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1  | INTRODUC TION

Lower- grade gliomas (LGG) are an important class of primary ma-
lignant tumours in the central nervous system, accounting for 
about 20% of all primary brain tumours.1 The standard treatment 
regimen primarily involves surgical resection, with a post- operative 
recurrence risk assessment, and high- risk patients receive adju-
vant chemoradiation.2 However, the clinical outcomes of LGG are 
highly variable. Emerging evidence shows that molecular signature 

alterations correlate more significantly with prognosis and pre-
dictive markers than do histopathological alterations.3,4 Isocitrate 
dehydrogenase 1 (IDH1) mutation, 1p/19q codeletion and O6- 
methylguanine- DNA methyltransferase (MGMT) promoter methyl-
ation are widely utilized for molecular analysis in gliomas, but are 
insufficient for the precise prediction of prognosis.5,6 Thus, novel 
biomarkers for risk stratification need to be identified.

Ferroptosis, characterized by the accumulation of lipid reactive 
oxygen species (lipid- ROS), is an iron- dependent form of cell death 
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Abstract
Ferroptosis is a newly discovered form of programmed cell death, which has unique 
biological effects on metabolism and redox biology. In this study, the prognostic 
value of ferroptosis- related genes was investigated in lower- grade gliomas (LGG). We 
downloaded the ferroptosis- related genes from the FerrDb dataset. Univariate Cox 
and LASSO regression analyses were applied to identify genes correlated with overall 
survival (OS). Subsequently, 12 ferroptosis- related genes were screened to establish 
the prognostic signature using stepwise multivariate Cox regression. According to 
the median value of risk scores, patients were divided into low-  and high- risk sub-
groups. The Kaplan- Meier curves showed the high- risk group had a lower OS. The 
predictive power of the risk model was validated using the CGGA. Functional analysis 
revealed that the terms associated with plasma membrane receptor complex, im-
mune response and glutamate metabolic process were primarily related to the risk 
model. Moreover, we established a nomogram that had a strong forecasting ability 
for the 1- , 3-  and 5- year OS. In addition, we compared the risk scores between dif-
ferent clinical features. We also detected infiltration of macrophages and monocytes 
in different subgroups. Overall, our study identified the prognostic signature of 12 
ferroptosis- related genes, which has the potential to predict the prognosis of LGG.
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associated with the imbalance of redox homeostasis.7 The cystine/glu-
tamate antiporter (system Xc- ) is a redox state regulator on the surface 
of the cellular plasma membrane,8 which can regulate the exchange 
of intracellular glutamate and extracellular cystine.9 Cystine promotes 
the synthesis of glutathione (GSH), which plays an important role as 
an intracellular antioxidant.10 Certain molecules deplete GSH by inhib-
iting the function of system Xc- , leading to the accumulation of iron- 
dependent lipid- ROS.11 Tumour cells, enriched in free iron and with 
high levels of ROS, are more sensitive to ferroptosis. Recent studies 
have reported the association of ferroptosis with glioma cell prolifera-
tion, invasion and angiogenesis.12- 14 However, there are few studies on 
its correlation with the prognostic value in patients with LGG.

In this study, we collected the RNA- Seq data and clinical infor-
mation of LGG in The Cancer Genome Atlas (TCGA). We identified 
12 ferroptosis- related genes by statistical analysis to establish a 
prognostic risk model. Meanwhile, patients with LGG in the Chinese 
Glioma Genome Atlas (CGGA) database were selected as a validation 
cohort. Gene Ontology (GO),15,16 Kyoto Encyclopedia of Genes and 
Genomes (KEGG),17 Gene Set Enrichment Analysis (GSEA) and Gene 
Set Variation Analysis (GSVA) were used to screen the functions 
and pathways enriched between high- risk and low- risk subgroups. 
Furthermore, we developed a nomogram model based on risk scores 
and clinical features to assess prognosis. Our results demonstrated 
that the ferroptosis- related risk model was a potential prognostic 
marker and therapeutic target for LGG. The overview workflow is 
presented in Figure 1.

2  | MATERIAL S AND METHODS

2.1 | Download of datasets and collection of 
ferroptosis- related genes

The gene expression RNA- Seq (HTSeq- FPKM) and clinical infor-
mation of 495 patients with LGG in TCGA were collected from the 
University of California Santa Cruz (UCSC) Xena (https://xenab 
rowser.net/datap ages/). Furthermore, 590 LGG samples were down-
loaded from the CGGA (http://cgga.org.cn/). In addition, the exclu-
sion criteria included patients with a follow- up of less than 30 days 
and a single gene with a total expression value of less than 10 in all 
495 samples. We downloaded 259 ferroptosis- related genes from 
the FerrDb data set (http://www.zhoun an.org/ferrd b/).

2.2 | Construction and validation of the prognostic 
risk model

A univariate Cox regression analysis was used to screen genes as-
sociated with prognosis, and we considered P < .01 as statistically 
significant. The least absolute shrinkage and selection operator 
(LASSO) regression was used to reduce the potential risk for over-
fitting with the ‘glmnet’ package in R.18 Ten- fold cross- validation 
(10FCV) was performed to select the optimal value of λ, and 22 key 
genes were obtained. We then used the stepwise multivariate Cox 

F I G U R E  1   Flowchart of the construction of the ferroptosis- related genes prognostic signature

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
http://cgga.org.cn/
http://www.zhounan.org/ferrdb/
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regression to perform the prognostic signature with 12 prognostic 
genes and drew a forest map to visualize the result.

The formula

where n represents the total number of genes, βi is the coefficient, 
and Xi is the expression value of the gene, was used to calculate the 
risk score: risk score = (β1*expression of gene X1) + (β2*expression of 
gene X2) + … (β12*expression of gene X12). Patients were clustered 
into low risk and high risk based on the median value of risk score in 
TCGA. Next, CGGA was used to verify the predictive power of the risk 
model. The Kaplan- Meier survival curves and log- rank tests were used 
to compare the differences in overall survival (OS) between the two 
categories. The risk and survival status plots are shown by the rank of 
the corresponding risk scores (Figure 2E,H). Finally, the 1- , 2- , 3-  and 
5- year receiver operating characteristic (ROC) curves were plotted for 
TCGA and CGGA datasets to evaluate the sensitivity and specificity of 
survival prediction using ‘timeROC’ in R.

2.3 | Identification and functional enrichment of 
differentially expressed genes

The expression of 12 signature genes and their corresponding clini-
cal information are shown in the heat maps. We identified the dif-
ferentially expressed genes (DEGs) using the Wilcoxon test between 
low-  and high- risk groups with FDR < 0.05 and |logFC| > 1. DEGs 
were analysed using the ‘clusterProfiler’ package in R for GO and 
KEGG. GSEA19 was conducted to confirm the activation or inhibition 
of biological processes and signalling pathways in low-  and high- risk 
groups. The KEGG gene set (C2.cp.kegg.v7.2.symbols.gmt) and GO 
gene set (C5.go.v7.2.symbols.gmt) were adopted from the Molecular 
Signatures Database (MSigDB). An FDR q < 0.25 and adjusted 
P < .05 were considered statistically significant. As a non- parametric 
unsupervised analysis method, GSVA20 was used to assess the gene 
set enrichment (GSE) for each sample. We applied the ‘GSVA’ pack-
age in R to investigate significant metabolic and immunologic path-
way differences between groups in the TCGA and CGGA datasets.

2.4 | Nomogram construction and evaluation

Univariate and multivariate Cox analyses were used to screen for 
prognostic factors such as grade, radiation therapy, age, gender, 
IDH1 status, MGMT promoter status, 1p/19q codeletion and risk 
score. We filtered variables by stepwise regression to avoid the ef-
fect of multicollinearity.21 Subsequently, multivariate Cox regression 
analysis was used to identify the independent prognostic factors of 
the model. Thereafter, a nomogram was constructed, using the result 
of multi- Cox analysis, to predict the 1- , 3-  and 5- year OS in patients 

with LGG. This was then assessed by calibration curves. In addition, 
we compared the risk scores between different clinical features.

2.5 | Estimation of the abundance of 
macrophages and monocytes by ImmuCellAI

ImmuCellAI (http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/) can 
estimate the abundance of immune cell infiltration with higher ac-
curacy than other algorithms.22 Using the ImmuCellAI website, we 
contrasted the infiltration levels of macrophages and monocytes 
between low-  and high- risk subgroups in TCGA and CGGA. P < .05 
were accepted as statistically significant.

3  | RESULTS

3.1 | Construction of the ferroptosis- related 
prognostic risk model

We searched for genes associated with ferroptosis in the FerrDb 
dataset. A total of 241 ferroptosis- related genes were extracted 
in the TCGA- LGG cohort. Univariate Cox and LASSO regression 
analyses were applied to screen for 22 feature genes (Figure 2A,B). 
Then, stepwise multivariate Cox regression analysis was used to 
select the best characteristic gene set and construct a regression 
model. Finally, the prognostic signature was established based on 
12 ferroptosis- related genes (Figure 2C). Their functions and coeffi-
cients are shown in Table S1. The cut- off value of risk scores (−0.344) 
was used to dichotomize patients into low- risk (n = 248) and high- risk 
(n = 247) groups in the TCGA cohort. The prognosis was significantly 
better in the low- risk group than in the high- risk group (P <.001, 
HR = 0.19, 95% CI 0.12- 0.28; Figure 2D). As shown in Figure 2E, the 
distributions of risk score and survival status indicated that low- risk 
scores were advantageous for survival. The ROC curves confirmed 
that the model had a good accuracy for predicting OS in TCGA (1- 
year AUC = 0.902, 2- year AUC = 0.919, 3- year AUC = 0.925, 5- year 
AUC = 0.837; Figure 2F).

3.2 | Validation of the prognostic signature in the 
CGGA cohort

We examined the predictive power of the prognostic signature in 
the CGGA data set. It was divided into low- risk (n = 297) and high- 
risk (n = 293) groups using the same formula and cut- off value as 
those for TCGA. As shown in Figure 2G, the low- risk group had 
longer OS than the high- risk group (P <.001, HR = 0.51, 95% CI 
0.40- 0.64). The risk score and survival status distributions were 
similar to those in TCGA- LGG (Figure 2H). The AUC values for 1- , 
2- , 3-  and 5- year survival were 0.662, 0.697, 0.685 and 0.668 re-
spectively (Figure 2I).

Model: Riskscore =

n
∑

i=1

� i ∗ Xi
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F I G U R E  2   The construction and validation of the prognostic signature. (A- B) LASSO regression was performed to select the optimal 
value of λ. (C) Stepwise multivariate Cox regression was applied to establish the prognostic signature. (D) Kaplan- Meier survival curves 
showed that the low- risk group had better OS than high- risk group in TCGA. (E) The risk and survival status plots in TCGA. (F) ROC curves 
of the risk model for predicting the 1- , 2- , 3-  and 5- year OS in TCGA. (G) Kaplan- Meier survival curves showed that the low- risk group had 
better OS than high- risk group in CGGA. (H) The risk and survival status plots in CGGA. (I) ROC curves of the risk model for predicting the 
1- , 2- , 3-  and 5- year OS in CGGA
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3.3 | Functional analysis of risk model in 
TCGA and CGGA

The heat map of 12 genes in the ferroptosis- related prognostic 
risk model, combined with clinical information, illustrated that pa-
tients in the high- risk group had a tendency towards higher expres-
sion levels of risk genes and lower expression levels of protective 
genes (Figure 3A). These results were similar to those for CGGA 
(Figure 3B). A total of 1111 DEGs were identified between the high-  
and low- risk groups in the TCGA cohort. GO analysis was primarily 
associated with the plasma membrane receptor complex, cytokine 
and immune response- related terms (Figure 3C). KEGG analysis 
revealed that cytokine- cytokine receptor interaction, T cell recep-
tor signalling pathway, Th1 and Th2 cell differentiation, and tyros-
ine metabolism were obtained (Figure 3E). Furthermore, 806 DEGs 
were selected for GO and KEGG in the CGGA cohort. The results 
revealed that immune response, cytokine activity, receptor ligand 
activity and neuroactive ligand- receptor interaction were primarily 
enriched (Figure 3D,F).

GSEA analysis showed that the high- risk group was associated 
with the pathways of glutathione metabolism and immune- related 
functions from the KEGG database (Figure 4A). Among GO terms, 
the glutamate metabolic process, glutamate receptor binding, glu-
tamate receptor activity, glutamate receptor signalling pathway and 
ionotropic glutamate receptor signalling pathway, which play vital 
roles in ferroptosis, were found to be enriched in the low- risk group 
(Figure 4B). GSVA was used to identify the causes of the phenotypic 
differences. We found that the glutathione disulfide oxidoreductase 
activity, glutathione peroxidase activity, ferric iron binding, cellular 
response to iron ion, negative regulation of T cell differentiation, 
regulation of iron ion transmembrane transport and negative regu-
lation of T cell– mediated cytotoxicity were enriched in the high- risk 
group. Furthermore, type 5 metabotropic glutamate receptor bind-
ing, glutamate receptor activity and AMPA glutamate receptor clus-
tering were more enriched in the low- risk group (Figure 4E). These 
results were validated in CGGA (Figure 4C,D,F).

3.4 | Development and validation of a nomogram

Univariate and multivariate Cox regression analyses were performed 
to identify the risk score as an independent prognostic biomarker 
in LGG (Figure 5A,B). The nomogram used five prognostic markers 
(age, grade, IDH1 status, 1p/19q codeletion, and risk) to predict the 
1- , 3-  and 5- year OS in the TCGA cohort (Figure 5C). The patient was 
given a point based on the proportion of prognostic factors contrib-
uting to survival. Time- dependent ROC curves were plotted to eval-
uate the prognostic capacity of the multivariate Cox model in TCGA 
(1- year AUC = 0.845, 2- year AUC = 0.883, 3- year AUC = 0.875, 
5- year AUC = 0.816; Figure 5D) and CGGA (1- year AUC = 0.720, 
2- year AUC = 0.751, 3- year AUC = 0.756, 5- year AUC = 0.728; 
Figure 5E). The calibration plot of validation set showed that the pre-
dicted power was close to the ideal curve (Figure 5F). In addition, the 

C- index of the nomogram was 0.817 (95% CI 0.762- 0.872). Overall, 
these results demonstrated that the developed nomogram preforms 
well in predicting OS.

3.5 | Correlation between clinical features and 
risk score

There were significant correlations between clinical parameters 
(age, grade, IDH1 status, MGMT promoter status, radiation therapy 
and 1p/19q codeletion) and the risk score. We found that the risk 
score was higher in older patients (age > 40 years), and in patients 
with grade III, IDH1 wild- type, MGMT promoter unmethylated, pa-
tients receiving radiation therapy, and in those with 1p/19q non- 
codeletion (P <.05, Figure 6A- F).

3.6 | Immune cell infiltration in high-  and low- risk  
groups

We assessed the differences in macrophage and monocyte infil-
tration between different subgroups, as defined by the risk model. 
Figure 6G shows that the high- risk group had significantly higher 
populations of macrophages and monocytes than the low- risk group. 
As for the CGGA database, the results were similar to those for the 
TCGA (Figure 6H). It is worth mentioning that ferroptosis may regu-
late the tumour immune microenvironment, which has great signifi-
cance for glioma therapy.

4  | DISCUSSION

Increasing evidence has shown that ferroptosis is essential for eradi-
cating carcinogenic cells23 and that the sensitivity to ferroptosis is 
different in various types of cancers.24 Cysteine production, lipid 
peroxidation of polyunsaturated fatty acids (PUFAs), iron metabo-
lism and mitochondrial function are closely related to ferroptosis. 
Activation of Nrf2- Keap1 signalling up- regulates the glutamate- 
cystine antiporter system, which accelerates the progression of gli-
oma.25 However, the prognostic value of ferroptosis- related genes in 
LGG has yet to be clarified. In this study, we identified 12 ferroptosis- 
related genes to construct a prognostic risk model. Furthermore, the 
risk score was an independent prognostic biomarker in patients with 
LGG, which was closely related to the clinical features and immune 
functions.

By focusing on the functions of the 12 genes, VDAC2, MAP3K5, 
DNAJB6 and CHMP5 were confirmed as protective genes. Erastin 
is the most commonly used inducer of ferroptosis. It induces mito-
chondrial dysfunction, release of ROS and ultimately promotes fer-
roptosis by directly binding to VDAC2.7 High expression of VDAC2 
was associated with a longer OS and negatively correlated with gli-
oma grades.26 DNAJB6 is an HSP40 family protein that has signif-
icant influence on the inhibition of tumour growth and metastasis. 
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Jiang et al found that DNAJB6 plays an important role in ferropto-
sis, and its expression is down- regulated in the oesophageal carci-
noma tissues.27 In addition, the overexpression of DNAJB6 leads 

to radiosensitization of glioblastoma cells.28 Among the other eight 
risk- associated genes, NFE2L2, also known as Nrf2, mediated oxida-
tive stress and inflammatory response.29,30 Activation of Nrf2- Keap1 

F I G U R E  3   Heat maps and functional analysis related to the prognostic signature. (A- B) Heat maps showed the 12 ferroptosis- related 
genes and clinical information of patients in TCGA and CGGA. (C- D) Go analysis based on DEGs in TCGA and CGGA. (E- F) KEGG pathway 
analysis based on DEGs in TCGA and CGGA
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signalling up- regulates system Xc- , which is critical for glutathione 
peroxidase 4 (GPX4). GPX4 negatively regulates ferroptosis by 
limiting ROS production and reducing iron intake.25 Further, the 
diosgenin- mediated degradation of NFE2L2 can prevent temozolo-
mide (TMZ) resistance in GBM.31 MT3, a neuronal growth inhibitory 
factor (GIF), is mainly expressed in the central nervous system (CNS). 
It has a cytoprotective effect on glioma through the inhibition of 

apoptosis.32 HSPB1 correlated with poor outcomes and promoted 
the proliferation of glioma cells by facilitating an anti- oxidative re-
sponse.33 Previous studies have shown that HSPB1 is a negative 
regulator of the erastin- mediated ferroptosis.34 ARNTL/BMAL1 is 
associated with molecular circadian rhythms. A recent study demon-
strated that the inhibition of the ARNTL- EGLN1- HIF1A pathway can 
facilitate ferroptosis.35 We found that most genes of the prognostic 

F I G U R E  4   GSEA and GSVA for functional enrichment. (A– B) GSEA between low-  and high- risk groups in TCGA. (C– D) GSEA between 
low-  and high- risk groups in CGGA. (E– F) GSVA to assess the differences in pathways between different groups in TCGA and CGGA
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signature played an important role in ferroptosis, which is consistent 
with previous studies.

System Xc-  mediates the occurrence of ferroptosis by affecting 
glutamate uptake and glutathione synthesis.7,36 Previous studies 
have shown that when glutamate is deficient, glutamate synthesis is 
blocked, or system Xc-  is inhibited, the production of ROS and lipid 
peroxides decreases, which further reduces the incidence of ferro-
ptosis.37 Consistently, the results of functional enrichment revealed 
that the terms of glutamate metabolic process, glutathione perox-
idase activity, regulation of iron ion transmembrane transport and 
immune response were mainly related to the risk model. Increasing 
evidence suggests that ferroptosis is associated with tumour 

immunity.13,38 According to known evidence, the microenvironment 
of glioma is different from most solid tumours, with monocytes (mac-
rophages and microglia) as the majority of non- neoplastic cells.39 
Glioma secretes chemokines to recruit microglia and peripherally 
derived monocytes, which make up as much as 30%– 50% of the 
tumour tissue,40 and are then differentiated into tumour- associated 
macrophages (TAM). TAM plays important role in promoting tumour 
angiogenesis, suppressing anti- tumour immune responses and as-
sisting glioma proliferation and invasion.41 Interestingly, we found 
that macrophages and monocytes had higher fractions in the high- 
risk group. However, there is little knowledge of the potential modu-
lation between ferroptosis and immune regulation.

F I G U R E  5   Development and validation of a nomogram. (A– B) Univariate and multivariate Cox regression analyses revealed that the 
risk score was an independent prognostic biomarker in TCGA. (C) Construction of the nomogram based on prognostic markers (age, grade, 
IDH1 status, 1p/19q codeletion status and risk). (D– E) The time- dependent ROC curves of multivariate Cox model in TCGA and CGGA. (F) 
Calibration plot assessed the predicted power of OS at 1- , 3-  and 5-  years in CGGA
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Age, grade, radiation therapy, IDH1 status, 1p/19q codele-
tion, MGMT promoter methylation and the risk score were signifi-
cantly associated with OS in the univariate Cox regression analysis. 
Furthermore, multivariate Cox analysis showed that the risk score 
was an independent prognostic factor. The risk stratification of LGG 
is carried out according to age, surgical resection range, tumour vol-
ume, pre- operative neurological function and IDH1 status etc.42,43 
To personalize OS prediction, we combined the risk score with clin-
ical factors to create a nomogram in LGG patients. In recent years, 
there have been several prediction models for glioma.44,45 One 
strength of our study was that the ferroptosis- related genes of the 

prognostic model were closely related to the grade, TMA resistance 
and radiosensitization in LGG patients. This result suggests that the 
process of ferroptosis plays an important role in tumour differenti-
ation and treatment sensitivity. The C- index (0.817) and calibration 
plots showed that our nomogram had excellent predictive power. 
Therefore, physicians can apply the nomogram to improve the accu-
racy of identifying high- risk patients and realize accurate treatment.

In conclusion, we applied TCGA and CGGA data sets to construct 
and verify the prognostic signature of ferroptosis- related genes, 
which have the potential to predict the prognosis of LGG. In addi-
tion, we will verify the reliability of the prognostic signature in the 

F I G U R E  6   Relationship of risk score with different clinical features and immune cell infiltration. (A- F) The correlations between risk score 
and different clinical features. (G– H) The differences between macrophage and monocyte infiltration in TCGA and CGGA
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future through in vitro and in vivo experiments. Further study on the 
mechanism of ferroptosis would be helpful in providing new targets 
for the treatment of LGG.
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