% conversion of
iodobenzene and 99% yield of bromo substituted E-stilbene 77 was obtained by the addi-
tion of 75 to iodobenzene 76 using palladium complex with H-spirophosphorane ligand
[PdCl2P(OCH2Cme2NH)OCH2Cme2NH2] as precatalyst in the presence of [nBu4N]F addi-
tive. The reaction progressed in tetrahydrofuran solvent at 60 ◦C for 12 h (Scheme 24) [104].
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Scheme 24. Synthesis of bromo substituted E-stilbene 77 using palladium complex with H-
spirophosphorane ligand.

Cheng et al. disclosed a PdCl2-catalyzed Hiyama-type coupling of arenesulfinates
and organosilanes in mild reaction conditions. A wide range of substituted biaryls was
obtained in 73–94% yield by coupling various arenesulfinates with aryl trialkoxysilanes.
The coupling of p-methylbenzenesulfinate 78 with phenyl triethoxysilane 16 was carried
out in the presence of PdCl2 (5 mol%) and TBAF (additive) in the THF solvent. The reaction
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progressed well under aerobic conditions at 70 ◦C giving the corresponding biaryl product
79 in 94% yield (Scheme 25) [105].
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Chang et al. reported a facile protocol for synthesizing the biaryl ketones via car-
bonylative Hiyama coupling reaction. In this regard, the phenyl triethoxysilane 16 was
allowed to react with 4-bromophenyl iodide 80 using PdCl2(MeCN)2 catalyst and cesium
fluoride (CsF) promoter to afford the corresponding ketone 81 in 94% yield (Scheme 26).
The reaction temperature was maintained at 80 ◦C. Different solvents (DMSO, toluene,
DMF, CH3CN, and 1,4-dioxane) were screened, and NMP (N-methyl-2-pyrrolidone) was
selected as the optimal solvent for the corresponding reaction. Aryl halides having electron-
withdrawing (-Cl, -F, -NO2, CN) and electron-donating substituent (-CH3) gave moderate
to excellent yields (68–94%) [106].
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Diarylmethanes have attained huge interest as they exist in biologically active natural
compounds and drugs [107,108]. For example, avrainvilleol, a marine natural product, pos-
sesses a diarylmethane motif and exhibits antibacterial [40] and antioxidant [41] activities.
Several drugs containing diarylmethanes demonstrate a wide range of biological activities
such as segontin (used to cure coronary heart disease) [35], bifemelane, tolpropamine, and
piritrexim act as an antidepressant, antiallergic and anticancer agents, respectively [36–39].
Functionalized diarylmethane derivatives were achieved by coupling a variety of benzylic
ammonium salts with phenyl trimethoxysilane, as elaborated by Zhao and coworkers in
2019. Methoxy substituted benzyltrimethylammonium salt 82 was treated with phenyl
trimethoxysilane 8 to acquire the desired diarylmethane derivative 83 in 92% yield. The re-
action proceeded well at 120 ◦C in the presence of 5 mol% PdCl2(CH3CN)2 catalyst, 20 mol%
PPh2Cy ligands, and TBAF in EtOH (Scheme 27). In the case of aryl trimethoxysilanes,
the substrate containing electron-donating groups afforded corresponding diarylmethane
derivatives in (57–97%) yield range. Moreover, the substrate-bearing heterocycles, includ-
ing thiophene and furan, gave coupling products a 94% yield [109].
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Synthesis of vinylsilanes is a very promising task in research due to their spacious ap-
plications in organic syntheses, such as the Hiyama coupling reaction [110]. Wisthoff et al.
designed a facile protocol to accomplish the synthesis of cis- or trans-tetrasubstituted vinyl-
silanes via carbosilylation of three components, including symmetrical alkynes, alkyl zinc
iodides, and iodosilanes using a palladium catalyst. The authors also reported condi-
tions for tetrasubstituted vinylsilanes via the Hiyama coupling reaction that facilitated the
synthesis of tetrasubstituted alkenes. The cis- or trans-tetrasubstituted vinylsilanes were
synthesized in a 32–97% yield range by the addition of iodosilane to the solution of alkyl
zinc iodide and alkyne using (Ph3P)2PdCl2 (2 mol%) catalyst in dioxane. Triethylamine
(Et3N) was reported as a suitable base for this reaction. Tetrasubstituted vinylsilanes un-
derwent Hiyama cross-coupling reactions to achieve the stereodefined tetrasubstituted
alkenes. The reaction of 84 with 1-bromo-3-methybenzene 46 was conducted in the pres-
ence of KOSiMe3, and 18-crown-6 in THF at 65 ◦C, followed by the treatment with 2.5 mol%
[(allyl)PdCl2] catalyst and 5 mol% SPhos ligands at 65 ◦C afforded the desired geometri-
cally defined tetrasubstituted alkene 85 in 62% yield (Scheme 28). The effect of ligands
on the selectivity of alkyl-substituted tetrasubstituted vinylsilanes was also observed. It
was found that the use of DrewPhos ligand 86 (Figure 2) gave results in (54–92%) yield
of alkyl-substituted tetrasubstituted vinylsilanes with excellent syn-selectivity while us-
ing JessePhos 87 (Figure 2) as ligand resulted in 61–92% yield range of alkyl-substituted
tetrasubstituted vinylsilanes with excellent anti-selectivity [111].
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Figure 2. Structures of DrewPhos 86 and JessePhos 87 ligands.

γ-Valerolactone-based tetrabutylphosphonium 4-ethoxyvalerate are effective and ver-
satile biomass-derived ionic liquids and have been extensively utilized in synthesis pro-
tocols due to their tunability. In order to elaborate on the effect of ionic liquid, Orha et al.
outlined the efficient synthesis of substituted biaryl derivatives by the addition of iodoaro-
matic substrates to triethoxyphenylsilane. In this methodology, reactions of several aryl
iodides were performed with triethoxyphenylsilane to give numerous substituted biaryl
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structures in good yields (45–72%). 1-Iodo-4-methylbenzene 88 was coupled with tri-
ethoxyphenylsilane 16 in tetrabutylphosphonium 4-ethoxyvalerate [TBA][4EtOV] afforded
the desired biaryl derivative 79 in 72% yield. The reaction was carried out at 130 ◦C
using Pd(PPh3)2Cl2 as catalyst precursor and a fluoride source (TBAF) to activate the
transmetalation reagent (Scheme 29) [112].
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5. Pd/C as Catalyst

A heterogeneous catalytic system proved to be an effective system over a homogeneous
catalytic system in the organic synthetic field regarding their stability, recoverability, and ease
of handling [113]. Considering the efficacy of heterogeneous catalysts, Yanase et al., in 2011,
reported the synthesis of biaryl derivatives via water-mediated Hiyama cross-coupling re-
action using Pd/C, a heterogeneous catalyst [114] with electron-deficient phosphine ligand
[(4-FC6H4)3P]. Several functionalized biaryl derivatives were attained in a 47–90% yield range
by cross-coupling of aryl halides with aryltrialkoxysilanes. The reaction was progressed at
120 ◦C using 0.5 mol% of 10% Pd/C catalyst, 1 mol% of tris(4-fluorophenyl)phosphine as
ligand, TBAF.3H2O as an activator, and 4.8% aqueous toluene. A 90% yield of targeted biaryl
product 18 was obtained by coupling 3-methoxyphenylbromide 89 with phenyl triethoxysi-
lane 16 (Scheme 30) [115]. Later on, in a 2013 research group by Monguchi, they developed a
facile and efficient methodology to synthesize the biaryl derivatives in (47–90%) yield range
using (4-C6H4)3P (1 mol%) ligand [116].

Molecules 2022, 27, x FOR PEER REVIEW 30 of 77 
 

 

ined in a 47–90% yield range by cross-coupling of aryl halides with aryltrialkoxysilanes. The reaction was progressed 
at 120 °C using 0.5 mol% of 10% Pd/C catalyst, 1 mol% of tris(4-fluorophenyl)phosphine as ligand, TBAF.3H2O as an 
activator, and 4.8% aqueous toluene. A 90% yield of targeted biaryl product 18 was obtained by coupling 
3-methoxyphenylbromide 89 with phenyl triethoxysilane 16 (Scheme 30) [115]. Later on, in a 2013 research group by 
Monguchi, they developed a facile and efficient methodology to synthesize the biaryl derivatives in (47–90%) yield 
range using (4-C6H4)3P (1 mol%) ligand [116].  
 

 
Scheme 30. Hiyama cross-coupling in the presence of tris(4-fluorophenyl)phosphine ligand. 

The very first ligand-free Pd/C catalyzed Hiyama cross-coupling reaction for the 
construction of a variety of biphenyl derivatives was developed by Sajiki and coworkers 
in 2012. A series of solvents (DMF, THF, CH3CN, EtOH, toluene) and fluoride sources 
(TBAF, LiF, CsF, KF) were screened, and among them, toluene and TBAF.3H2O were se-
lected as a suitable solvent, and fluoride source for corresponding Pd/C catalyzed 
Hiyama cross-co 

Scheme 30. Hiyama cross-coupling in the presence of tris(4-fluorophenyl)phosphine ligand.

The very first ligand-free Pd/C catalyzed Hiyama cross-coupling reaction for the
construction of a variety of biphenyl derivatives was developed by Sajiki and coworkers
in 2012. A series of solvents (DMF, THF, CH3CN, EtOH, toluene) and fluoride sources
(TBAF, LiF, CsF, KF) were screened, and among them, toluene and TBAF·3H2O were
selected as a suitable solvent, and fluoride source for corresponding Pd/C catalyzed
Hiyama cross-coupling reaction. Aryl bromide 11 was reacted with methoxy substituted
phenyl triethoxysilane 42 to afford a maximum (90%) yield of desired biphenyl derivative
90. The reaction was refluxed for 24 h in toluene containing 0.5 mol% of 5% Pd/C catalyst,
TBAF·3H2O as an activator, and acetic acid (Scheme 31) [117].
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γ-Valerolactone (GVL), a safe and sustainable bio-based chemical obtained from
lignocellulosic biomass [118], was found to be an efficient media for Hiyama coupling
reactions. The use of highly effective and non-expensive heterogeneous catalyst Pd/C with
γ-valerolactone competently promotes the eco-friendly Hiyama cross-coupling reaction
under practical and mild conditions without using any ligand or additive as reported by
Ismalaj et al. A number of aryl halides were treated with phenyl triethoxysilanes using 1 M
GVL as an efficient biomass-based solvent for Hiyama coupling reaction. Tetrabutylammo-
nium fluoride (TBAF) was found to be the best activator of organosilanes, while CsF and
KF were not such efficient activators. An excellent result (94%) of desired biaryl product 92
was obtained by carrying out the reaction of bromobenzene 55 with phenyl triethoxysilane
16 using Pd/C (0.5 mol%) as catalyst in 1M GVL 91 solvent and TBAF for 24 h at 130 ◦C
(Scheme 32) [119].
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6. Pd/Fe3O4 as Catalyst

An efficient methodology for the synthesis of a diverse range of biaryl derivatives via
Hiyama cross-coupling reaction of aryl bromides with aryl siloxanes using a highly efficient,
easily recoverable, and eco-friendly Pd/Fe3O4 catalytic system was proposed by Sreedhar
and coworkers. Fe3O4 supported palladium catalyst shows superparamagnetic behavior,
and its catalytic activity remains unchanged after recycling five times. The mechanistic
studies showed that Pd/Fe3O4 catalyzed Hiyama cross-coupling reaction proceeds through
oxidative addition and transmetalation followed by reductive elimination [120]. The effect
of the base is more pronounced in achieving the maximum yield. Sodium hydroxide
(NaOH) was investigated as an appropriate base for this reaction. In this methodology,
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the substituted aryl bromide 93 was treated with aryl siloxanes 94 by using magnetically
recoverable Pd/Fe3O4 catalyst and NaOH in H2O at 90 ◦C to obtain the excellent yield
(92%) of desired coupling product 95 (Scheme 33) [121].
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Pd-Fe3O4 Heterodimeric nanocrystals have been found to be effective and recyclable
catalysts to achieve a successful Hiyama cross-coupling under ligand-free conditions.
Keeping the effectiveness of catalyst in view, Lee et al. proposed a methodology for the
synthesis of diversified biaryl derivatives. The protocol involved the treatment of 96 with
phenyl trimethoxysilane 8 under ligand-free conditions. The reaction was proceeded in
DMA (dimethylacetamide) using 1 mol% of Pd-Fe3O4 heterodimeric nanocrystals as a
catalyst, KF as a base, and tetra-n-butylammonium iodide (TBAI) as an additive at high
temperature of 150 ◦C. Consequently, the desired biphenyl derivative 97 was afforded in
94% yield (Scheme 34). Electron-donating and -withdrawing groups (-Me, -OMe, -F, -CF3,
-NO2) bearing aryl halides provided the corresponding biaryl derivatives in an excellent
yield range (70–94%) [122].
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7. N-Heterocyclic Carbenes (NHCs) Palladium Complexes

NHCs are nucleophilic in nature as they exhibit σ-electron donating attributes. The appli-
cation of N-heterocyclic carbene (NHC) ligands in transition metal-catalyzed cross-coupling
acquired notable interest recently [123–126]. Peñafiel et al. synthesized [(NHC)2PdCl2] com-
plex through direct metalation of 0.2% hydroxy-functionalized imidazolium salt and 0.1%
palladium acetate to efficiently catalyze the Hiyama cross-coupling of aryl chlorides and
bromides with arylsiloxanes under microwave irradiation and fluoride free conditions. The
fluoride-free Hiyama reaction of 4-bromoanisole 64 was carried out with phenyl trimethoxysi-
lane 8 using [(NHC)2PdCl2] complex 98 to catalyze the reaction under microwave irradiation
(80 W, 120 ◦C) for 1 h. NaOH was screened to be a suitable base for the corresponding reaction
to afford the targeted derivative 66 in 95% yield (Scheme 35). The coupling of aryl and
heteroaryl bromides with siloxanes resulted in biaryl products in a 5–88% yield range.
The required products were obtained in lower yields with aryl chlorides than with aryl
bromides [127]. Another research group of Pastor and coworkers disclosed the efficient
synthesis of biaryl derivatives using 0.2 or 0.5% of imidazolium salt in 2013 [128].
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Scheme 35. Fluoride-free Hiyama cross-coupling of 4-bromoanisole 64 under microwave irradiation.

The synthesis of four linear dinuclear N-heterocyclic carbene palladium complexes
was reported by Yang and Wang. The structures were characterized by NMR, FT-IR, and
elemental analysis. The synthesis of NHC-palladium complexes was achieved by a one-pot
reaction of imidazolium salts, PdCl2, and bidentate N-heterocycles in the presence of potas-
sium carbonate (K2CO3) with the formula [PdCl2(NHC)]2(µ-L) (L = DABCO, pyrazine).
The catalytic effect of N-heterocyclic carbene palladium complexes was investigated in
the Hiyama coupling reaction of aryl trialkoxysilanes with aryl chlorides. Among four
dinuclear N-heterocyclic carbenes, 100 expressed excellent catalytic activity in the corre-
sponding Hiyama coupling reaction. Both electron-donating and electron-withdrawing
groups substituted aryl chlorides afforded biphenyl products in (54–92%) yield range.
The reaction of 99 with phenyl trimethoxysilane 8 was conducted at 120 ◦C for 5 h using
0.5 mol% of NHC-Pd 100, TBAF in toluene to achieve a 92% yield of corresponding product
9 (Scheme 36) [129].
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The application of homoleptic chelating N-heterocyclic carbene palladium complexes
immobilized within the pores of SBA-15/IL (NHC-Pd@SBA-15/IL) as heterogeneous cat-
alyst in the Hiyama coupling reaction was reported by Rostamnia and coworkers. The
desired biaryl derivatives were achieved in an excellent yield range (82–95%). The cat-
alytic activity of the catalyst was analyzed by treating phenyl trimethoxysilane 8 with
phenyl iodide 76 using 0.8 mol% (NHC-Pd@SBA-15/IL) 101. The reaction proceeded in
H2O/dioxane (1:2) at 80 ◦C using Cs2CO3 as a suitable base and TBAF that increased the cat-
alytic activity of (NHC-Pd@SBA-15/IL). As a result, 92 was obtained in an excellent (95%)
yield (Scheme 37). Chemoselectivity of (NHC-Pd@SBA-15/IL) for the Hiyama coupling
reaction was analyzed by treating p-bromobenzaldehyde with phenyl trimethoxysilane un-
der the optimized reaction conditions giving the corresponding biaryl product. Reusability
of catalyst for five successful runs was observed [130].
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Yang synthesized the tetrazole ligand stabilized NHC-Pd complexes by reacting
dimeric compounds [Pd(µ-Cl)(Cl)(NHC)]2 and tetrazole ligands that catalyzed the Hiyama
coupling reaction very well. The catalytic activity of mono and dinuclear Pd(II) complexes
were analyzed. Among them, the mononuclear palladium complex [PdCl2(SIPr)(1-phenyl-
1H-tetrazole)] proved to be the most effective one giving a maximum yield (88%) of biaryl
product 9. For this purpose, compound 99 was refluxed with phenyl trimethoxysilane 8
for 8 h using 0.5 mol% of [PdCl2(SIPr)(1-phenyl-1H-tetrazole)] 102 as catalyst and TBAF in
toluene (Scheme 38) [131].
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A very interesting application of palladium PEPPSI (Pyridine Enhanced Precatalyst
Preparation Stabilization and Initiation) complexes with non-bulky NHC ligands as a
catalyst precursor in cross-coupling reactions was disclosed by Osińska et al. for the
synthesizing the non-symmetric biaryl scaffolds. The application of PEPPSI complexes
in Suzuki–Miyaura was investigated, in which their catalytic activity was clearly evi-
denced [132–137], while the use of PEPPSI complexes in the Hiyama coupling reaction is
rare [138–140]. The PEPPSI complexes were synthesized by reacting a palladium dimer
[Pd(bmim-y)X2]2 and N-ligand. Hiyama coupling worked efficiently in ethylene glycol,
and 97% conversion was achieved in the case of coupling of 2-bromotoluene with phenyl
trimethoxysilane using Pd(IPr)Cl2(Cl-py) 103 (Figure 3) as a catalyst in ethylene glycol
solvent. The reaction did not work efficiently in water. Pd(bmim)Br2(CN-py) complex 104
catalyzed Hiyama coupling of substituted bromobenzenes and chlorobenzenes with phenyl
trimethoxysilane afforded cross-coupled products in (50–93%) yields using NaOH base and
ethylene glycol as solvent at 110 ◦C for 24 h with the exception of 1-chloro-3-nitrobenzene
and 4-chloro-2-nitrobenzene giving no results [141].
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 Figure 3. Pd(IPr)Cl2(Cl-py) 103 and Pd(bmim)Br2(CN-py) 104 complexes (catalyst).

8. Nanoparticles as Catalyst

The substantial application of transition metal nanoparticles in catalysis has remained
an area of interest for research groups due to their harmless characteristic features, easy
preparation methods, and large surface area [142,143]. Srimani et al. synthesized the palladium
nanoparticles by the dropwise addition of metal acylate salt (CO)5W=C(CH3)O(−)NEt4(+)
solution to the PEG-6000 containing an aqueous solution of K2PdCl4 to catalyze the Hiyama
coupling reactions [144]. It was noticed that the increased amount of PEG-6000 stabilizer
decreases the size of nanoparticles. The substituted aryl bromides 105 were coupled with
phenyl triethoxysilane 8 using palladium nanoparticles as catalyst 106 and an appropriate
base NaOH in the air at 90 ◦C to achieve the desired biaryls 107 in 98% yield (Scheme 39).
H2O was utilized as an effective solvent in place of THF or DME [145].
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A simple, convenient, and rapid one-pot Hiyama coupling of aryl bromides or iodides
with arylsilanes under fluoride-free conditions was reported by the research group of
Ranu and coworkers. The corresponding reaction was catalyzed by using palladium
nanoparticles that were generated in situ from sodium dodecyl sulfate (Na2PdCl4/SDS)
in H2O. SDS stabilizes the formation of palladium nanoparticles. The reaction of phenyl
bromide 55 with phenyl trimethoxysilane 8 was carried out using palladium nanoparticles
that efficiently catalyzed the reaction. Excellent yield (96%) of desired biphenyl product
92 was attained using water as solvent. A series of bases (KOH, Na2CO3, NaOAc, and
NaHCO3) was screened, and NaOH was investigated as a suitable base for this reaction
(Scheme 40). Environmentally friendly solvent, no utilization of ligand, and good yields
are the salient features of this synthetic protocol [146].
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Scheme 40. Palladium nanoparticles catalyzed Hiyama coupling reaction using NaOH as base.

Diarylmethanes have received appreciable attention from researchers due to their phar-
macological activities [147–151]. They are regarded as distinct components of supramolecu-
lar structures, including catenanes, macrocycles, and rotaxanes [152–155]. Focusing on the
significance of diarylmethanes, Sarkar and colleagues designed a successful protocol for the
synthesis of diarylmethane derivatives using palladium nanoparticles in THF. Palladium
nanoparticles were formed by the reaction of 4 mol% K2PdCl4 with PEG-600 at 70 ◦C. PEG-
600 was used as a reducing and stabilizing agent for the preparation of nanoparticles [156].
Numerous diarylmethane derivatives were formed by Hiyama cross-coupling of benzyl
halides with phenyl trialkoxysilanes in a 78–95% yield range. The 108 was coupled with
phenyl trimethoxysilane 8 in the presence of 4 mol% K2PdCl4, PEG-600 using TBAF in
tetrahydrofuran at 70 ◦C under argon environment to afford the desired coupling product
109 in 95% yield (Scheme 41). They applied the same methodology to synthesize diaryl-
methanes 111 in 95% yield using allyl halides 110 and phenyl trimethoxysilane 8 as reacting
substrates (Scheme 42). The naturally occurring 2,4-bis(4-hydroxybenzyl)phenol 112 was
also synthesized by the same research group through multiple steps reactions starting from
anisole using the same methodology (Figure 4) [157].
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Figure 4. Structure of 2,4-bis(4-hydroxybenzyl)-phenol 112.

Zhang et al. synthesized a silica-coated SiO2@Fe3O4-Pd catalyst that efficiently cat-
alyzed the Hiyama coupling of 113 with phenyl trimethoxysilane 8. The catalytic efficacy
of the supported catalyst remains even after 10 times of recycling. The reaction proceeded
by using SiO2@Fe3O4 supported palladium catalyst (0.5 mol%) using TBAF as a suitable
base in THF at 60 ◦C under an N2 atmosphere to obtain desired products 114 in 99% yield
(Scheme 43). It was noticed that either electron-donating or electron-withdrawing groups
containing aryl halides gave a good to excellent yield range (81–99%) [158].
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Scheme 43. SiO2@Fe3O4-Pd catalyzed coupling of aryl iodides 113 and phenyl trimethoxysilane 8.

Premi and Jain, in 2013, carried out the synthesis of substituted biphenyl derivatives,
aromatic heterocycles, and substituted styrene derivatives by phosphane-free Hiyama
cross-coupling reaction of aryl and heterocyclic halides with aryl and vinyltrimethoxysilane
using palladium nanoparticles in ionic liquids. Palladium nanoparticles were generated
by adding the solution of palladium acetate in acetonitrile to 3-(3-cyanopropyl)-1-methyl-
1H-imidazol-3-ium hexafluorophosphate {[CN-bmim]PF6}, an ionic liquid, that stabilizes
synthesis of palladium nanoparticles. It was observed that the electron-donating and
-withdrawing substituents on arylhalides resulted in an excellent yield range (76–98%).
The reaction of iodobenzene 76 with phenyl trimethoxysilane 8 using 4 mol% Pd(OAc)2
in 115 and CH3CN and 1-butyl-3-methylimidazolium fluoride [bmim]F, an organosilane
activator, at 70–120 ◦C for 8 h to afford the desired biphenyl derivative in 98% yield
(Scheme 44). The substituted styrene derivatives were also synthesized in (75–98%) yields
by the Hiyama cross-coupling of a broad range of aryl iodides with vinyltrimethoxysilane
catalyzed by Pd-NPs at 60–70 ◦C for 15–30 min [159].
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In Heck and copper-free Sonogashira reactions, palladium nanocatalysts synthesized
by hydrogenation of Pd(dba)2 using tris-imidazolium iodide that stabilizes the synthesis of
nanocatalysts are substantially used. The catalytic efficacy of the corresponding nanocata-
lyst regarding Hiyama coupling reaction under fluoride-free conditions was reported by
Planellas et al. in 2014. The authors synthesized the nanoparticles by hydrogenation of
Pd(dba)2 [160] using tris-imidazolium iodide [161] and adopted an impressive approach for
the synthesis of substituted styrene derivatives through Hiyama coupling reaction of sub-
stituted aryl iodides 116 with triethoxy(vinyl)silane 10 using nanocatalyst 117 (0.25 mol%
Pd catalyst loading). NaOH was used as a suitable base in a 1:1 mixture of MeOH/H2O.
The reaction worked effectively at 100 ◦C to attain 118 in 97% yields (Scheme 45). The
synthesis of unsymmetrically-substituted stilbene 120 was achieved in 82% yield through a
one-pot Hiyama–Heck reaction of 1-iodo-4-nitrobenzene 7, triethoxy(vinyl)silane 10, and
1-iodo-4-methoxybenzene 119 catalyzed by 117 in the presence of NaOH in MeOH/H2O
(1:1) (Scheme 46) [162].
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functionalized SBA-15 palladium nanoparticles was reported by Huang et al. The Pd 
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Scheme 46. One-pot Hiyama–Heck coupling reaction to attain styrene derivative 120.

The catalysis of a facile, cost-effective, and ligand-free Hiyama cross-coupling by
functionalized SBA-15 palladium nanoparticles was reported by Huang et al. The Pd
catalysts (Pd@M-SBA-15 and Pd@P-SBA-15) gave (13–92%) yield range for the Hiyama
coupling reaction of a variety of aryltriethoxysilanes with haloaryls. The catalytic efficacy
of Pd@M-SBA-15 and Pd@P-SBA-15 is associated with the presence of TMS or TPS groups
on mesopores. The reaction of 11 with phenyltriethoxysilane 16 was carried out by utilizing
Pd@M-SBA-15 (0.5 mol%) catalyst, acetic acid, and TBAF.3H2O in toluene at 100 ◦C in
the air for 24 h resultantly afforded the corresponding biphenyl derivative 38 in 92% yield
(Scheme 47). Between 38–89% yields were obtained in the case of coupling of various aryl
bromides with aryltriethoxysilanes [163].
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Scheme 47. Use of Pd@M-SBA-15 catalyst in Hiyama cross-coupling of 11 with phenyltriethoxysilane 16.

Euphorbia thymifolia L. belongs to the family of Euphorbiaceae and is an apparently
small and branched medicinal herb. It exhibits numerous pharmaceutical applications
against dysentery, venereal diseases, and diarrhea. Focusing on the importance of Pd
NPs, Nasrollahzadeh and colleagues developed a sustainable protocol for the formation
of Pd NPs using an aqueous leaf extract of Euphorbia thymifolia L. due to its reducing
and stabilizing abilities and observed its effectiveness in ligand-free Stille and Hiyama
cross-coupling reactions in a green solvent. The Pd-NPs were distinguished by TEM,
powder XRD, and UV-visible techniques. The catalytic efficacy of Pd NPs was evaluated
for the Hiyama coupling reaction of 121 with phenyl trimethoxysilane 8 to afford the
targeted biaryl products 122 in 96% yields (Scheme 48). The optimized reaction conditions
(1 mol% of Pd NPs, NaOH in H2O as solvent at 90 ◦C, under air) were utilized for the
corresponding reaction. Green solvent, high yields, substrate scope, cost-effectiveness, mild
reaction conditions, and ease of handling are certain salient features of the corresponding
methodology [164].
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reactions. However, due to some drawbacks of a homogeneous catalytic system, includ-
ing availability, stability, difficult separation, and recycling, diverted the attention of re-
searchers toward the synthesis of heterogeneous catalytic systems. Nanoscale palladium 
supported on zinc oxide was formed by a coprecipitation method and characterized by 
XRD, XPS, SEM, TEM, and thermogravimetric analysis. The application of palladium 
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Scheme 48. Pd-NPs catalyzed synthesis of biaryl derivatives 122 using green solvent.

A homogeneous catalytic system is frequently used in metal-catalyzed C-C coupling
reactions. However, due to some drawbacks of a homogeneous catalytic system, including
availability, stability, difficult separation, and recycling, diverted the attention of researchers
toward the synthesis of heterogeneous catalytic systems. Nanoscale palladium supported
on zinc oxide was formed by a coprecipitation method and characterized by XRD, XPS, SEM,
TEM, and thermogravimetric analysis. The application of palladium supported on zinc
oxide nanoparticles as a novel heterogeneous catalyst for the formation of unsymmetrical
biaryl derivatives by Suzuki–Miyaura and Hiyama coupling reaction was reported by
Hosseini-Sarvari and colleagues in 2015. Suzuki–Miyaura coupling of aryl halides and aryl
boronic acid catalyzed by Pd/ZnO nanoparticles afforded biaryl derivatives in an 84–97%
yield range. Hiyama coupling reaction of iodobenzene 76 and phenyl trimethoxysilane
8 resulted in 96% yield of biaryl product 92. The reaction was catalyzed by Pd/ZnO
nanoparticles using K2CO3 as the base in ethylene glycol under an air atmosphere by
maintaining a temperature of 100 ◦C (Scheme 49). Aryl iodides having electron-rich and
poor groups gave the desired products in good to excellent yields. Electron deficient aryl
bromides and chlorides resulted in biaryl products in short times (40–70 min) [165].
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Ohtaka and coworkers developed a pathway for the synthesis of substituted biphenyl
derivatives by fluoride-free Hiyama coupling reaction of aryl bromides with aryl trimethoxysi-
lanes and observed the catalytic effectiveness of linear polystyrene-stabilized PdO nanopar-
ticles [PS-PdONPs] and polystyrene-stabilized Pd nanoparticles [PS-PdNPs] under green
conditions. For example, the reaction of 4-methylphenylbromide 123 was performed with
phenyl trimethoxysilane 8 using PS-PdONPs (1.5 mol%) catalyst, TBAC in aqueous NaOH
solution at 80 ◦C under aerobic conditions for 3 h, which afforded 4-methylbiphenyl 79
in 88% yield. The catalytic effect of PS-PdNPs on the Hiyama coupling reaction was
observed, and it was noticed that the desired coupled product was not attained, but
4,4′-dimethylbiphenyl 124, the Ullmann coupling product, was afforded in 99% yield
(Scheme 50). PS-PdONPs showed higher catalytic efficacy in contrast to PS-PdNPs. The cat-
alyst was retrieved and successively subjected to four runs of cross-coupling reaction [166].
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The Heck and Hiyama coupling reactions clasp a pronounced emplacement due to
their implementation in the synthesis of complex organic structures [167–170]. Focusing on
the green methodology, Gaikwad et al. utilized Triton X-100, a non-ionic surfactant, as a
stabilizer [171,172] for the generation of palladium nanoparticles and executed an apprecia-
ble protocol for the synthesis of symmetrical stilbenes via one-pot sequential Hiyama–Heck
coupling reactions. For this purpose, the research group adopted arenediazonium salt
and triethoxy(vinyl)silane as substrates catalyzed by Triton X-100 stabilized palladium
nanoparticles. The arenediazonium tetrafluoroborate 125 was allowed to couple with
triethoxy(vinyl)silane 10 to afford the symmetrical trans-stilbene derivative 126 in excellent
yield (95%) (Scheme 51). The potency of other surfactants, including cetyltrimethylammo-
nium bromide (CTAB) and sodium dodecyl sulfate (SDS), was examined and found Triton
X-100 an appropriate non-ionic surfactant for the respective reaction. The reaction was
conducted at room temperature by using Triton X-100 (5 mol%) with Pd(OAc)2 (2 mol%)
in H2O [173].
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as catalyst.

Black pepper (piper nigrum) belongs to the Piperaceae family. Black pepper extract con-
tains a variety of phytochemicals such as piperine, phenols, ethyl piperonyl cyanoacetate,
N-isobutyl-tetradeca-2,4-dienamide that help to achieve the reduction of Pd(II) to Pd(0).
It is used as an important component in traditional medicines [174]. The formation of
green nanocatalyst (Pd NPs) using aqueous ethanolic extract of black pepper was carried
out by Kandathil et al. in 2018, and its catalytic activity in the cyanation and Hiyama
cross-coupling was observed. The cyanation of aryl halides was carried out in the presence
of cyanating reagent K4Fe(CN)6. Either electron-donating or electron-withdrawing groups
substituted on aryl halides gave moderate to excellent yields. The ligand-free Hiyama
cross-coupling reaction of various aryl halides with aryl trimethoxysilane was carried out
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under fluoride-free conditions to afford the biphenyl derivatives in an 87–98% yield range.
The reaction of iodobenzene 76 and phenyl trimethoxysilane 8 proceeded at 100 ◦C in
the presence of NaOH, ethylene glycol, and Pd nanoparticles with 0.2 mol% Pd loading,
which catalyzed the reaction efficiently, to obtain the cross-coupling product 92 in 98%
yield (Scheme 52) [175].
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9. Pd(PPh3)4 as Catalyst

Cyclopropane motifs have gained huge interest due to their unique features and im-
mense applications in chemical transformations [176,177]. These motifs exist in numerous
biologically active natural products and synthetic drugs [178–180]. The contribution of
the silanol group in the cyclopropanation and Hiyama–Denmark cross-coupling reaction
was described by Beaulieu et al. Di-tert-butoxy(cyclopropyl)silanol serves as a substrate
for Hiyama–Denmark cross-coupling reaction was synthesized by Simmons–Smith via
cyclopropanation reaction of di-tert-butoxy(alkenyl)silanol. (Cyclopropyl)silanol 127 was
treated with BF3

.OEt2 followed by the reaction with 128, 5 mol% Pd(PPh3)4, and TBAF
using THF solvent. The reaction worked well at 100 ◦C to afford the desired cross-coupling
product 129 in 92% yield (Scheme 53) [181].
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In 2015, the synthesis of unsymmetrical biaryl derivatives through the Hiyama cross-
coupling protocol in the presence of Cu(I) and H2O was reported by Delpiccolo and
coworkers. Cu(I) salts have been proven to improve the efficacy of palladium-catalyzed
cross-coupling reactions [182]. A series of biaryl derivatives was achieved in a 62–98%
yield range. Maximum yield (98%) of 131 was observed in the case of coupling of 130 with
31 using Pd(PPh3)4 (0.025 equiv.), TBAF as fluoride source and CuI to improve the catalytic
reaction in THF (5% H2O). The reaction proceeded well at 80 ◦C for 18 h (Scheme 54) [183].
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10. Copper Catalyzed Hiyama Cross-Coupling Reactions

Hiyama cross-coupling remained a valuable tool for the construction of carbon–carbon
bonds in diversified natural products, pharmaceutical compounds [184–189], and complex
structures. Hiyama coupling reaction is predominantly conducted with palladium catalysts.
In 2013, Gurung et al. reported the first CuI-catalyzed Hiyama cross-coupling reaction
of aryl- and heteroaryl halides with aryl- and heteroaryltriethoxysilane in the presence
or absence of PN-1 bidentate ligand. The electron-rich and electron-deficient groups
substituted on aryl halides and aryltriethoxysilanes gave moderate to excellent yields. The
coupling reaction of heteroaryl triethoxysilanes with aryl iodides in the presence of PN-1
ligand afforded the desired biaryl derivatives in a 40–74% yield range. An excellent result
(94%) of 134 was obtained by the addition of 132 to 133 using 10 mol% CuI and CsF in
the absence of PN-1 ligand 135. The reaction was conducted in DMF by maintaining the
temperature at 120 ◦C for 24 h (Scheme 55). CsF stabilizes the formation of monomeric
[CuAr] intermediate and acts as a fluoride source for the corresponding reaction [190].
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Allylbenzenes have acquired an eminent interest in organic synthesis due to their phar-
macological activities. The research group of Cornelissen carried out the synthesis to afford
allylbenzene derivatives via copper-catalyzed Hiyama cross-coupling of vinylalkoxysilanes
in the presence of an activating agent, TBAT (tetrabutylammonium difluorotriphenyl-
silicate) without using any ligand. Various allylbenzene derivatives were achieved in
an 83–99% yield range by reaction of vinyl silane with substituted benzyl halides. The
substrate 136 was allowed to couple with 137 to afford the desired product 138 in maxi-
mum (99%) yield. The optimization reaction conditions were Cu[MeCN]4PF6 (10%), TBAT,
MeCN solvent, 40 ◦C, 16 h (Scheme 56). The benzylation of various vinylsilanes gave
coupling products in a 51–92% yield range. Moreover, Z-alkenes were synthesized using
a copper-catalyzed Hiyama cross-coupling reaction. The substrate β-(Z)-vinylsilane 139
was coupled with 140 to acquire the desired Z-alkene 141 in 92% yield under optimized
reaction conditions (Scheme 57) [191].
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11. Nickel-Catalyzed Hiyama Cross-Coupling Reaction

Bimetallic nanoparticles have attained substantial attention as an efficient catalytic
system for Hiyama cross-coupling reactions. Rothenberg and coworkers synthesized the
core–shell Ni-Pd nanoclusters by combining electrochemical and wet chemical methods
that efficiently catalyzed Hiyama coupling reactions in contrast to bimetallic alloy clusters
and monometallic clusters. Aryl iodides with electron-donating and electron-withdrawing
substituents gave substituted biaryl derivatives in a 6->99% yield range. A competent
reaction of haloaryls 142, phenyl trimethoxysilane 8, and 143 afforded the corresponding
biaryl product 144 in good (>99%) yield along with homocoupling side-product (<2%). The
reaction worked efficiently at 65 ◦C in the presence of core–shell Ni-Pd cluster (1 mol%)
catalyst and tetrabutylammonium fluoride (TBAF) under an N2 atmosphere. THF was
utilized as the only solvent for the corresponding reaction (Scheme 58) [192].
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The nickel/bathophenanthroline catalyzed Hiyama coupling reaction of unactivated
secondary alkyl halides has been recently reported, but it was not found to be an efficient
catalyst for activated secondary alkyl halides. The activity of amino alcohol ligand was also
observed in the case of the Hiyama coupling reaction. Later, in 2007, the catalytic effect of
nickel/norephedrine in Hiyama coupling reactions of several unactivated alkyl halides
was reported by Strotman et al. The cyclohexyl iodide 146 was treated with phenyl trifluo-
rosilane 147 to achieve the desired cross-coupling product 148 in 94% yield. The reaction
worked efficiently at 60 ◦C in the presence of 10% NiCl2.glyme with 15% norephedrine as
a catalyst, using 12% lithium hexamethyldisilazide (LiHMDS) as the base, H2O and CsF
in DMA (N,N-dimethylacetamide) (Scheme 59). In the case of nickel-catalyzed Hiyama
coupling reactions of activated secondary alkyl halides, excellent results were obtained in a
60–92% yield range under the same reaction conditions mentioned above [193].
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Scheme 59. NiCl2.glyme catalyzed Hiyama cross-coupling of cyclohexyl iodide 146 with phenyl
trifluorosilane 147.

Dai et al. reported a convenient protocol for Ni-catalyzed asymmetric Hiyama cross-
coupling reactions of racemic α-bromo esters. On varying reaction conditions, several
α-aryl esters were obtained in a low to excellent yield range (<2–92%) with enantioselec-
tivities (13–99%), respectively. The phenylation of α-bromo ester 149 was carried out with
phenyl trimethoxysilane 8 at room temperature using 10% NiCl2.glyme, 12% 150, and
TBAT in dioxane yielded the corresponding coupling product 151 in 80% yield with 99% ee
enantioselectivity (Scheme 60). The addition of substituted aryl silanes to α-bromo esters
resulted in 64–76% yields of respective cross-coupling products and 87–94% ee enantiose-
lective values, while α-bromo esters underwent alkenylation through catalytic asymmetric
Hiyama coupling reactions afforded the coupling products in 66–72% yield range with
91–93% ee [194].
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The environmentally benign Hiyama cross-coupling of tetrafluoroethylene (TFE) and
perfluoroarenes via C-F bond activation was developed by Ogoshi and coworkers in
2014. An excellent yield (90%) of 154 was obtained when 152 was treated with 153 using
5 mol% [Ni2(iPr2lm)4(cod)] catalyst in tetrahydrofuran at 100 ◦C for 10 h (Scheme 61). The
palladium-catalyzed base-free Hiyama coupling of tetrafluoroethylene with substituted
aryl trimethoxysilane yielding α,β,β-trifluorostyrene derivatives in 40–94% yield range. The
reaction was carried out using 2.5 mol% Pd2(dba)3(C6H6) as the catalyst, 5 mol% PCyp3,
and 10 mol% FSi(OEt)3 in THF at 100 ◦C [195].
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Scheme 61. Base free nickel catalyzed Hiyama coupling reaction.

Wang and coworkers carried out the fluoroalkylation of arylsilanes via nickel-catalyzed
Hiyama coupling reactions. The arylsilanes bearing electron-rich substituents underwent
monofluoroalkylation smoothly to afford excellent yields (74–94%). The arylsilane 155
was coupled with 156 using a catalytic amount of Ni(dme)Cl2 (10 mol%), 157 (12 mol%)
CsF as an activator to achieve the desired monofluoroalkylated product 158 in 94% yields.
1,4-Dioxane was the only solvent used for this reaction, and the temperature was main-
tained at 80 ◦C (Scheme 62). Ezetimibe is a cholesterol absorption inhibiting drug [196]. The
monofluoroalkylation of ezetimibe-derived arylsilane proceeded under optimized reaction
conditions to afford the monofluoroalkylated ezetimibe 159 in 91% yield (Figure 5) [197].
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The palladium-catalyzed decarboxylative coupling reactions have been reported by
many research groups in the past. The nickel-catalyzed decarboxylative Hiyama coupling
reactions of alkynyl carboxylic acids with organosilanes were introduced for the first time
by Raja et al. The reaction of 160 was carried out with phenyl triethoxysilane 16 using
a catalytic amount of Ni(acac)2 (10 mol%), affording the corresponding decarboxylative
product 161 in 90% yield along with undesired homocoupling product 162 in low yield.
The application of 1,10-phenanthroline as a ligand provided good results by using CsF as
an activator of organosilanes and CuF2 as an oxidant. The reaction worked well in DMSO
at 120 ◦C for 12 h (Scheme 63). Various aryl alkynyl carboxylic acids were allowed to couple
with substituted phenyl triethoxysilanes, resulting in decarboxylative products in a 74–90%
yield range. A 90% yield of the desired decarboxylative product was also obtained in the
case of p-chloro phenyl triethoxysilane. The symmetrical diarylacetylenes were synthesized
in a 21–45% yield range under optimized reaction conditions. It was noticed that variation
in reaction conditions (in the presence of TEMPO and the absence of CuF2, CsF, and Ni
ligands) resulted in relatively low yields of corresponding products [198].
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12. Applications of Hiyama Coupling Reactions for the Synthesis of Biologically
Active Scaffolds

Retinoids, chemically related to vitamin A, have been the subject of tremendous
endorsement due to their activities in biological processes, including cell growth, vision,
embryonic development, immune response, and reproduction [199]. The transition metal-
catalyzed Suzuki and Stille cross-coupling reactions have been extensively utilized to
obtain retinoids. However, drawbacks to the above reactions, including low stability
of organoboranes, toxicity, and high molecular weight of organostannanes, diverted the
attention of researchers towards the highly efficient Hiyama coupling reaction. The total
synthesis of retinoids was first outlined by Montenegro et al., employing the Hiyama
coupling reaction as a key step. To the solution of organosilane reagents 164 and 167 in
THF, TBAF was added, followed by the addition of trienyl iodide 163 and Pd2(dba)3

.CHCl3
to afford retinyl ethers 165 and 168, which underwent deprotection using TMSCl, H2O,
and methanol to attain trans-retinol 166 and 11-cis-retinol 169 in 74% and 83% yields,
respectively. The oxidation of 11-cis-retinol in the presence of BaMnO4 in dichloromethane
solvent afforded the synthesis of 11-cis-retinal 170 in 90% yield (Scheme 64) [200].
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Heliannuol A, isolated from sunflower Helianthus annuus [201–206], is regarded as the
first member of the family of allelopathic [207,208] sesquiterpenoids holding benzoxocane
moiety. Heliannuols have attained eminent attention from synthetic chemists due to their
possessing unusual structures and biological activity. Vyvyan and coworkers described
the synthesis of benzoxocane using trisubstituted Z-styrene derivatives synthesized by
Hiyama coupling of oxasilacycloalkenes with aryl iodides. The substituted Z-styrene
derivative, obtained by Hiyama coupling of 171 and 172 using Pd2(dba)3 (2–3 mol%) cata-
lyst and tetrabutylammonium fluoride (TBAF) in THF solvent, underwent intramolecular
Buchwald–Hartwig etherification using 10 mol% Pd2(dba)3 catalyst and 10 mol% Q-Phos
ligands at 80 ◦C for 24 h. NaOt-Bu was selected as a suitable base in toluene for correspond-
ing etherification reaction to afford the maximum (10%) yield of benzoxocane 174 along
with 175 as the major product (Scheme 65). The hydrogenation of benzoxocane 174 using
Pd/C in ethanol gave 176 in 44% yield [209].
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The synthesis of biologically relevant benzofuran scaffolds by a convenient route is of
huge interest because benzofuran compounds account for important bioactive molecules,
including amiodarone [210], BNC105 [211], cytotoxic flavonoids [212], and natural products
such as egonol [213,214], daphnodorin A and B [215] and moracin O and P [216,217]. The
application of palladium(II) acyclic diaminocarbene (ADC) complexes in one-pot tandem
Hiyama alkynylation/cyclization for synthesizing biologically relevant benzofuran deriva-
tives was disclosed by Singh et al. The palladium ADC complexes were synthesized via
nucleophilic addition of secondary amines such as morpholine, pyrrolidine, and piperidine
to metal precursor cis-{(2,4,6(CH3)3C6H2)NC}2PdCl2 at room temperature that efficiently
catalyzed synthesis of benzofuran derivatives. Iodophenol and triethoxysilylalkynes un-
derwent Hiyama alkynylation followed by cyclization catalyzed by Pd ADC complex to
afford benzofuran derivatives in (14–57%) yield. Excellent result (57%) of benzofuran
derivative 180 was obtained by Hiyama alkynylation/cyclization of 177 and 178 using
2 mol% palladium ADC complex 179 as catalyst and NaOH as the base. The reaction
proceeded in the 4:2 mixture of 1,4-dioxane/H2O by maintaining the temperature at 80 ◦C
for 4 h. The Hiyama cross-coupling of iodobenzene with triethoxysilylalkynes catalyzed
by palladium ADC complex 179 gave alkyne derivatives in (35–76%) yield range using
optimized reaction conditions (Scheme 66) [218].
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Triflate derivatives have remained an area of interest for researchers due to their port-
folio in catalytic transformation, i.e., one-pot tandem Heck alkynylation/cyclization reac-
tions [219], and in biomedical applications as potent anticancer agents [220]. The utility of
triflate derivatives of palladium acyclic diaminocarbene (ADC) complexes as effective pre-
catalysts for Hiyama alkynylation/cyclization reaction in the synthesis of benzofuran deriva-
tive was reported by Ghosh and coworkers. The complexes cis-[(R1NH)(R2)methylidene]
Pd(OCOCF3)2(CNR1) [R1 = 2,4,6-(CH3)3C6H2: R2 = NC4H8 (181); NC5H10 (182)] were syn-
thesized by the treatment of chloro derivatives cis-[(R1 NH)(R2)methylidene]PdCl2(CNR1)
[R1 = 2,4,6- (CH3)3C6H2: R2 = NC5H10; NC4H8] with AgOCOCF3 in excellent yields
(84–94%) under ambient conditions. One-pot tandem Hiyama alkynylation/cyclization
reaction of iodophenol with a range of triethoxysilylalkynes catalyzed by palladium acyclic
diaminocarbene triflate complexes gave low to moderate yields of corresponding ben-
zofuran derivatives. It was observed that the application of precatalyst 182 exhibited a
comparatively higher yield range (15–52%) than precatalyst 181 (10–49%). The essential
parameters for the smooth functioning of the corresponding reaction comprised 2 mol%
precatalysts 181 and 182, NaOH in a 4:2 mixture of 1,4-dioxane:H2O at 80 ◦C for 4 h. Maxi-
mum yields of 49% and 52% were obtained in case of coupling of 177 with 178 catalyzed by
palladium acyclic diaminocarbene (ADC) complexes 181 and 182 precatalysts, respectively
(Figure 6) [221]. 

6 

 
 Figure 6. Palladium acyclic diaminocarbene triflate complexes 181 and 182.

13. Miscellaneous

The Hiyama coupling of unactivated alkyl bromides and iodides in mild conditions
was achieved by Lee et al. A series of cross-coupled products were achieved in a 65–81%
yield range by Hiyama coupling of functionalized alkyl bromides with phenyl trimethoxysi-
lanes using PdBr2 catalyst, P(t-Bu)2Me and Bu4NF. The reaction was carried out in THF
at room temperature, while in the case of [HP(t-Bu)2Me]BF4, 42–88% yields of cross-
coupled products were achieved. The 183 was allowed to couple with 184 using 4%
PdBr2/P(t-Bu)2Me and Bu4NF in the presence of THF solvent at room temperature to
afford the desired coupling product 185 in 84% yield (Scheme 67). The same Hiyama
coupling reaction also proved to be effective for functionalized alkyl iodides [222].
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Alacid and Nájera reported the NaOH promoted Hiyama coupling reactions of aryl
halides with vinyltrialkoxysilanes using fluoride-free conditions. The Hiyama coupling of
vinyltrimethoxysilane with aryl bromides and chlorides afforded styrene derivatives in 47–99%
yields. The reaction of 4-bromo acetophenone 11 was carried out with vinyltrimethoxysilane
50 using 4-hydroxyacetophenone oxime-derived palladacycle (0.1 mol% Pd), 2.5 equivalent
NaOH promotor, and 1 equivalent of tetra-n-butylammonium bromide (TBAB) additive
under microwave irradiation for 10 min. In the case of styryltriethoxysilane, stereospecific
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coupling with aryl or vinyl bromides provided the corresponding stilbenes or dienes,
respectively. Moreover, the undesirable polymerization of products is prevented by using
mild reaction conditions in this protocol (Scheme 68) [223].
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Scheme 68. Oxime palladacycle catalyzed synthesis of 4-acetoxystyrene 51.

Bhaumik and coworkers synthesized the palladium containing periodic mesoporous
organosilica (PMO) and analyzed their catalytic efficacy in Hiyama coupling, Sonogashira
coupling, and cyanation reaction. Despite Sonogashira coupling and cyanation reaction, the
focus was being placed on environment-friendly Hiyama coupling to achieve unsymmetri-
cal biphenyls. The substituted benzonitriles and disubstituted alkynes were achieved in
68–95%, and 72–90% yield ranges, respectively. Hiyama coupling reaction proceeded under
green conditions, using a Pd-containing (PMO) catalytic system giving 60–95% yield of the
respective coupled products. The best results were obtained in the case of coupling reaction
of p-iodonitrobenzene 7 with trimethoxy(vinyl)silane 50 to attain a 95% yield of the targeted
product 187. The essential parameters utilized in the reaction comprised of Pd-LHMS-3
catalytic system and NaOH at 100 ◦C in water (Scheme 69). The excellent yields of products,
reusability, and easy work-up made Pd-grafted PMO an effective catalyst for synthesizing
benzonitrile derivatives, disubstituted alkynes, and unsymmetrical biphenyls [224].
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The catalytic activity of thermally stable and oxygen insensitive dimeric ortho-palladated
complex [Pd{C6H4(CH2N(CH2Ph)2)}(µ-Br)]2 homogeneous catalysts [225] in Hiyama cou-
pling was investigated by Hajipour and colleagues. The substituted biphenyls were ob-
tained in a 68–97% yield range along with homocoupling products. Maximum yield
(97%) of 92 was observed in the case of coupling of aryl halides (bromides and iodides)
188 with phenyl triethoxysilane 16 using efficient [Pd{C6H4(CH2N(CH2Ph)2)}(µ-Br)]2 cat-
alysts under microwave irradiation at 90 ◦C and 500W. Among different solvents (THF,
DMF, Dioxane, EtOH, MeOH, p-Xylene), DMF was screened to be a microwave-active polar
solvent and TBAF.3H2O as an efficient additive to improve the yield within short times
(Scheme 70) [226].
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Scheme 70. [Pd{C6H4(CH2N(CH2Ph)2)}(µ-Br)]2 catalyzed Hiyama coupling of aryl halides 188 with
16 under microwave irradiation.

Arylsulfonyl chlorides have been used for many years in manufacturing pesticides,
dyes, drugs, polymers [227,228], etc., due to their affordability and ease of availability. The
application of arylsulfonyl chlorides in palladium-catalyzed desulfitative Hiyama coupling
to afford biphenyl derivatives under mild reaction conditions was outlined by Zhang
et al. The reaction of phenylsulfonyl chloride 191 with 4-methoxyphenyltrimethoxysilane
192 underwent palladium-catalyzed desulfitative Hiyama coupling by using Pd2(dba)3
(3 mol%) catalyst and TBAF.3H2O as an additive to obtain the desired biaryl derivative 66 in
92% yield (Scheme 71). The 1:4 mixture of DMF/CH3CN was utilized as a suitable solvent
for the corresponding reaction by observing the results of DMSO, DMF/1,4-dioxane, NMP,
THF, and toluene. The reaction worked well at 100 ◦C for 3 h under an N2 atmosphere [229].
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Scheme 71. Synthesis of biaryl derivative 66 using Pd2(dba)3 as catalyst.

A novel method for the formation of unsymmetrical biaryls using arylsulfonyl hy-
drazides by Hiyama cross-coupling was developed by Miao et al. The arylsulfonyl hy-
drazides containing electron-rich and -poor groups smoothly underwent cross-coupling
with phenyl trimethoxysilane providing a series of biaryl derivatives in a 72–95% yield
range. The coupling of 193 with phenyl trimethoxysilane 8 catalyzed by 5 mol% Pd(TFA)2
gave the desired biaryl product 66 in 95% yield under desulfitative and denitrificative
reaction. The reaction worked efficiently in DMI solvent using a TBAT (tetrabutylam-
moniumdifluorotriphenylsilicate) activator at 60 ◦C for 12 h under an O2 atmosphere
(Scheme 72). Between 74–94% of yields of desired cross-coupled products were obtained
by the addition of phenylsulfonyl hydrazide with a wide range of aryl trimethoxysilanes
under optimized conditions [230].
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Scheme 72. Hiyama coupling reaction of 193 with phenyl trimethoxysilane 8 using Pd(TFA)2 as catalyst.

In 2016, the catalysis of Suzuki–Miyaura and Hiyama–Denmark coupling of aryl sulfa-
mates using (1-tBu-indenyl)Pd(L)(Cl) precatalysts was reported by Hazari and coworkers.
Hiyama–Denmark coupling of substituted aryl silanolates and aryl chlorides afforded the
desired coupled products in maximum yields (85–97%). A total of 2.5 mol% Pd-PtBu3
precatalysts, toluene, 70 ◦C, and 4 h were the standard reaction conditions (Scheme 73).
The same research group described the first Hiyama–Denmark coupling of aryl sulfamates
using Pd-RuPhos precatalyst. Several additives (NaOMe, NaOtBu, and RuPhos) were
screened to improve the yields of Hiyama–Denmark reactions. An excellent result (91%)
was obtained in the case of coupling of 197 with 198 in the presence of 5 mol% Pd-RuPhos
precatalyst and 5 mol% RuPhos as an additive in toluene at 110 ◦C for 8 h (Scheme 74) [231].
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Scheme 74. Pd-RuPhos catalyzed synthesis of biaryl derivatives via reaction of 197 and 198.

The synthesis of valuable biarylboronates via photochemical gold-catalyzed Hiyama
redox-neutral arylation of mechanistically preferential B,Si-bimetallic coupling reagents
with substituted diazonium salts was reported by Hashmi and coworkers. The scope
of Hiyama coupling with respect to boronic acid derivatives was investigated. It was
observed that boronic acid derivatives (BMIDA, BPin, and Bnep) with substituted aryl
silanes afforded desired cross-coupled products in reasonable (49–86%), (40–65%) and
(42–60%) yield ranges, respectively. Excellent output (91%) of desired biofunctionalized
biarylboronate derivative 202 was attained in case of coupling of B,Si-bimetallic reagent
201, and 4-CF3 substituted aryldiazonium salt 200 using a 10 mol% Ph3PAuNTf2 catalyst in
acetonitrile solvent under irradiation of blue LEDs at room temperature (Scheme 75) [232].
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A very interesting green procedure of Hiyama cross-coupling using a highly stable
NCN-pincer palladium complex as catalyst was disclosed by Marset et al. The catalytic
efficacy of the NCN-pincer palladium complex was assessed during the coupling of aryl
iodides and bromides and phenyl trimethoxysilane. The aryl bromides and iodides with
electron-donating or electron-withdrawing groups gave moderate to excellent yields. The
NCN-pincer palladium complex catalyzed coupling of aryl iodides and bromides with
phenyl trimethoxysilane in glycerol gave expected biaryl products in 40–99% yields while a
1:2 mixture of choline chloride:glycerol (ChCl:glycerol) facilitated the synthesis of targeted
biaryl products in 1–85% yields. Maximum yield (99%) of biphenyl product 92 was obtained
in the case of coupling phenyl iodide 76 with phenyl trimethoxysilane 8 using 1 mol%
NCN-pincer palladium-catalyzed catalyst 203 in 0.5 M glycerol at 100 ◦C for 24 h. K2CO3
was screened as a suitable base for the corresponding reaction (Scheme 76). Isomerization
was observed in the case of reaction with allyl trimethoxysilane. A mixture of isomers was
formed, affording a highly stable internal trans double bond containing a major product
in 83% yield. The recyclability of catalysts and the usage of biorenewable solvents are the
salient features of this methodology [233].
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Sobhani and coworkers synthesized a hydrophilic heterogeneous cobalt catalyst sup-
ported on chitosan [mTEG-CS-Co-Schiff-base]. The catalyst was identified by XRD, TEM,
FT-IR, TGA, ICP, FE-SEM, and XPS analyses, and its implication as a heterogeneous catalyst
in Hiyama, Heck, Suzuki, and Hirao cross-coupling was investigated. The application
of the mTEG-CS-Co-Schiff base in fluoride-free Hiyama coupling reaction under green
reaction conditions was reported for the first time. A series of biaryl derivatives having
electron releasing and electron-withdrawing groups on aryl halides were synthesized in
a good to excellent yield range (80–98%). The coupling reaction of iodobenzene 76 with
triethoxyphenylsilane 16 worked well under green conditions using 0.5 mol% mTEG-
CS-Co-Schiff-base (catalyst) 204 and NaOH as a base. Consequently, an excellent (98%)
yield of desired biaryl product 92 was obtained (Scheme 77). The utilization of water as a
green solvent, recovery, and scalability of catalyst for at least six successful runs without
losing catalytic activity and inexpensive abundant cobalt catalyst make this reaction an
environmentally and economically friendly protocol [234].
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mTEG-CS-Co-Schiff base 204.

The comparison of catalysts reported in the section above indicates that among the
palladium-catalyzed reaction, several Pd based catalysts afforded the products in quantitative
yields (Table 1, entries 1, 2, 3, 4, 5, 7, 11, 12, 22, 23, 24, 25, 40 and 41) [53–56,64,81,84,95–97,104,141].
Among these Pd catalyzed methodologies, [PdCl2P(OCH2CMe2NH)OCH2CMe2N2] at cata-
lyst loading of 1.31 × 10−5 mol was found to afford a range of products in excellent yields
(87–99%) at mild reaction conditions (Table 1, entry 25) [104]. Further, the catalyst Pd(dppf)Cl2
(0.05 equiv), Pd(OAc)2/17, Pd(OAc)2/26 afforded products in promising yields of 72–99%,
using water as green solvent (Table 1, entry 23) [96] and 70–98%, and 44–99% under neat
and mild reaction conditions, respectively (Table 1, entries 5 and 8) [56,64]. The catalyst
Pd(allyl)Cl]2/47 at 1.25% catalyst loading efficiently yielded the products in an excellent to
quantitative yield range of 90–95% at two different temperatures, 110 ◦C and 115 ◦C, using
THF solvent (Table 1, entry 15) [88]. However, some catalysts, such as Pd(Oac)2 catalyst and
Pd(Oac)2/26, showed considerable variability in the yield range of 20–100% and 36–97%,
respectively (Table 1, entries 1 and 7) [53,64]. Affording the products in poor/moderate to
quantitative yields suggested the limited applicability of the catalyst and narrow substrate
scope. Among the nanoparticle-based catalysts, SiO2@Fe3O4-Pd at a low catalyst loading of
0.5 mol% of Pd and mild reaction conditions afforded the best yield range (81–99%) (Table 1,
entry 56) [158]. While, the Pd NPs 106 (1 mol%) and Pd NPs 117 (0.25 mol% Pd) using green
solvent water, readily available base NaOH afforded promising yields of 88–98% (at 90 ◦C)
(Table 1, entry 53) [145] and 59–97% (100 ◦C) (Table 1, entry 58) [162], respectively. While,
Pd NPs (4 mol%) derived from Pd(OAc)2 using also afforded promising yields of 76–98%,
respectively. Among Copper catalysts, Cu[MeCN]4PF6 at (10% catalyst loading) yielded
products in 83–99% (Table 1, entry 67) [191]. Furthermore, Ni(dme)Cl2/157 at 10 mol%
loading and CsF obtained products in excellent yield range 74–94% (Table 1, entry 71) [197].
Overall, the palladium catalyst showed the best results, and due to the yield range, green
reaction conditions, and substrate scope, they observed wide applicability for the synthesis
of a range of scaffolds.
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Table 1. Comparison of transition metal-based catalysts in Hiyama cross-coupling.

Entry Catalyst/Ligand Quantity
Catalyst/Ligand Reaction Conditions Yield (%) Ref.

Palladium based catalysts

1 Pd(Oac)2 3 mol% DABCO, dioxane, 80 ◦C 20–100 [53]

2 Pd(Oac)2 0.3 mol% NaOH (aq. Solution),
120–140 ◦C 50–98 [54]

3 Pd(Oac)2 0.1 mol% NaOH (aq. Solution),
PEG, 140 ◦C 71–91 [54]

4 Pd(Oac)2/17 4 mol%/10 mol% THF/t-BuOH, 90 ◦C 40–97 [55]

5 Pd(Oac)2/17 2.5 mol%/5 mol% TBAF (promoter)
t-BuOH, 60 ◦C 70–98 [56]

6 Pd(Oac)2 5 mol% MeOH, rt 65–89 [63]

7 Pd(Oac)2/26 0.2 mol% TBAF.3H2O,
H2O, 110 ◦C 36–97 [64]

8 Pd(Oac)2/26 0.2 mol% TBAF.3H2O,
Solvent free, 110 ◦C 44–99 [64]

9 Pd(Oac)2/Dppf 5 mol%/10 mol% TBAF Dioxane, 60 ◦C 30–88 [73]

10 Pd(Oac)2/Pcy3 3 mol%/6 mol% TBAF, THF, 60◦C 1–78 [78]

11 Palladium NNC-pincer complex 5 mol ppm KF, Propylene glycol, 100
◦C 39–99 [81]

12 Pd(Oac)2/Pcy3 2 mol%/4 mol% 1,4-dioane/H2O, 90◦C 45–98 [84]

13 Pd(Oac)2/PPh3 5 mol%/10 mol% Bu4NF, MeCN, 80 ◦C 62–88 [85]

14 Pd(Oac)2/P(4-MeOC6H4)3 5 mol%/10 mol% Bu4NF, 1,4-dioane, 80 ◦C 46–85 [87]

15 [Pd(allyl)Cl]2/47 1.25% TBAF (promoter), THF,
115 ◦C 90-> 95 [88]

16 [Pd(allyl)Cl]2/47 1.25% TBAF (promoter),
THF, 110 ◦C 90–95 [88]

17 PdCl2(PPh3)2/PPh3 5%/10% CuI, TBAF, DMF, rt 30–95 [89]

18 PdCl2/hydrazone ligand 57 0.02 mmol TBAF, Toluene, 80◦C 50–90 [90]

19 [(allyl)PdCl]2 0.06 equiv Cs2CO3, DME, 60 ◦C 46–81 [93]

20 PCN pincer-type palladium complex 2 mol% NaOH, H2O, 140 ◦C 13–82 [94]

21 PCN pincer-type palladium complex 4 mol% n-Bu4NF, o-xylene, 80◦C 51–61 [94]

22 Pd(NH3)2Cl2/65 0.1 mol% NaOH, H2O, 120 ◦C 35–99 [95]

23 Pd(dppf)Cl2 0.05 equiv K2CO3, H2O, 65 ◦C 72–99 [96]

24 PdCl2/73 63 µmol CuI, K2CO3, DMF, 80 ◦C 63->98% [97]

25 [PdCl2P(OCH2Cme2NH)OCH2Cme2N2] 1.31 × 10−5 mol
[nBu4N]F (additive),

THF, 60 ◦C 87–99 [104]

26 PdCl2 5 mol% TBAF (additive),
THF, 70 ◦C 73–94 [105]

27 PdCl2(MeCN)2 5 mol% CsF (promoter),
NMP, 80 ◦C 68–94 [106]

28 PdCl2(CH3CN)2/PPh2Cy 5 mol%/20 mol% TBAF, EtOH, 120 ◦C 39–92 [109]

29 [(allyl)PdCl2]/Sphos (5 mol%) 2.5 mol%/5 mol% THF, 65 ◦C 50–62 [111]

30 Pd(PPh3)2Cl2 1 mol% TBAF, [TBA][4EtOV],
130 ◦C 45–72 [112]
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Table 1. Cont.

Entry Catalyst/Ligand Quantity
Catalyst/Ligand Reaction Conditions Yield (%) Ref.

31 Pd/C/[(4-FC6H4)3P] 0.5 mol%/1 mol% TBAF.3H2O (promoter)
Toluene, 120 ◦C 47–90 [116]

32 Pd/C 0.5 mol% TBAF.3H2O (promoter),
Toluene, reflux 7–90 [117]

33 Pd/C 0.5 mol% TBAF, GVL, 130 ◦C 74–94 [119]

34 Pd/Fe3O4 0.2 mol% NaOH, H2O, 90 ◦C 65–92 [121]

35 Pd/Fe3O4 1 mol% KF, DMA, 150 ◦C 70–94 [122]

36 [(NHC)2PdCl2] 0.1 mol% NaOH, 120 ◦C 10–95 [128]

37 NHC-Pd 0.5 mol% TBAF, Toluene, 120 ◦C 54–92 [129]

38 (NHC-Pd@SBA-15/IL) 0.8 mol% Cs2CO3,
H2O/dioxane, 80 ◦C 82–95 [130]

39 [PdCl2(SIPr)(1-phenyl-1H-tetrazole)] 0.5 mol% TBAF, Toluene, reflux 40–88 [131]

40 Pd(Ipr)Cl2(Cl-py) 0.01 mmol NaOH, ethylene
glycol, 110 ◦C 97 [141]

41 Pd(bmim)Br2(CN-py) 0.01 mmol NaOH, ethylene
glycol, 110 ◦C 50–93 [141]

42 Pd(PPh3)4 5 mol% TBAF, THF, 100 ◦C 63–92 [181]

43 Pd(PPh3)4 0.025 equiv TBAF, CuI, H2O, 80 ◦C 62–98 [183]

44 PdBr2/P(t-Bu)2Me 4%/10% Bu4NF, THF, rt 50–84 [222]

45 Palladacycle 0.1 mol% Pd NaOH (promoter), TBAT,
H2O, MW 47–99 [223]

46 Pd-LHMS-3 0.03 g NaOH, H2O, 100 ◦C 60–95 [224]

47 [Pd{C6H4(CH2N(CH2Ph)2)}(µ-Br)]2 0.1 mmol% TBAF.3H2O (additive),
DMF, 90 ◦C 68–97 [226]

48 Pd2(dba)3 3 mol% TBAF.3H2O,
DMF/CH3CN, 100 ◦C 71–92 [229]

49 Pd(TFA)2 5 mol% TBAT (promoter),
DMI, 60 ◦C 72–95 [230]

50 Pd-PtBu3 2.5 mol% Toluene, 70 ◦C 85–97 [231]

51 Pd-RuPhos 5 mol% RuPhos (additive),
Toluene, 110 ◦C 46–91 [231]

52 Pd-RuPhos 5 mol% RuPhos (additive),
Toluene, 110 ◦C 46–91 [231]

Nanoparticles based catalysts

53 Pd NPs 106 1 mol% NaOH, H2O, 90 ◦C 88–98 [145]

54 Na2PdCl4/SDS NaOH, H2O, 100 ◦C 75–96 [146]

55 K2PdCl4 4 mol% TBAF, THF, 70 ◦C 78–95 [157]

56 SiO2@Fe3O4-Pd 0.5 mol% Pd THF, 60 ◦C 81–99 [158]

57 Pd-NP from Pd(Oac)2 4 mol% [bmim]F (promoter),
Acetonitrile, 70–120 ◦C 76–98 [159]

58 Pd-NPs 117 0.25 mol% Pd NaOH,
MeOH/H2O, 100 ◦C 59–97 [162]

59 Pd@M-SBA-15 0.5 mol% TBAF.3H2O,
Toluene, 100 ◦C 13–92 [163]
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Table 1. Cont.

Entry Catalyst/Ligand Quantity
Catalyst/Ligand Reaction Conditions Yield (%) Ref.

60 Pd NPs 1 mol% NaOH, H2O, 90 ◦C 87–96 [164]

61 Nano Pd/ZnO 0.009 g K2CO3, Ethylene
glycol, 100 ◦C 85–96 [165]

62 PS-PdONPs 1.5 mol% NaOH, TBAC,
H2O, 80 ◦C 10–88 [166]

63 Nano Pd(Oac)2 2 mol% Triton X-100, H2O, rt 81–95 [173]

64 Pd NPs 0.2 mol% NaOH, Ethylene
glycol, 100 ◦C 87–98 [175]

65 Ni-Pd nanoclusters 1 mol% THF, 65 ◦C 6->99% [192]

Copper based catalysts

66 CuI 10 mol% CsF, DMF, 120 ◦C 40–94 [190]

67 Cu[MeCN]4PF6 10% TBAT, MeCN, 40 ◦C 83–99 [191]

Nickel based catalysts

68 NiCl2.glyme 10% LiHMDS, CsF,
DMA, 60 ◦C 59–94 [193]

69 NiCl2.glyme/150 10%/12% TBAT, dioxane, rt 64–80 [194]

70 [Ni2(iPr2lm)4(cod)] 5 mol% THF, 100 ◦C 15–90 [195]

71 Ni(dme)Cl2/157 10 mol%/12 mol% CsF, 1,4-Dioxane, 80 ◦C 74–94 [197]

72 Ni(acac)2/1,10-phenanthroline 10 mol%/10 mol% CuF2, CsF, DMSO, 120 ◦C 74–90 [198]

Miscellaneous

73 Ph3PauNTf2 10 mol% CH3CN, rt 72–91 [232]

74 NCN-pincer 1 mol% K2CO3, Glycerol, 100 ◦C 40–99 [233]

75 mTEG-CS-Co-Schiff-base 0.5 mol% NaOH, H2O, 90 ◦C 80–98 [234]

14. Conclusions

In conclusion, we have reviewed a large number of strategic approaches published
about Hiyama cross-coupling reactions during the last 15 years. Moreover, this review
article highlights all major advances in Hiyama coupling reaction regarding different
catalytic systems N-heterocyclic carbene (NHC)-Pd complexes, palladium-supported nickel
catalysts, copper iodide, nanoparticles as catalysts, etc.), the effect of different substituents
on product yields, enantioselectivity, and applications in the synthesis of valuable scaffolds.
Transition metal-catalyzed coupling reactions have been emerging as efficient and reliable
methodologies to realize the synthesis of a range of products. Transition metal-catalyzed
Hiyama reaction is also a coupling reaction yielding scaffolds with potential applications in
pharmaceutical and chemical industries. Although a number of methodologies highlighting
different transition metal-based catalysts at different catalyst loadings have been reported
in recent years, the area needs to be explored more and unbox certain limitations. Several
nanocatalysts have been developed that realize the synthesis more efficiently due to higher
surface-to-volume ratio and contact ratio with substrates; however, more efficient catalysts
with environmentally benign methodologies, mild reaction conditions, and broad substrate
scope are desired. Along with the monometallic catalytic systems, the focus could be
placed on the development of bi-metallic and tri-metallic catalysts. The nanocatalysts
are needed to be explored to develop cheap, reliable, and most efficient catalysts. The
substrate scope of the reaction should be extended for the use of aryl chloride along with
aryl bromide/iodide as coupling partners. We believe that this review will be a significant
contribution to increasing the research interest in the respective field.
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