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1 Introduction

Databases that include explicit mappings between proteins
and the small-molecules that interact with them as bioac-
tivity modulators offer expanding opportunities in chemo-
genomics and pharmacological informatics. However, their
proliferation also presents challenges. One of these is to
discern incremental utility of individual resources and their
combinations in various portals, for particular tasks. The in-
terpretation of integrated results needs an understanding
of each database from which they are extracted.[1] This is
essential to judge between the inevitable noise and dis-
cordance in merged entities or result relationships. In addi-
tion, the reassurance engendered by apparent independent
concordance can be confounded by the increasing circulari-
ty of data records (i.e. re-cycling of the same primary data
between databases).

The key to assessing utility is to compare databases in
detail and thereby acquire an understanding of the differ-
ent rules by which they have been populated. This work
outlines ways of approaching this by using four well-estab-
lished and high-value databases: ChEMBL,[2] DrugBank,[3]

Human Metabolome Database (HMDB),[4] and the Thera-
peutic Target Database (TTD).[5] We undertook a study of
these four databases in 2010, although this was not pub-
lished until 2012.[6] This new work extends our earlier study
in two main ways. Firstly, all four resources have undergone
major updates. We can thus now gain unique insights from
comparing snapshots taken approximately four years apart.
Secondly, developments such as wider adoption of the
InChI, the inclusion of all four sources in PubChem, new

cross-references in the UniProt database and additional
cheminformatic options, have allowed us to expand the
scope of the 2013 analysis. Since 2010 new methods for in-
dexing molecules have been described, including an ex-
tended version of the Morgan algorithm, and compared
with existing ones.[7] However, in the interests of compara-
tive consistency between our two studies we have retained
the main features of our previous analysis pipeline. Addi-
tional context to this work is provided by new publications
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that have since appeared from each database. Notwith-
standing, brief summaries are provided below, along with
self-reported entity counts from the release versions used
in this work.

– ChEMBL data is mainly curated from journals covering
a significant fraction of global medicinal chemistry re-
ports and structure-activity-relationship (SAR) results. Re-
lease 15 (January 2013) specifies on the website: 9570
targets, 1 254 575 distinct compounds, 10 509 572 activi-
ties and 48 735 publications (n.b. release 16 appeared as
this work was being finalised).

– DrugBank collates target and mechanism-of-action infor-
mation. Version 3.0 (January 2011) contains 6715 drug
entries including 1452 FDA-approved small molecules,
131 biologicals, 86 nutraceuticals and 5076 experimental
compounds. These are mapped to 4233 protein IDs. Half
the detailed information in the records is devoted to the
drug, the other half to sequences, pharmacological prop-
erties, pharmacogenomic data, food-drug interactions,
drug-drug interactions and experimental ADME data.

– HMDB collates detailed chemical, clinical and biochemi-
cal data on human metabolites. These are linked to
other databases including enzymes involved in the trans-
formations. Version 3.0 (September 2012) contains 40 437
chemical entries and 5650 protein sequence identifiers.
Because they have both been developed at the same in-
stitution, linkages are provided between DrugBank and
HMDB at the compound, protein and pathway levels. In
May 2013, HMDB switched their version number to 3.5,
but without major changes in the data.

– TTD is conceptually similar to DrugBank but the com-
pound-to-target mappings are focussed on primary tar-
gets. Another difference is the three-way split of targets
and compounds into marketed, clinical trial and research
phase. The latest version 4.3.02 (August 2011) includes
2025 targets, 17 816 chemical structures, including 1540
approved drugs.

2 Methods

Our analysis is divided between the two main themes of
chemistry and proteins. The following section will outline

the basic steps and how these were enhanced in 2013 but
for a full oversight we recommend consulting our previous
publication.[6]

2.1 Chemistry Comparison

For the extrinsic analysis of chemistry we included the sets
available for download as SD file from each website in Sep-
tember 2010 with those available in January 2013. The
questions we wanted to answer are how the set of chemi-
cal structures and the number of unique structures in each
of the four databases has grown, how much the older ver-
sion (2010) overlaps with the newer one (2013), and also
how the structural overlap between the databases has
changed. Table 1 provides an overview of versions, struc-
ture record counts of the original files and a comparison to
the number of current Substance records in PubChem
(generated by PubChem Query “Database Name”[Source-
Name]). For all databases we found small variations in
record counts between the downloadable 2013 SD files,
the Substance (SID) count in PubChem and structure
counts mentioned on the databases. In cases where these
discrepancies were large we sought to provide an explana-
tion.

In comparison to 2010, ChEMBL has more than doubled
in the latest release (version 15, January 2013). The SID
count for ChEMBL in PubChem is about 450 000 records
smaller than the direct download from ChEMBL (see Pub-
Chem comparison section below). DrugBank has grown
~30 % between version 2.0 and 3.0 published in 2011. For
HMDB, we used 2.5 in our 2010 study. The SD file from Sep-
tember 2010 contained 7888 records (although some failed
processing) but when 2.5 was re-downloaded in early 2013
we found 8553 structure records. The latest HMDB (3.0) has
grown to ~40 000 records in the download file. TTD in-
creased between 2010 and 2013 to ~15 000 structure re-
cords and has a similar count of Substances in PubChem
(14 771 SIDs).

The content of all original database SD files were pro-
cessed with the cheminformatics toolkit CACTVS.[8] The
structure records were normalised to our standards on
basis of the rule sets implemented for the NCI/CADD identi-
fiers FICTS, FICuS and uuuuu.[9] These differ in their normali-
sation modes, i.e. they have varying levels of sensitivity to
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Table 1. Versions and file downloads.

Database Year Version Release date Declared source
record count

Substance (SID) count in
PubChem (May 2013)

ChEMBL 2010 6 2010-09-02 600 625 804 093
2013 15 2013-01-30 1 251 913

DrugBank 2010 2.0 2008-01-31 4886 6683
2013 3.0 2011-01-31 6516

HMDB 2010 2.5 2010-09-19 7888 8550
2013 3.0 2012-09-15 40 209

TTD 2010 2010-09-19 3616 14 771
2013 2011-08-25 15 009
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certain molecular and atomic features. They thus have dif-
ferent scopes of what is regarded as a chemically unique
structure. In the first step of normalisation a unique repre-
sentation of stereochemistry, charged resonance structures,
miss-drawn functional groups, undefined hydrogen atoms,
undefined charges, and incorrect valences, are all ad-
dressed. From this level, a numeric hash code representa-
tion is generated that uniquely represents the normalised
structure and establishes the FICTS identifier of the input
structure. In addition, for the FICuS identifier, a canonical
tautomeric representation is created before the hash code
is calculated. This means the FICuS identifier is able to link
different tautomeric forms of the same chemical compound
as they occur in different or even the same source databas-
es. Finally, the uuuuu identifier also disregards counter ions,
stereochemistry, isotopic labelling, and formal charges in
comparison to the FICuS identifier. It is thus useful to find
related forms of the same chemical compound which share
the same basic connectivity and skeleton, irrespective of
tautomers, stereoisomers, salt forms or charged species.

For comparisons, the IUPAC International Chemical Iden-
tifier (InChI) Standard InChIKey (version 1.04) were calculat-
ed for all original structure records.[10] For this analysis, we
also calculated a second set of InChIKey for which the new
InChI flags “KET” and “T13” were switched on. In the latest
version of the InChI library these allow for a stricter han-
dling of tautomerism compared to Standard InChIKey and
may be incorporated into a forthcoming version. All chemi-
cal identifiers were stored and organized in a MySQL data-
base for further analysis. We also maintained the original
record IDs of the source database (e.g. DBxxxxx,
HMDBxxxxx and CHEMBLxxxxx) including the release desig-
nations used in Table 1. For the set of normalized (unique)
structures in the database we used CACTVS to calculate
molecular weights and comparative statistics related to the
quality of stereo information.

Unlike 2010, when TTD and HMDB were not yet present,
all four databases are now specifically selectable as submis-
sion sources in PubChem. There are two caveats. Firstly,
completion of the submission of all HMDB structures is still
pending because of curation updates.[11] The second is that,
as explained in ChEMBL v.10 release notes of June 2011,
ChEMBL substantial increased the number of compounds
by including PubChem confirmatory BioAssays with dose-
response endpoints (e.g. , IC50, Ki, or potency). As a conse-
quence, while ChEMBL v.15 declares 1 254 575 structures for
the direct download, the PubChem query “ChEMBL”[Sour-
ceName] retrieves 804 093 CIDs. Thus, approximately
450 000 structures from PubChem were imported into
ChEMBL v.15. Notwithstanding these caveats, we took ad-
vantage of the PubChem toolbox to perform various com-
parisons. These are not only different in the information
they provide, but are also complementary to the analysis of
direct downloads. The filters used for the intersections
were a combination of the default PubChem settings (seen
on the lower left of any query result page) and three set

up for this work. One which needs some explanation is
patent occurrence. This was the union (in size order) of
SureChemOpen, Thomson Pharma, SCRIPDB and IBM as
submitting PubChem sources of patent-extracted struc-
tures.

2.2 Proteins

Comparisons of protein content were performed using lists
of UniProt protein identifiers derived from each source. For
TTD these were parsed from a text dump of the records.[12]

For DrugBank the external database and ID links for drug
targets were retrieved from the download interface.[13]

Since HMDB was undergoing a site upgrade the equivalent
UniProt IDs were obtained directly (courtesy of Dr Craig
Knox). Because ChEMBL now has direct links from UniProt
the appropriate query was used to retrieve the ID list.[14]

These links were first instigated for ChEMBL v.14 in Novem-
ber 2012 and may not have yet been synched to ChEMBL
v.15. However, because of the convenience of being able to
query and intersect these entries directly from the UniProt
interface, we have used this for the 2013 protein set. The
Venny web tool was used to generate Venn diagrams.[15]

The version numbers and dates are given in Table 1 but for
convenience we refer from this point on to the historical
and contemporary sets as “2010” and “2013”, respectively.

3 Results for Chemistry

Table 2 lists the number of unique structure records in the
four databases.

Because of their different input normalisation stringen-
cies, each of the identifiers indicates an expected reduction
in the number of unique structures compared to the origi-
nal counts, with bracketed numbers giving the percentage
of this value. The upper part of Table 2 is a repeat of our
2010 results but performed with enhanced 2013 process-
ing. These include InChI 1.04 instead of 1.03 and a newer
version of CACTVS (academic 3.410 version, February 2012).
This improved reading capabilities and comparability to
processing of the most recent database releases. Neverthe-
less, we recorded only minor variations between our 2010
results and the repeated calculation in the upper part of
Table 2.

The comparison of the unique structure counts obtained
by Standard InChIKey vs. FICTS (Table 2) shows similar re-
sults for all four databases and intermediate releases. This
might seem unexpected as the Standard InChIKey already
includes some basic handling of tautomerism, while the
FICTS identifier does not normalise tautomers. However, we
have seen similar behaviour in other cases. For each of the
two releases of ChEMBL and HMDB we found only a small
number of duplicates by Standard InChIKey and FICTS
(0.1 % or 0.2 %, respectively), while for DrugBank the
number of duplicates decreases from ~5 % to ~2 % be-
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tween both database versions. A dramatic reduction can be
seen for the 2010 version of TTD for which the number of
unique structures is 20 % lower than the original structure
record count. The change to ~6 % in the 2013 version indi-
cates an improvement in the quality of chemical structures
in TTD.

If a stricter handling of tautomerism is performed via the
FICuS identifier and the second set of calculated InChIKey
(i.e. switching on the InChI tautomer flags “T13” and “KET”),
the unique structure counts reduce further. However, the
effect is small if compared to the numbers of FICTS and
Standard InChIKey. Changes and improvements between
2010 and 2013 are very similar for all databases and their
releases.

The uuuuu identifier offers a diversity assessment of
basic connectivity (i.e. it disregards that “diversity” created
by different stereoisomers, charged forms, salts as well as
tautomeric forms). It also estimates the number of unique
chemical skeletons (including bond orders). Thus, for
ChEMBL, DrugBank, and HMDB, the uuuuu counts of
unique structures are ~6 and ~12 % lower than the original
structure count, with the exception of the 2010 version of
TTD that dropped ~30 %.

The impression given by Table 2 is that the database
teams have reduced duplicates and improved their han-
dling of different tautomeric forms of the same canonical
compound. Note that from the data per se if a database
both expands and improves on average, we cannot dis-
criminate between remediation of existing structures,
marked improvements of just the new ones, or both.

Our discussion of content overlap will be restricted
mainly to Standard InChIKey since this is the most estab-
lished identifier. However, analysis by uuuuu also reveals in-
teresting aspects. Figure 1 illustrates the individual changes

between 2010 and 2013. The union sets of the Venn dia-
grams give the number of structures that have been main-
tained in both versions of each database, while the counts
outside the union sets show the number of removed and
newly added unique structures, respectively.

The much smaller number of unique structures reported
by the uuuuu identifier can be explained in most cases by
the different chemical scopes of uuuuu vs. Standard InChI-
Key identifier. For instance, for the 2010 release of ChEMBL
we record 2669 unique structures by uuuuu compared to
25 588 uniques by Standard InChIKey (Figure 1). This occurs
mainly because of two effects. Firstly, the 25 588 unique
structures found by Standard InChIKey possess a low diver-
sity. This means they form a much smaller set of unique
structures when compared on basis of their basic connec-
tivity, since this is what the uuuuu identifier is intended to
do by disregarding stereoisomers, counterions, etc. Second-
ly, there are other cases where the uuuuu identifier sub-
sumes structure records from the set exclusive to a single
release into the union set of both releases. This occurs for
records where the basic connectivity does not change be-
tween old and new database releases but improvements
have been incorporated on some level in the newer release
(e.g. adding or correcting stereochemistry). For these, the
linkage between “original” and “improved” structure can
only be established by disregarding the improvements.
This is particularly the case for the union set of HMDB in
Figure 1 where the count of unique structures by uuuuu is
larger than by Standard InChIKey (4051 vs. 2360). Thus,
these numbers also imply improved curation.

Table 3 shows the pairwise overlaps between the data-
bases using Standard InChIKey for the database versions
analysed in 2010 (upper part) and 2013 (lower part).

Table 2. Unique structure counts. These were determined by Standard InChIKey, FICTS, and InChIKey with tautomer flags set to “T13” and
“KET”, FICuS, and uuuuu. They are presented for the “2010” and “2013” release of each database, together with, in brackets, the percentage
of the original structure counts in Table 1.

Database (2010) Version Standard InChIKey (%) FICTS (%) Tauto. InChIKey (%) FICuS (%) uuuuu (%)

ChEMBL 6 599 879 599 862 592 419 598 625 558 260
(99.8) (99.8) (98.6) (99.6) (92.9)

DrugBank 2.0 4674 4675 4666 4665 4529
(95.6) (95.7) (95.5) (95.5) (92.6)

HMDB 2.5 7877 7877 7849 7851 7488
(99.8) (99.8) (99.5) (99.5) (94.9)

TTD 2010-09-19 2834 2857 2826 2833 2574
(78.3) (79.0) (78.1) (78.3) (71.1)

Database (2013) Version Standard InChIKey (%) FICTS (%) Tauto. InChIKey (%) FICuS (%) uuuuu (%)

ChEMBL 15 1 251 500 1 251 500 1 240 676 1 247 717 1127 013
(99.9) (99.9) (99.1) (99.7) (90.1)

DrugBank 3.0 6379 6404 6362 6395 6198
(97.9) (98.2) (97.6) (98.1) (95.1)

HMDB 3.0 40 154 40 196 40 108 40 094 39 131
(99.8) (99.9) (99.7) (99.7) (97.3)

TTD 2012-10-01 14 111 14 152 13 974 14 107 13 306
(94.0) (94.2) (93.1) (93.9) (88.6)
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Unsurprisingly, since they all expanded, the overlaps be-
tween databases have increased in absolute numbers (the
numbers in the main diagonal indicate the number of
unique records by Standard InChIKey). For 2013 ChEMBL
covers now substantially larger parts of DrugBank (up from
37 % to 55 %), and TTD (up from 57 % to 91 %) although

TTD has grown itself in absolute numbers from 2834 to
14 111 structure records (unique by Standard InChIKey).

Figure 2 confirms this. The number of exclusive struc-
tures in TTD increases only moderately. However, the exclu-
sive, mutual overlap with ChEMBL increases substantially
(703 to 11 398 unique structures). The new structures in

Figure 1. Venn comparisons for the 2010 and 2013 versions. The main numbers are overlap by Standard InChIKey, those underneath in
italics and brackets are by uuuuu.

Figure 2. 4-way Venn diagram of 2010 vs. 2013 structures
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HMBD seem to be largely unique content (see Table 3 and
Figure 2) as expected considering HMDB’s focus on metab-
olites. DrugBank’s unique content does not change sub-
stantially, but has a much bigger overlap with ChEMBL.
Given that ChEMBL is by far the largest database (and ef-
fectively doubled to 1.2 million), it is neither surprising that
most of its content is unique relative to the other three da-
tabases nor that the overlaps concomitantly increase.

The set of structures in common (the centre union set in
the Venn diagrams of Figure 2) increased from 115 to 1047
structures between 2010 and 2013. In 2010, we were sur-
prised to record such low intersects since three of the data-
bases should have included the same set of FDA-approved
drugs. However, similar low intersects have been noted in
an earlier comparison of drug databases.[1] In 2013, the 4-
way union set (1047 structures unique by Standard InChI-
Key and 1270 by uuuuu) is closer to what three of the data-
bases report as the numbers of approved drugs in their
structure sets (TTD: 1540, DrugBank: 1424, and ChEMBL:
1214) but it should be noted that, via the inclusion of
HMDB, this includes both drugs and metabolites.

A distribution of stereochemistry and stereo representa-
tion is provided in Table 4. From our experience, all other
factors being equal, these parameters are indirect indica-
tors of improved structure quality because the correct rep-
resentation of stereochemistry requires a careful handling.
However, the absence of stereo, or even seemingly incor-
rect representations may accurately represent what was
specified in the extracted source, typically as an image or
an IUPAC name (e.g. different journal papers referring to

the same canonical structure). The statistics of this cannot
therefore be used to assess curatorial accuracy.

Table 4 list the number of structures (plus the percentage
of the original record count) without chiral atom centres,
fully specified stereo configuration on all atoms, and unde-
fined stereo configuration on at least one chiral atom. The
situation for bond stereochemistry is given by the following
metrics : a) the number of structures with no stereogenic
double bonds, b) those that have correctly specified stereo
configuration on all double bonds, and c) those with at
least one double bond for which stereo information is miss-
ing.

Notably, the percentage of achiral structures has in-
creased in all four databases between 2010 and 2013. We
suggest this is due to expansion beyond drug-like com-
pounds. The absolute numbers with full stereo specification

Table 3. Overlap matrix for the four databases by Standard InChI-
Key.

(2010) ChEMBL DrugBank HMDB TTD

ChEMBL 599 879 1746 901 1622
DrugBank 4674 362 1220
HMDB 7877 163
TTD 2834

(2013) ChEMBL DrugBank HMDB TTD

ChEMBL 1 251 500 3335 4254 12 893
DrugBank 6379 1746 1346
HMDB 40 154 1306
TTD 14 111
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Table 4. Analysis of stereochemistry between the “2010” and “2013” versions of the databases. The columns are (left to right) number of
structures with no chiral atom stereo centers, structures for which stereo configuration of all atoms is specified, at least one stereo atom
center is unspecified, those without bond stereo centers, those for which the configuration of all bond stereo centers is given, and those
where at least one bond stereo center is missing. The percentage of the original structure count in Table 1 is given in brackets.

Database
(2010)

No Atom Stereo
Centres (%)

Full Atom Stereo
Specification (%)

Unspecified Atom Stereo
Specification (%)

No Bond Stereo
Centres (%)

Full Bond Stereo
Specification (%)

Unspecified Bond Stereo
Specification (%)

ChEMBL 284 553 148 848 165 944 530 812 69 632 176
(47.4) (24.8) (27.6) (88.4) (11.6) (<0.1)

DrugBank 1550 772 2542 4480 360 36
(31.8) (15.8) (52.1) (91.9) (7.4) (<0.1)

HMDB 1042 4763 2046 3051 4824 11
(13.2) (60.4) (25.9) (38.7) (61.2) (<0.1)

TTD 1583 1136 868 3223 388 5
(43.8) (31.4) (2.4) (89.1) (10.7) (<0.1)

Database
(2013)

ChEMBL 706 502 222 802 320 428 1103 833 128 528 19 517
(56.4) (17.8) (25.6) (88.2) (10.3) (1.6)

DrugBank 2622 2848 767 6018 469 29
(40.2) (43.7) (11.8) (92.4) (7.2) (<0.1)

HMDB 7547 6161 26 453 15 098 24 964 147
(18.8) (15.3) (65.8) (37.5) (62.1) (<0.1)

TTD 7826 4026 2886 13 471 1311 8
(52.9) (27.2) (19.5) (91.1) (8.9) (<0.1)
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Figure 3. Molecular weight distribution of the 2010 and 2013 versions of ChEMBL, DrugBank, HMDB, and TTD. For 2013 the MW distribu-
tion of the exclusive structure records (i.e. exclusive content in Figure 2: 2521 records for DrugBank, 6870 records for HMDB, 877 records
for TTD) is highlighted in black (for ChEMBL the grey and black distributions are basically identical). The solid line in each plot indicates the
median, dashed lines represent Q1 and Q3, respectively. The statistics of these distributions are shown in Table 5.
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has also increased but, because of overall growth, the rela-
tive numbers have fallen. Nevertheless, our stereochemistry
results also imply enhanced curation efforts. For example,
in DrugBank the number of structures with undefined atom
stereo configuration dropped from 52 % in 2010 to 12 % in
2013. This is also recorded in the Venn diagram in Figure 1.
For HMDB we recorded the opposite trend, where unspeci-
fied stereo information jumps from ~25 % to ~65 %. The
33 000 new structures in 2013 thus included many with un-
defined stereo information. This may be associated with
the increase in large lipids. HMDB has a much lower per-
centage of structures that are achiral in both the 2010 and
2013 versions. For bond stereo information it is striking
that ~90 % of structures in the three drug-focused databas-
es have no stereogenic double bonds. HMDB is the excep-
tion (37.5 %) because of the focus on metabolites. The re-
maining two columns regarding bond stero information in
Table 4 are difficult to interpret because double bonds are
often arbitrarily drawn in E-configuration even though the
actual stereo configuration is unknown.

While a series of chemical property profiling such as
LogP and Polar Surface Area (PSA) would be of interest we
had to restrict ourselves to MW as the most comparatively
informative. This highlighted distinct differences (Figure 3
and Table 5).

Starting with ChEMBL we can see a continuous distribu-
tion with the median ~400. The implication is of a more
“lead-like” than “drug-like” content.[16] This would fit with
what might be expected from the extraction of SAR from
the medicinal chemistry literature where the primary mode
of activity testing is in-vitro. The 2010 distribution indicated
the high-MW content had (proportionally) dropped slightly.
The much smaller DrugBank collection shows a discontinu-
ous spiky distribution but the median MW drops by
~100 Da into a more “drug-like” zone compared to
ChEMBL. While there is a hint of bimodality for 2010 this
has smoothed out by 2013 with a slight rise in the median.
This fits with the inference that these are predominantly in
vivo optimised compounds and/or PDB ligands with con-
comitant lower average MW compared to ChEMBL. The

same effect would be predicted for TTD and this is ob-
served. However, the median is slightly higher from a larger
proportion of high-MW entries compared to DrugBank.

The cumulative statistics of HMDB are confounded be-
cause of the pronounced tri-modal 2013 distribution. This
is not only a major change but also indicates two large
new clusters around ~1000 and ~1500. These are outside
the envelope we might have expected for small-molecule
metabolites as seen in the 2010 pattern. Inspecting select-
ed entries under these peaks provided an explanation. For
example, the first peak included a long-chain monolignoce-
ric acid triglyceride with a MW of 1027 (HMDB47321).
Under the second peak we find a cardiolipin of MW 1526
(HMDB57781). As a corroborative cross-check, the search
terms “triglyceride” and “cardiolipin” retrieve 13923 and
3277 results, respectively, which approximately fits the
peak size ratio and supports a focus on large lipid capture
for the latest update.

This chemistry comparison section concludes with the re-
sults from comparing the databases inside PubChem where
they are now instantiated as separate sources. We chose 11
categories of content to display in Figure 4. We can com-
pare the 11 intersects for each database according to the
order in Figure 4. The numbers in brackets after each cate-
gory are the total CID counts for that filter in PubChem for
May 2013.

1. Literature-linked (962 666). Because this is largely
ChEMBL-plus-PubMed the former is obviously recorded as
100 %. The 60 % coverage in DrugBank indicates lower pri-
mary literature capture but note these could be secondary
sources such as review articles. It does raise the question as
to which structures encompassed in the DrugBank 40 %
without primary literature but these may be PDB entries for
which the individual reports are not cited. At 30 % HMDB
has the lowest literature coverage. An explanation is that
the large number of lipid records can neither be cross-refer-
enced to ChEMBL journal articles nor alternative PubMed
IDs linked to a CID for the structure. In contrast to Drug-
Bank, the proportion in TTD is up to 90 %. This is corrobo-
rated by a 90 % overlap at the structure level (Figure 3).
The most likely explanation here is that the recent TTD cu-
ration efforts have actively selected ChEMBL entries as
starting points and/or cross-links, whereas these only reach
60 % in DrugBank.

2. ROF + 250–800 (3 1812 051). This is a simple lead-like
filter, encompassing drug-likeness at the lower MW end.
While not predictive per se, this filter enriches for bioactive
compounds (n.b. PubChem overall is skewed upwards in
relative proportion because 75 % of all vendor depositions
are this range). Note that Figure 3 assists in the interpreta-
tion of the MW dimension. We can see that ChEMBL and
DrugBank are similar at 58 % and 61 %, respectively. Lowest
in this filter is HMDB at 10 % but this is not unexpected
considering many metabolites would fall below MW 250
and the substantial lipid content would be excluded on the
basis of both LogP and MW. The data do not indicate any

Table 5. Statistics for MW distributions displayed in Figure 3. The
mean, median, standard deviation, lower (Q1) and upper (Q3) quar-
tiles are shown.

Mean Std. Dev Q1 Median Q3

ChEMBL 2010 456 297 324 405 503
ChEMBL 2013 424 245 319 387 466
DrugBank 2010 364 303 205 309 428
DrugBank 2013 345 198 228 321 412
HMDB 2010 662 404 340 702 831
HMDB 2013 725 408 346 812 956
TTD 2010 400 366 258 354 466
TTD 2013 437 407 255 320 446
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particular reason why TTD (49 %) should be lower than
both ChEMBL and DrugBank.

3. Active in PubChem Bioassay (883 627). For ChEMBL the
figure of 55 % seems unexpectedly low since this source is
the major contributor to BioAssay, as mostly positive activi-
ty results of one sort or other extracted from the literature.
However, ChEMBL data in PubChem does not get an
active/inactive tag generated via thresholds in the same
way as is done for the Molecular Libraries Screening Centre
Network (MLSCN) result sets. The fact that this drops to
48 % for DrugBank where one might expect positive linked
assay results for all drug candidates may be related to the
same active flagging issue. The 9 % level of actives in
HMDB is actually higher than anticipated since metabolites
are not expected to be inhibitors at concentrations typically
tested in assays but this is partially explained by drug con-
tent. The fact that TTD (87 %) ranks significantly above
ChEMBL in this filter also supports the idea that curation
was specifically picking up compounds with potency data
from ChEMBL.

4. Patent Sources (15 039 047). The observation that
~50 % of ChEMBL structures are in patent sources, com-
pared to 13 % overall in PubChem, can be explained by
structures from the medicinal chemistry literature being
first exemplified in patents. This rises to 67 % and 71 % for
DrugBank and TTD respectively reflecting higher (propor-

tional) drug and clinical candidate content. While TTD is
low (26 %) we would not expect metabolites to be claimed
as structures. What may contribute to this are not only the
drugs but also biochemical names in the dictionaries used
for manual or automated patent extraction.

5. Source-Unique (25 806 124). This means the CID is spe-
cifically only from one submitter. At ~20 % the unique con-
tent of ChEMBL is the highest in the set, however, it would
be even ~100 K CIDs higher without the circularity arising
from common chemical content between BindingDB and
ChEMBL (i.e. the intersect between them represents 94 % of
the former). The interpretation here is that many of the
structures extracted from papers by ChEMBL are (by CID
rules) not hitherto represented in other PubChem sources.
The caveats are not only that alternative stereo and/or
other tautomeric representations may be present (i.e.
single-source CIDs are not all canonically unique) but that
any may be “correct” in reflecting representations derived
from different extracted papers. As an example, the CID for
CHEMBL1797692 (CID: 56680063, RAERAPYSCWYQAO-AKI-
FATBCSA-N) has fully specified stereo but the InChIKey skel-
eton matches a “flat” supplier compound (CID: 71369165,
RAERAPYSCWYQAO-UHFFFAOYSA-N). The unique content
of DrugBank and TTD is very low. The implication is that
their structures are independently corroborated by other
submissions merged in the CID records (e.g. ChEMBL as in-

Figure 4. CID matches for selected sources in PubChem. The panels are: (a) ChEMBL, (b) DrugBank, (c) HMDB, and (d) TTD. The ranking of
matches in ChEMBL was taken as the reference order for the other three plots.
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dicated above). However, this would be confounded if
a proportion of curation was circular (i.e. did not involve de
novo SID generation). At 38 % the unique content of HMDB
is high but 90 % of this has a MW of above 800. Ranking
these by MW and visual inspection indicates the unique
content is substantially derived from complex lipids. This
corroborates the MW results but note that ~75 % of the
HMDB structures are not yet captured in this PubChem
analysis. Corroborative information was supplied by an in-
tersect with LipidMaps at 3576 (i.e. 35 % inside PubChem).

6. Disconnected structures of 2 or more components
(1 571 436). This is a useful measurement for salts and mix-
tures (note this cannot technically discriminate dimers or
other multimers but inspection suggests the occurrence of
these is low). Only ChEMBL has a significant count (6.5 %)
which includes salt forms of drugs specified in the literature
and USAN approvals.

7. NIH Molecular Libraries (397 823). This is the physical
collection shared between US screening centres. These
structures can accumulate extensive cross-reactivity data
depending on how long they have been in the collection.
On a proportional basis the sources here do not have large
intersects but ChEMBL is highest on an absolute basis.
DrugBank is up to 25 % which may be related to the high
coverage of drugs and candidates.

8. INN/USAN (10388). Using this as an “and/or” query with
a restriction to the PubChem Compound synonym field re-
turns both currently approved drugs and historical ad-
vanced-stage candidates. It thus constitutes a comprehen-
sive drug collection that is nominally independent (i.e. the
above databases are not usually the first INN or USAN syno-
nym-assigning sources). With a 72 % intersect (with the
total) ChEMBL has the largest coverage while both Drug-
Bank and TTD are surprisingly low at 14 % and 19 % respec-
tively. Possible explanations include differences in stereo
and or salt forms. The databases may also have a lag time
for newly approved drugs but there is no PubChem source
from which these can be cleanly selected for comparison.
The fact that HMDB includes a selection of drugs (229) is
mentioned in their 2013 paper but note that some metabo-
lites, vitamins and hormones also have INNs or USANs for
pharmaceutical formulations.

9. Pharmacological Actions (11 912.) This important subset
flags up where in vivo activity is assigned to a structure via
MeSH curation of one or more PubMed IDs. It therefore in-
dicates therapeutic testing of drug action in animal models
and clinical trials with useful specificity. Here again ChEMBL
scores high compared to DrugBank and TTD (at 51 % , 13 %
and 18 % respectively). Contributing factors here are the
much larger scale of ChEMBL and the fact that many of the
research compounds captured in DrugBank and TTD do
not have in vivo characterisation data. The low figure in
HMDB would include the drug and hormone content.

10. Protein 3D Structures (23 562). This category indicates
CIDs identified within a protein structure. The inclusion of
all hetero-atoms exceeds specifically pocket-bound small-

molecule ligands but intersecting these with the filter
above (ROF + 250–800) indicates ~7900 could be in this
category. While ChEMBL ranks top in absolute numbers
(5690), DrugBank is proportionally highest (51 %), signifi-
cantly exceeding TTD (7 %). This is in accord with the his-
torical focus on ligands by DrugBank but this includes
a small proportion of false-positives. An example is Alpha-
D-Mannose (DB02944) classified as an experimental drug
and mapped to 76 targets. The mapping is via hetero-atom
entries rather than authentic ligands, although these pro-
teins are not flagged with pharmacological action.

11. Biosystems (9757). This NCBI resource maps com-
pounds into pathways via protein target links in BioAssay
records and pathway databases.[17] Because of the many
BioAssay target links in ChEMBL, the mapping is available
for 20 % of records there. In DrugBank and TTD the per-
centage is much lower with 6.5 % and 4.9 %, respectively. In
HMDB, this information is available for 17 % of all records
which seems to be a quite high number, especially if fac-
tored by size relative to ChEMBL. However, by definition,
many of the compounds are mapped into metabolic path-
ways.

4 Results for Proteins

4.1 2010 vs. 2013

We recoded protein content changes in all four databases.
We improved the resolution of identifiers in 2013 by ac-
cessing UniProt IDs directly, rather than use the Protein
Identifier Cross-Reference Service (PICR) to BLAST-map
downloaded FASTA sequences as we had utilised in
2010.[18] In addition, new DrugBank subsets have become
available and HMDB content is being updated at the time
of writing (May 2013). None of these changes are problem-
atic per se since curation processes and underlying data-
base schema are being continuously enhanced. Conse-
quently, maintaining retro-consistency is impractical. How-
ever, this does make interpreting differences between old
vs. new protein sets less valid than the analogous chemis-
try comparisons. This section will therefore focus more on
comparing between the 2013 protein sets rather than old-
vs-new. Nevertheless, we can start with 2010 vs. 2013
(Figure 5).

The results fall into two groups that we can term re-
placement and expansion. Thus, ChEMBL and HMDB have
predominantly expanded whereas the other two have un-
dergone removals as well as additions. The major change
for DrugBank is due to the recent option of being able to
download just those proteins that are flagged “Pharmaco-
logical action: yes” (highlighted in green in the Target re-
cords). This approximates to what could be termed a pri-
mary target mapping for the 716 proteins. While we could
have chosen to compare different download sets from the
same year, this would have made the analysis overly com-
plex. Where a new choice is available, our default is to take
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the set with highest mapping specificity, even if this con-
founds retrospective comparisons. In Figure 5 the TTD 2013
set has also decreased but some of this may be due to dis-
crepancies between our 2010 PICR cross-mapping and the
2013 direct ID download.

Before moving on to the current proteins we performed
a three-way comparison between just the three drug dis-
covery databases between 2010 and 2013 because HMDB
is “odd-man-out” in not sharing a similar target mapping
concept (Figure 6). The comparison of database consensi in
Figure 6 should be more robust than individual sets. The
time point results have three features. The first is that
target protein capture expanded by 60 %. Secondly, when
examined by the Panther classification[19] no significant
shifts are detected (e.g. the receptor: enzyme ratio is similar
despite expansion). The third feature is that all 32 proteins
“lost” from the 2010 consensus are from DrugBank. The
reason is that the smaller set of primary targets, selectable
in 2013, has eliminated these 32 mappings. One of these,
human serum albumin, provides particular classification
challenges. In ChEMBL, P02768 is target-mapped to 650
compounds (as CHEMBL3253) with most of the 239 entries

described as small-molecule binding assays because there
is no “carrier” option. DrugBank has three unique entries
for this protein as a biopharmaceutical, but also maps 104

Figure 5. Protein content changes 2010 vs. 2013. The totals of the protein content for the two years are on top of each circle in the Venn
diagram.

Figure 6. Comparison of the 2010 and 2013 target protein consen-
sus intersects between ChEMBL, DrugBank, and TTD. The consen-
sus totals are shown above the circles. For HMDB no target protein
information is available.
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small-molecules to P02768, classified as a “carrier” relation-
ship, however, as expected, none have a “pharmacological
action”. A different classification is used by TTD in mapping
five small-molecules (including the antacid bismuth), to al-
bumin (TTDS00336) but shows limited curatorial discrimina-
tion in assigning the default relationship of “successful
target” (presumably because the five compounds were ap-
proved), in spite of the references clearly specifying the car-
rier function (except for the inclusion of one imaging
agent). To complete the inter-database albumin survey,
HMDB also maps the protein to nine small molecules, in-
cluding several hormones (arguably also as a carrier), but
classifies the protein type as “unknown” (HMDBP020759).

4.2 2013 Protein Comparisons

We initially addressed some basic questions. The first was
to examine correlations between the statistics reported by
the databases and our ID downloads. For ChEMBL the tar-
gets to UniProt ID ratio was 9570 : 5797 because not all tar-
gets can be protein-mapped). For instance, whole-cell
screening is widely used to measure the growth inhibition
effects for anti-infectives of all types in the primary litera-
ture. Consequently, searching ChEMBL with “plasmodium”
gives 14 results and “mycobacterium” gives 38 results. Over
20 000 compounds are thus mapped to these organisms as
species “targets”, a relationship type not typically captured
by the two drug databases. The latest DrugBank reported
statistics are 4167 targets, 221 enzymes, 11 carriers (includ-
ing albumin) and 120 transporters. While we recorded 4023
UniProt IDs from the data extractor download we selected
the new primary target subset of 715. Currently, there are
no reported protein content statistics for HMDB that we
can compare with our download results but the mappings
are under revision. The subsets from TTD specify 2025 “tar-
gets”, including 364 successful, 286 clinical trials, 44 discon-
tinued and 1331 research. Our analysis found 1768 de-du-
plicated UniProt IDs Thus, for TTD “target” does also not
always equate to a UniProt ID. For example, TDC00233
specifies “Gamma secretase” as a clinical trial target for two
compounds. However, there is evidence of mixed curatorial
rules because while this target entry was mapped to a Uni-
Prot ID, in TTDR00444 and TTDR00445 the (same) 11 com-
pounds are mapped to the gamma secretase presenilin
1 and 2 subunits, respectively (P49768, P49810).

Two other important questions are the species split be-
tween human vs. non-human and the Swiss-Prot-to-TrEMBL
ratio (SP:TR). Results from the UniProt query interface[20] are
shown below (Table 6).

The details cannot be expanded here but some features
can be interpreted. In the case of ChEMBL, as might be ex-
pected from the wide range of primary medicinal chemistry
literature extracted, the zoo of targets includes 45 %
human and 15 % rodent (698 mice plus 199 rat). Some of
the other 400 species seem counter-intuitive as drug tar-
gets, such as Q42656 from Coffea Arabica (CHEMBL5217)

with 94 compounds aligned against it. It turns out this is
a mechanistic exemplar enzyme for cross-screening human
alpha-mannosidase inhibitors as potential antitumor
agents. DrugBank has a distinct human vs. anti-infectives
split but is rodent-free because orthologous substitution
has been their chosen curatorial practice. This means
human protein IDs replace rodent or other mammalian pro-
teins specified in the references for the drug entries.[11]

Analogously, there are a number of gram + ve antibacterial
compounds where the E.Coli orthologue has been added
or substituted for the Staph. or Strep. target. Many species
are also included in TTD but TTDR00218 (O23733), a cys-
teine synthase from Brassica juncea is an error. The viral
strain polymerases in HMDB will be removed during a cur-
rent revision of protein mappings.[11]

The topic of TrEMBL entries generated by automated an-
notation is also too detailed to go into here. However,
while the number of human TrEMBL entries is low (Table 6)
their presence indicates probable curatorial errors and/or
updating lapses. The reason is that the Swiss-Prot expert
review process is essentially complete for the human can-
onical proteome and certainly for all plausible drug targets.
Thus, human mappings should have a Swiss-Prot ID rather
than a TrEMBL (or both). To be fair, the current human
SP:TR ratio of 20 255: 113 824 makes assigning an incorrect
(or quasi-duplicate) entry an easy curatorial error to make
because of the 5-fold excess of accession numbers for pro-
teins with partially shared automated annotation but relat-
ed by splice forms, minor sequence differences or as frag-
ments.

The data underline the marked differences in species
capture between the four databases. We chose human-only
comparisons since they have a number of advantages com-
pared to using total UniProt IDs. Firstly, this normalises the
comparison (i.e. apples vs. apples). Secondly, we can com-
pare the three drug-centric databases as a separate set
and, thirdly, comparisons of protein function distribution
are more valid for single-species. Only salient features can
be highlighted, but note that Venny can be used to repro-
duce any of these via the supplementary data protein lists.
Given the caveats mentioned for 2010 vs. 2013 three points
are clear from Figure 7a and 7b. Total protein capture is
high, the consensus is low and the four databases have, in
general, further diverged. Taking human-only reduces the
2013 divergence (Figure 7c). Comparing just the drug data-

Table 6. Comparison of species and Swiss-Prot: TrEMBL ratios
(SP:TR).

ChEMBL DrugBank HMDB TTD

All 5797 715 5647 1757
Human 2621 576 5231 1277
Species/strain total 401 63 375 173
Largest non-human Mouse (698) E.Coli (45) Hep C (32) E.Coli (89)
SP:TR 5222 : 575 691 : 24 5376 : 271 1620: 137
Human TR-only 20 4 270 12
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bases for human-only increases the 3-way consensus (Fig-
ure 7d) to a probable approximation of approved drug tar-
gets but the union of the three encompasses over 15 % of
the genome.

4.3 Protein Functional Categories

Having normalised the databases to human protein IDs
there are many options for property and annotation com-
parison that could provide insights into coverage selectivi-
ty. We have chosen the Genome Ontology (GO) molecular
function because this is conveniently generated via the
Panther web site.[21] This usefully provides a functional dis-
tribution for any set of protein IDs but with the caveat that

GO terms are both nested (i.e. top categories are broad)
and forked (some proteins are assigned to multiple func-
tions). While this means the derived pie charts should not
be over-interpreted, they are nonetheless useful for
a broad-brush comparison of sources (Figure 8).

From left to right, both ChEMBL and HMDB have the
highest proportions of enzymes. It is also clear that HMBD
has a capture scope that extends beyond metabolic en-
zymes. DrugBank is similar to TTD but the latter has pro-
portionally less ion channels and receptors. DrugBank looks
most similar to the consensus proteins in the high propor-
tion of receptors, enzymes and ion channels. This is unsur-
prising, since Figure 7d indicates 60 % of the primary target
proteins are subsumed into the 3-way consensus.

Figure 7. Four-way Venn diagrams of UniProtID content. These are shown as: a) 2010, b) 2013, c) human-only 2013, and d) human-only for
the three drug databases in 2013. The ratio of intersect between the sources and the total union in each case is : a) 298 : 12512, b)
298 : 10036, c) 301 : 6275, and d) 351 : 3046.
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4.4 Approved Target Lists

The target proteins of approved small-molecule drugs are
of intense interest but listings that have appeared in the lit-
erature have not typically been compared. We have used
this work as an opportunity to make such comparisons by
using three human-only sets. The first of these is the 3-way
consensus between the 2013 versions of ChEMBL, Drug-
Bank and TTD (i.e. the 351 proteins in the centre of Fig-
ure 7d). The second is a list of targets derived from a re-cu-
ration of DrugBank in 2011 (RAS set).[22] The third is an ex-
tended list from a commercial database compiled in 2011,
each of which had chemical modulation data in papers or
patents (SOU set).[23]

Notably, we see concordance and discordance. While the
common set is only 220 targets it represents a five-way
consensus (although the RAS set used an earlier DrugBank
version as the starting point the final list was independent-
ly curated). Analogously, the overlap sets of size 53, 58 and
76 represent a two-way consensus. The set with at least
two intersects (407) would thus be a good approximation
to a human primary target set (up to 2011). The extensive
unique content from the SOU set is expected because this
includes a “long tail” of research targets, 473 of which had
a chemistry-to-protein relationship curated from only one
document. We can utilise GO classification charts (Figure 9)
to compare the protein lists from different sections of the
Venn diagrams.

Taking the 2-or-3-way set first, not unexpectedly, because
it contains only 56 more proteins, this looks similar to the
351 protein set from the 3-way drug database consensus
and DrugBank primary targets. Also not unexpected is that
the large number of proteins in the SOU-only set show the
highest proportion of enzymes because these constitute
a substantial part of the long tail of research targets. Given

Figure 8. Gene Ontology molecular function distributions. These are shown as top-level categories for human proteins in: (a) ChEMBL, (b)
DrugBank, (c) HMBD, (d) TTD, and (e) the three-way consensus of ChEMBL, DrugBank and TTD. The last panel has the colour key to the GO
molecular function categories. Total proteins in each case are the central intersects from Figure 7c and 7d.

Figure 9. Venn diagram of approved drug targets sets. The SOU
1654 set is from PMID 21569515, RAS 437 from PMID 21804595
and the 3-Way, 351, is the ChEMBL, DrugBank, TTD intersect from
Figure 7d.
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that the other two unique sets are small, the distributions
need to be interpreted with caution, but they do indicate
differences. While the selectivity that might have caused
this would need a detailed analysis, we can take one exam-
ple. The dark purple sector in Figure 10b contains structural
proteins (GO: 0005198) that are not typically drug targets.
It turns out that one of these unique to the 3-way set is Tu-
bulin beta-2 chain (P68371). This duly has entries in the
three databases as TTDS00389, CHEMBL1848 and DrugBank
target 2499. However, the large number of tubulin protein
components for different species have resulted in inconsis-
tent curatorial choices for microtubule modulators reported
in the literature. In the SOU set these may have been as-
signed to microtubule as a target designation (i.e. without
a protein ID) and in the RAS set to Tubulin beta chain
(P07437). The small molecule mappings for this mechanism
of action are rendered even more complex because vincris-
tine (CHEMBL303560) is mapped to three non-human tubu-
lin proteins in ChEMBL, whereas in DrugBank, the anthel-
minthic albendazole (DB00518) is ortholgously mapped to
two human tubulins (Q71U36 and P68371). Because these
are both classified as pharmacologically significant, these
proteins are included in the DrugBank human targets for
approved drugs.

Our final protein content comparison looked at map-
pings associated with just one drug, atorvastatin (Lipitor),
an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A re-
ductase, HMGCR (P04035). The Venn diagram (Figure 11)
shows pronounced differences. It is important to note that
these protein relationships are to the parent molecule (i.e.
not salts) in each case (CHEMBL1487, DB01076,

HMDB05006 and DAP000553). All four have one target
(P04035) in common but no others. Notably, ChEMBL con-
nects 112 proteins to atorvastatin in 2013 but only three in
2010. It turns out the majority of new mappings come
from a Drugmatrix panel screen added in ChEMBL v.15. This
includes 103 proteins with 1742 associated activity meas-
urements (CHEMBL1909046). Compared to the other three
databases where the predominant relationship is selected
as an activity modulation, panel screens can record the ab-
sence of activity (at the maximum concentration tested)
across a substantial proportion of the matrix, but mappings
are recorded in the database for every protein in the panel
(i.e. the relationship is “has been assayed”). In SAR terms
the inclusion of both activity and inactivity are important.

Figure 10. Gene Ontology molecular function distributions for approved target sets.

Figure 11. Venn diagram of protein identifiers linked to atorvasta-
tin. Totals are indicated at the top of each ellipse.
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However, users then need to apply filtration and threshold
judgements when querying the data for their particular
needs.

Beyond one other protein in common (P08684, Cyto-
chrome P450, 3A4) the remaining unique assignments indi-
cate marked differences in relationship capture between
the databases. As can be seen in the Venn diagram, TTD
has P04035 mapped to atorvastatin as single primary
target. On the other hand, the DrugBank record, (DB01076)
is mapped (in 2010 and 2013) to two additional targets, Di-
peptidyl peptidase 4 (DPPIV, P27487) and the Aryl hydrocar-
bon receptor (P35869). Only P04035 is captured in the
2013 download because this is tagged as known pharma-
cology. It turns out that DPPIV is also linked to atorvastatin
in ChEMBL but to pig not human (P22411). Inspection of
the record shows this to be the correct link via PMID
18068977 but the data quoted in the abstract (i.e. a Ki of
58 mM) is not captured in the record. DrugBank cites the
same reference but orthologously substitutes pig for
human and tags the relationship as having no pharmacolo-
gy. Given the high Ki this seems an appropriate curatorial
judgment (this transitive assignment has been incorporated
into the PubChem record for atorvastatin). However, further
mapping complexity is introduced via CHEMBL393220. This
maps the atorvastatin calcium salt as a separate entity to
a series of antimalarial whole-parasite screens plus rat
HMGCR (P51639). For HMDB three of the 17 proteins have
reaction schema related to HmgCoA metabolism. However,
the reasons for mapping the other 14 proteins into this
entry are unclear.

5 Conclusions

Many aspects of databases can be compared in order to
discern utility. These include the data model, web interface,
query and navigation functionality, cross-links, download
sets, API availability, facility for integration, PubMed content
and mapped relationship distributions (e.g. proteins-per-
compound and compounds-per protein). Despite the
impact of these on exploitation we have had to limit our-
selves here to what we consider the two most important
features of chemistry and protein content. The approaches
outlined are generic and we thus encourage others to per-
form such studies, especially where broader adoption of In-
ChIKey and UniProtIDs make comparisons more straightfor-
ward than hitherto. The databases in this study provided
useful download options but differ in the extent of post-
download processing necessary for standardised compari-
sons. Thus, broader intra-database harmonisation would be
welcome, for example, if each of the chemical and target
sets could be downloaded as SD files, protein ID lists in
Excel, UniProt cross-references, have an API (as ChEMBL has
already) as well as complete and selectable PubChem sets.

Our chemistry results show that all the sources have im-
proved. This is likely to be a combination of enhanced

structure handling rules and manual curation. While this
has increased overlap there is also divergence and expan-
sion. This enhances their complementarity and aggregate
coverage. Nevertheless, questions as to “how they became
the way they are” are important for exploitation. In this re-
spect the ChEMBL publications, regular release notes, and
explanations of their medicinal chemistry journal triage, go
a long way to answering these questions. While the other
databases are also well described in their publications, anal-
ysis is necessary to discern selectivity that is not made ex-
plicit. Examples include the fact that DrugBank is still over
50 % PDB derived, TTD has used ChEMBL for their expan-
sion, HMDB contains many drugs and that lipids are now
a major proportion of HMBD content.

A limitation of the current study is the restriction to
exact matches between the chemistry collections. Apparent
increases in divergence by this parameter may not necessa-
rily translate into wider chemical coverage. In this respect,
the impact of these databases is not only on accessing
data, but using it to develop models. Thus, updates will
have relatively little impact on QSAR and similarity models
if similarity remains high. Further work would be needed to
see if distribution of pairwise similarities (2D and/or 3D)
had shifted significantly between 2010 and 2013.

The aggregate protein content for the four databases in
2013 shows a major expansion encompassing not only
binding events in the thermodynamic sense but also bio-
chemical and pharmacological activity. However, the high
numbers we have recorded, along with some of the indi-
vidual examples, indicate divergent curatorial rules and
stringencies for each source. For example, the three drug-
centric databases (Figure 7d) cover 3046 human proteins
(i.e. ~15 % of the genome). This contrasts with the active
compound mapping from an extensive corpus of literature
and patents that recorded relationships to 1654 proteins in
2011, although a subsequent report added internal compa-
ny data to support up to 2000 mappings.[23–24] The 5232
proteins in HMDB also provide a maximal-mapping exam-
ple, since a different approach recorded only 1653 human
metabolic enzymes.[25] There are arguments for extending
mappings to indirect and assayed relationships, as opposed
to a more stringent restriction to only potent activity mod-
ulation or direct metabolic interaction. Nevertheless, ex-
tended mappings can be problematic. For example, they
have the potential to confound Linked data integration if
the source-specific filtration options are submerged.[26] A
second concern is proliferation beyond the sources they
were first incorporated in. This can occur not only via auto-
mated cross-linking but also by curatorial transfer between
databases.
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