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Summary

The ability to maintain quiescence is critical for the long-term maintenance of a functional stem

cell pool. To date, the epigenetic and transcriptional characteristics of quiescent stem cells and

how they change with age remain largely unknown. In this study, we explore the chromatin

features of adult skeletal muscle stem cells, or satellite cells (SCs), which reside predominantly in

a quiescent state in fully developed limb muscles of both young and aged mice. Using a ChIP-seq

approach to obtain global epigenetic profiles of quiescent SCs (QSCs), we show that QSCs

possess a permissive chromatin state in which few genes are epigenetically repressed by Polycomb

group (PcG)-mediated histone 3 lysine 27 trimethylation (H3K27me3), and a large number of

genes encoding regulators that specify nonmyogenic lineages are demarcated by bivalent domains

at their transcription start sites (TSSs). By comparing epigenetic profiles of QSCs from young and

old mice, we also provide direct evidence that, with age, epigenetic changes accumulate and may

lead to a functional decline in quiescent stem cells. These findings highlight the importance of

chromatin mapping in understanding unique features of stem cell identity and stem cell aging.

Introduction

Because every cell in a metazoan (with rare exceptions; Matthews and Oettinger, 2009)

possesses the same genetic information, the identity of distinct types of cells is established at

the epigenetic level. The epigenome determines the pattern of gene expression that gives
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each cell its distinct characteristics and functions (Spivakov and Fisher, 2007). Adult stem

cells have the remarkable abilities both to self-renew and to differentiate into functional

progeny during tissue homeostasis and regeneration. To date, the epigenetic characteristics

of stem cells that are associated with their unique features such as quiescence, self-renewal,

and differentiation remain largely unexplored.

The eukaryotic genome is packaged into chromatin whose basic unit is the nucleosome.

Each nucleosome is composed of four core histones: H2A, H2B, H3, and H4 (Luger et al.,

1997). The amino-terminal tails of these core histones are exposed on the surface of

nucleosomes and are subject to a wide range of posttranslational modifications (Kouzarides,

2007; Tan et al., 2011b). Many of these histone modifications are associated with gene

activation or repression and may have a regulatory role in transcriptional initiation and

elongation. For example, active promoters are generally marked by trimethylation of histone

3 lysine 4 (H3K4me3), actively transcribing genes are commonly marked by a broad

H3K4me3 domain around their transcription start sites (TSSs) and trimethylation of histone

3 lysine 36 (H3K36me3) in the gene body, and Polycomb group (PcG) complex-mediated

trimethylation of histone 3 lysine 27 (H3K27me3) is associated with transcriptional

repression (Kouzarides, 2007). On one hand, the histone modifications dynamically change

during transcription as a consequence of the recruitment of chromatin-modifying enzymes

by transcription factors and the RNA polymerase (Pol) II complex (Kouzarides, 2007). On

the other hand, the formation of certain combinations of histone modifications around

transcription factor consensus sequences precedes, and therefore may direct, the binding of a

transcription factor (Guccione et al., 2006). With a growing number of histone modifications

identified in recent years (Tan et al., 2011b), the model that the combination of histone

modifications comprises a complex “histone code” as a source of inheritable epigenetic

information has become increasingly appealing (Strahl and Allis, 2000).

Equally interesting is the growing body of evidence that because the histone code can be

transmitted from one cell generation to the next (Moazed, 2011), it can act as the cellular

memory of its identity. Such cellular memory is particularly important for adult stem cells as

they self-renew to maintain the stem cell pool that needs to last the lifetime of an organism.

Stem cells alternate between a quiescent state and a cycling state in response to stimuli that

promote tissue maintenance or repair. Following their activation, stem cells give rise to a

daughter that is destined to return to quiescence, a process during which the progenitor relies

on an epigenetic memory across the chromatin to restore the original transcriptional state.

To decipher the histone code of quiescent stem cells is therefore essential not only to

understand the identity of stem cells but also to determine whether the decline of stem cell

function during aging or in specific diseases is a consequence of a compromised epigenetic

memory.

Skeletal muscle is a postmitotic tissue that exhibits an extremely low turnover in the absence

of disease or injury. At the same time, muscle possesses remarkable regenerative capacity

mediated by satellite cells (SCs) that reside in close association with individual myofibers,

underneath the fiber's basal lamina (Mauro, 1961). Consistent with the low turnover of the

muscle, SCs in adult animals are mitotically quiescent (Schultz et al., 1978) and, therefore,

provide an excellent model to study stem cell quiescence. As an organism grows older, the
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resident stem cells are exposed to a deteriorating environment and experience chronological

aging. In stem cells with high turnover, the effects of chronological aging are superimposed

upon the effects of the replicative aging that results from DNA replication and cell division

(Liu and Rando, 2011). On the contrary, SCs experience minimal replicative aging due to

their low turnover. They are thus a good model to study the consequence of chronological

aging of quiescent stem cells.

In this study, we isolated quiescent and activated SCs (QSCs and ASCs, respectively) from

both young and old mice and applied gene expression microarray analysis to elucidate the

transcriptional profile of QSCs and how it changes when SCs activate during muscle

regeneration after an acute injury. Chromatin immunoprecipitation sequencing (ChIP-seq)

technology was used to acquire H3K4me3, H3K27me3, and H3K36me3 profiles in QSCs

from young and aged mice and in ASCs from young mice. Our analysis of these profiles, in

conjunction with the comparison to the chromatin profiles from other types of stem cells,

revealed a general lack of a repressed chromatin configuration in QSCs. We further

demonstrated that the chronological aging of QSCs was accompanied by the accumulation

of repressed chromatin domains that may be linked to their functional decline with age.

Results

Isolation of QSCs and ASCs from Limb Muscles

In order to obtain a pure population of SCs for transcriptional and epigenetic analysis, we

developed an isolation protocol that selectively enriched SCs (as VCAM1+/CD31−/CD45−/

Sca1− cells) from both uninjured and injured limb muscles of adult mice (Figure S1). The

sensitivity and specificity of our sorting scheme were confirmed by using a mouse strain in

which SCs and their progeny were genetically labeled by YFP expression (Figure S2A).

FACS analysis of all mononucleated cells in the muscle of tamoxifen-treated Pax7CreER/+;

ROSA26eYFP/+ mice revealed that all YFP-expressing cells were positive for VCAM1

expression and negative for CD31, CD45, and Sca1 and that YFP-expressing cells could be

found only in VCAM1+/CD31−/CD45−/Sca1− cells (Figures S2B and S2C). Moreover, we

performed microarray analysis on VCAM1+/CD31−/CD45−/Sca1− QSCs or ASCs isolated

from wild-type mice and YFP-expressing cells from the Pax7CreER/+; ROSA26eYFP/+ mice.

Our comparison revealed that the gene expression profiles were nearly identical in cells

isolated by these two different approaches (Figures S2D-S2I).

Gene Expression Pattern of QSCs

By microarray analysis, we identified genes that were specific to QSCs, ASCs in the early

phase of regeneration (36 hr after injury), and ASCs at the peak of the transit-amplifying

phase (60-84 hr after injury) (Figure 1; Table S1). Gene Ontology (GO) analysis was also

performed to understand the functional significance of the genes specific to QSCs and ASCs

(Figures 1B-1D). Genes specific to QSCs were significantly enriched for GO terms linked to

the regulation of transcription (Figure 1B). A total of 71 transcription factors expressed at a

high level in QSCs. Based on known protein-protein interactions by biochemical and genetic

studies, we generated a transcription network with 59 of these 71 QSC-specific transcription

factors (Figure 1E). This transcription network includes known regulators of SC function
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such as myogenic transcriptional factors Pax7 and Myf5 and target genes of the Notch

pathway (Conboy et al., 2005; Gayraud-Morel et al., 2007; McKinnell et al., 2008; Bjornson

et al., 2012), as well as a number of regulators, such as Foxo1, Foxo3, Gli2, and Nfat5

(Table S1).

Local infiltration of lymphocytes and macrophages after muscle injury is essential for proper

regeneration (Pelosi et al., 2007). The genes that were highly expressed in ASCs 36 hr after

muscle injury were remarkably enriched for GO terms associated with wound-healing

response and chemotaxis (Figure 1C), indicating that immediately following activation, SCs,

in conjunction with other types of cells in the muscle, provide the chemotactic gradient that

recruits immune cells to the site of injury. The gene expression profiles of ASCs isolated 60

and 84 hr postinjury are highly similar (Figure 1A). Consistent with our observation that the

proliferation of SCs peaks between 2 and 4 days after muscle injury, the genes that were

specific to ASCs 60 and 84 hr after injury were enriched for GO terms related to the positive

regulation of the cell cycle and metabolic processes (Figure 1D), a character of highly

proliferative cells.

Of note, there are genes associated with myogenic lineage progression, most notably MyoD,

that do not appear in the list of genes “specific to ASCs” because in fact, their expression

levels were unexpectedly high in QSCs, whereas their protein levels remained undetectable

(Figures S1B and S1E). Therefore, they do not appear in either the “QSC-specific” or the

“ASC-specific” lists because they are present in both. This pattern, an expression of

transcript uncoupled from expression of protein, was also observed in our ASC

transcriptional profiles, where we observed high transcript levels of many genes whose

protein products were not detected until much later in terminal differentiation (see Figure

5C).

In summary, our microarray analysis of QSCs and ASCs reveals a gene expression signature

of QSCs and regulators of SC function. The gene expression changes in ASCs, particularly

during the early phase of muscle regeneration, reflect changes in the niche that can modulate

SC activation and proliferation. Equally important is the availability of a steady-state gene

expression profile for our subsequent analysis of chromatin marks and their dynamic

changes during SC activation.

Genome-wide Profiles of H3K4me3, H3K27me3, and H3K36me3 in QSCs and ASCs

In order to gain insight into the chromatin state of adult stem cells in quiescence and the

dynamic changes of chromatin during stem cell activation, we performed ChIP-seq using

QSCs and ASCs. We analyzed the enrichment of H3K4me3, H3K27me3, and H3K36me3

across the genome. Analysis of the general profiles of these ChIP-seq data sets revealed

conventional distribution of these histone modifications relative to gene features in that

H3K4me3 was found commonly at the TSSs of genes, and H3K36me3 was found enriched

in the coding regions. The genes that were expressed at high levels in QSCs by microarray

analysis were all marked by H3K4me3 and devoid of H3K27me3 at their TSSs, and they

were generally marked by H3K36me3 that aligned well with the position of exons (Figure

S3A).
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QSCs exhibited high levels of global H3K4me3 (Figure 2A). In QSCs, nearly 50% of

annotated genes in the mouse genome, including nearly all housekeeping genes and cell-

cycle genes, were marked with H3K4me3 at their TSSs (Figure S3B). Neither the number

nor the identity of genes marked by H3K4me3 at their TSSs changed significantly in ASCs

compared to QSCs (Figures 2B, 2C, and S3B). Consistent with the notion that H3K4me3

alone does not predict the transcriptional state of a gene but, instead, marks it for

transcriptional activation (Guenther et al., 2007), genes that were transcriptionally

upregulated upon SC activation, including those that were not expressed in quiescence, had

already been marked by H3K4me3 in QSCs. Furthermore, QSC-specific genes retained

H3K4me3 at their TSSs after their transcription was rapidly downregulated upon entering

the cell cycle (Figure 2D).

In contrast to the fairly constant level of H3K4me3 across the genome and the large number

of genes marked by H3K4me3 in both QSCs and ASCs, the level of H3K27me3 was low in

QSCs and dramatically increased in ASCs (Figures 2E and 2F). Only 2,019 genes were

marked by H3K27me3 at their TSSs in QSCs (Figure S3B; Table S2). The expression levels

of these H3K27me3-marked genes were either undetectable or extremely low (Figure S4A).

Upon SC activation, the genes marked by H3K27me3 at their TSSs doubled in number

(Figure S3B). Many genes that were highly expressed in QSCs but rapidly downregulated

transcriptionally upon activation retained H3K4me3 and gained H3K27me3 in ASCs

(Figure 2D), suggesting that induction of H3K27me3 at TSSs may lead to rapid inhibition of

QSC-specific genes upon SC activation. In addition, the level of H3K27me3 markedly

increased in the gene body and intergenic regions during SC activation (Figure S3B). The

dramatic increase in H3K27me3 upon SC activation correlated well with the transcriptional

changes of the H3K27 methyltransferase Ezh2 and demethylase Jmjd3 (Figure S4B). SC

activation was at least partly dependent on the upregulation of Ezh2 and the subsequent

increase of H3K27me3 because knockdown of Ezh2 by siRNA inhibited the activation of

SCs on myofibers in ex vivo cultures (Figure S4C).

Taken together, these data suggest that the chromatin of QSCs is maintained at a permissive

state with a large number of genes marked by H3K4me3 and few marked by H3K27me3 at

the TSSs. SC activation is accompanied by the retention of H3K4me3 and acquisition of

H3K27me3. By accumulating H3K27me3 upon SC activation, the chromatin is converted to

a more repressed state.

Identification of Bivalent Domains in QSCs

Bivalent chromatin domains composed of both H3K4me3 and H3K27me3 modifications

mark a large number of key regulators of lineage differentiation in ESCs in culture

(Bernstein et al., 2006; Mikkelsen et al., 2007; Marks et al., 2012). Analysis of our QSC

ChIP-seq data revealed 1,892 bivalent domains at TSSs across the genome (Figure 3A).

Consistent with their poised state of transcription, genes marked by bivalent domains at their

TSSs in QSCs were either not transcribed or transcribed at very low levels (Figure 3B).

Over 93% of these genes remained bivalent in ASCs and exhibited no change in their

expression level (Figures 3C and 3D). We further compared the identity of genes with

bivalent domains in ESCs and QSCs and found 1,258 common to both cell types, making up
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46% of the total number of genes marked by bivalent domains in ESCs (Figure 3E).

Surprisingly, the bivalent domains in QSCs marked a large number of nonmyogenic

regulators of developmental processes of multiple organs and tissues (Figure 3F). Although

SCs give rise to only myogenic progeny during adult muscle regeneration, it is possible that

SCs retain the potential to adopt nonmyogenic fates given the poised nature of genes marked

by bivalent domains.

Our comparison of bivalent domains in ESCs and QSCs also revealed that approximately

47% of the bivalent genes in ESCs were “H3K4me3 only” and expressed at high levels in

QSCs (Figure 3F). This list of genes included a large number of QSC-specific genes as

revealed by our microarray analysis, such as known markers of SCs, Pax7, Cd34, and

Calcitonin receptor (Calcr) (Joe et al., 2010; Cheung et al., 2012), and Notch target genes

Hey1, Hey2, and Heyl. Notably, this list of genes was dominated by genes encoding

glycoproteins. Given that glycoproteins are integral membrane proteins that often play an

important role in cell-cell and cell-matrix interactions (Moremen et al., 2012), these

glycoproteins that expressed at high levels in QSCs may be important mediators of niche

interaction.

A large number (246) of transcription factors, many of which are well-documented

regulators of morphogenesis of tissues other than skeletal muscle, were found to be bivalent

at their TSS in QSCs (Table S3; Figure S5A). Nearly all of the bivalent transcription factors

in QSCs are PcG targets in murine ESCs, including many Hox genes (Boyer et al., 2006). In

ESCs, all four Hox loci are bound by the PcG complex and are bivalent; each cluster is

marked by a broad H3K27me3 domain, and each gene within the cluster is marked by a

sharp H3K4me3 peak at its TSS (Figures 4A–4D). Interestingly, in QSCs, the Hoxb and

Hoxd loci exhibited similar bivalency to that in ESCs (Figures 4B and 4D), whereas the

Hoxa and Hoxc loci exhibited a mosaic pattern of H3K4me3-only mark and bivalency.

Although the genes at the two ends of the Hoxa locus were bivalent in QSCs, the ones at the

center of this cluster, including Hoxa3–Hoxa7, Hoxa9, and Hoxa10, were marked by

H3K4me3 only (Figure 4A). Similarly, bivalent Hoxc genes were present at the 5′ end of the

locus, and H3K4me3-only ones were clustered at the 3′ end (Figure 4C). The H3K4me3-

only Hox genes not only expressed at a much higher level than those that were bivalent in

QSCs (Figure 4E), but they also generally decreased their expression following SC

activation, providing evidence that they may play a role in the regulation of QSC function.

H3K4me3 and H3K27me3 Patterns of Myogenic Genes in QSCs and ASCs

Myogenesis is regulated by a number of transcription factors, including Pax3, Pax7, Myf5,

MyoD, Myogenin, and Myf6, in a temporal manner (Bentzinger et al., 2012). Interestingly,

among these myogenic transcription factors, only Pax3 was found to be bivalent in QSCs

(Figure 5A). This is consistent with the low expression level of Pax3 in limb SCs in adult

mice. In contrast, Pax7 and Myf5, which are expressed at high levels in both QSCs, were

marked only by H3K4me3 at their TSSs (Figure 5A). Despite the absence of detectable

MyoD protein in QSCs (Figures S1B and S1E), we found the presence of MyoD transcript

in QSCs, which did not exhibit significant change with activation (see Discussion).

Consistent with the expression of MyoD transcript, H3K4me3 was also detected at its TSS
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in QSCs. Myogenin, which is expressed only in differentiating myoblasts, and Myf6, which

exhibited no expression in QSCs or ASCs as revealed by our microarray analysis, were not

marked by either H3K4me3 or H3K27me3 in QSCs (Figure 5A). Upon activation, among

these six myogenic transcription factors, only Myogenin showed a significant change by

gaining H3K4me3 at its TSS. Pax3 remained bivalent, Pax7, Myf5, and MyoD all retained

the H3K4me3 mark at their TSSs, and Myf6, whose expression was not induced in ASCs,

remained unmarked by either of the histone marks. It will be intriguing to determine whether

this temporal acquisition of H3K4me3 at the TSS of Myogenin underlies, or is merely a

reflection of, its temporal expression pattern.

In addition to Myogenin, we have identified 177 genes that were not marked by either

H3K4me3 or H3K27me3 at their TSSs in QSCs but were marked by H3K4me3 in ASCs.

GO analysis revealed that these genes were highly enriched for genes encoding structural or

functional proteins of the contractile properties of the muscle (Figure 5B). As expected from

their function in the muscle, these genes were also among the most upregulated genes upon

SC activation (Figure 5C). Reminiscent of the aforementioned high level of expression of

MyoD in QSCs, the transcripts of a number of structural proteins, including some myosins

and troponins that are not produced until after terminal differentiation and fusion of

myoblasts, were significantly upregulated in ASCs 60 hr after injury. In addition to being

marked by H3K4me3 at the TSSs in ASCs, each of these genes gained a broad domain of

H3K4me3 that extended into the gene body and H3K36me3 that covered nearly the entire

coding region (Figure 5D). Interestingly, these genes that acquired both H3K4me3 and

H3K36me3 are also the most upregulated genes when MyoD is expressed in fibroblasts

(Penn et al., 2004) and are bound by MyoD in differentiating myoblasts (Cao et al., 2010).

These data suggest that MyoD cooperates with the Trithorax complex to induce the

expression of at least a subset of its target genes.

Increased H3K27me3 Level in QSCs with Age

Epigenetic integrity is an important element for maintaining normal stem cell function

during aging (Liu and Rando, 2011; O'Sullivan and Karlseder, 2012). The appearance of

aberrant stem cells with age has been demonstrated in mice in which the expression of some

chromatin-modifying enzymes has been ablated in various stem cell compartments

(Kamminga et al., 2006; Li et al., 2012). SCs exhibit a functional decline with age that

results in impaired tissue regeneration upon acute muscle injury (Conboy et al., 2005; Brack

et al., 2007). We therefore wanted to profile the histone modification patterns of SCs in aged

animals and to determine whether the functional decline of SCs with age could be attributed

to changes in the epigenome.

In order to compare the H3K4me3 and H3K27me3 epigenetic profiles between SCs in

young and old mice, we isolated QSCs from 24-month-old mice to perform ChIP-seq

analysis (Figure S6A). There was a decline in the percentage of QSCs in aged muscle

compared to young muscle (Figures 6A and 6B), and consistent with our previous report

(Conboy et al., 2005), QSCs from old mice required longer time to activate and reenter the

cell cycle. Nevertheless, once activated, SCs isolated from old mice exhibited similar

myogenic potential in ex vivo cultures under optimal differentiation conditions as those

Liu et al. Page 7

Cell Rep. Author manuscript; available in PMC 2014 July 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



from young mice (Figure S6B). The genome-wide H3K4me3 profiles of QSCs from young

and old mice were comparable. Both the total number of H3K4me3 peaks and their

distribution relative to coding genes were highly similar (Figure S3B). Nearly all genes that

were marked by H3K4me3 at their TSSs in QSCs from young mice retained the mark with

age, despite a modest decline of the normalized tag intensity around TSSs (Figures 6C and

6D). Furthermore, the number of genes that were marked by H3K4me3 at their TSSs was

nearly identical (12,062 in QSCs from young mice and 12,103 from aged mice).

In contrast to the overall low level of H3K27me3 across the QSC genome in young mice,

this repressive chromatin mark appeared to accumulate and spread with age. In QSCs from

young mice, 56% of the H3K27me3 peaks did not overlap with coding regions of known

genes (Figure S3B). With age, additional H3K27me3 peaks were found in intergenic regions

across the QSC genome, making up 67% of all the H3K27me3 peaks. These peaks were

commonly between 0.5 and 1 kb in width and were located at various distances from the

nearest coding gene (Figure S6C). The increase of H3K27me3 with age was also prominent

at and around TSSs. There was a 4-fold increase in the H3K27me3 intensity near TSSs in

QSCs from aged mice in comparison to those from young mice (Figure 6E), which resulted

from both an increase of H3K27me3 intensity at the TSSs of genes that were already marked

by this modification in QSCs from young mice and the acquisition of this mark with age on

genes that were otherwise unmarked in QSCs from young mice (Figure 6F). Interestingly,

over 30% of genes that acquired H3K27me3 at their TSSs with age were not expressed in

either young or old QSCs (Table S3). For these genes, attaining the repressive H3K27me3

mark in old QSCs is unlikely to be a mechanism to suppress the transcription but, rather,

may be a reflection of permanent loss of transcriptional potential with age.

Histone Expression Is Affected by Gain of H3K27me3 in QSCs with Age

We performed GO term analysis on the list of genes that gained the H3K27me3 mark at

their TSSs in QSCs during aging. The terms “chromatin assembly” and “nucleosome,”

which include a large number of histone genes, were enriched and of particular interest

because a decrease in histone expression has been described in both yeast and cultured

mammalian cells that have experienced replicative aging (Feser et al., 2010; O'Sullivan et

al., 2010). In mouse, each core histone is encoded by 10–20 copies of histone genes that are

clustered on chromosomes 3 and 13 (Wang et al., 1996a, 1996b). We examined the

H3K4me3 and H3K27me3 enrichment patterns at these histone clusters and found that,

whereas the histone genes were marked only by H3K4me3 in QSCs from young mice, they

became bivalent with age (Figures 7A and 7B). The induction of H3K27me3 appeared to be

highly specific to the histone genes because nonhistone genes within the clusters, such as the

gene Hfe on chromosome 13, did not exhibit this change (Figure 7A).

Transcripts of the Histone genes are not polyadenylated at their 3′ ends, and the multiple

copies of genes encoding the same histone share a high degree of homology in their coding

regions (Marzluff et al., 2008). This poses a technical difficulty in using conventional RT-

PCR analysis to evaluate the change of expression of each individual histone gene in QSCs

with age. Therefore, in order to determine whether the acquisition of the H3K27me3 mark is

associated with changes in the expression of histone genes, we performed gene expression
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microarray analysis with QSCs from 24-month-old mice and compared the data sets to those

from young mice (Table S4). The comparison revealed an overall reduction in the

expression of the histone genes that acquire H3K27me3 at their TSSs with age in QSCs

(Figure 7C). Among the histone genes that are covered by the microarray analysis, 13 were

found downregulated by more than 40% in old QSCs, including 2 histone 1 (H1) genes, 2

histone 2b (H2B) genes, 5 histone 3 (H3) genes, and 4 histone 4 (H4) genes (Figure 7D).

Interestingly, despite the reduced expression with age in QSCs, the expression of these

histone genes was induced to comparable levels by acute muscle injury in both young and

old SCs (Figure S6E). Given that both cell-cycle-dependent and -independent regulation of

histone expression have been described by Wang et al. (1996a, 1996b), our data suggest that

SCs might utilize different mechanisms to regulate the expression of histone genes in the

quiescent state and in the cell cycle. Although the decreased expression of these histones in

QSCs is unlikely to be the causal event that leads to the delayed response to muscle injury in

aged mice, it will be interesting to determine whether decreased histone expression affects

SC homeostasis and thus contributes to the gradual loss of function of QSCs during aging.

Discussion

The development of ChIP-seq technology in recent years has advanced our understanding of

the epigenome of different types of cells (Mikkelsen et al., 2007). Using highly pure

populations of QSCs and SCs activated in vivo, we have provided analysis of the kinetics of

gene expression changes in SCs and their progeny in vivo during muscle regeneration.

Furthermore, this report of gene expression profiles from young and old SCs provides a

basis for studies of stem cell aging at the molecular level. In addition, we have successfully

performed ChIP-seq analysis of QSCs and ASCs with regard to histone modifications to

begin to understand the epigenetic features that define and regulate the quiescent stem cell

state.

Bivalent Domains in Adult Stem Cells

A surprising finding from our H3K4me3 and H3K27me3 ChIP-seq data from QSCs is the

presence of a large number of genes that are marked by bivalent domains at their TSSs.

Bivalent domains were first identified in ESCs at the Hox loci and later at the TSSs of a

large number of genes that play important roles in specifying cell fate when ESCs are

induced to differentiate in vitro (Bernstein et al., 2006; Mikkelsen et al., 2007). This report

identifies prevalent bivalent domains in adult stem cells (Lien et al., 2011; Woodhouse et al.,

2013), suggesting that the bivalent domains are a feature of not only ESCs in culture but also

stem cells in their natural habitat in vivo. By comparing H3K4me3 and H3K27me3 profiles

in ESCs and HF-SCs, Lien et al. identified merely 87 bivalent genes in HF-SCs (Lien et al.,

2011). On the contrary, our analysis revealed more than 1,800 genes marked by bivalent

domains at their TSSs (Figure 3B). It is even more striking that, similar to bivalent domains

in ESCs, bivalent domains marked the TSSs of a large number of lineage-specific genes in

QSCs (Figure 3F). Although sequential ChIP would be necessary to demonstrate definitively

that both H3K4me3 and H3K27me3 marks are present at the TSSs of individual loci, the

fact that such a high percentage of the same genes are enriched for both marks in QCSs and

ESCs (Figure 3E) suggests that these TSSs truly are bivalent in the muscle stem cell lineage.
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The bivalent domains in QSCs as an epigenetic memory may have implications in cellular

reprogramming. The reprogramming of differentiated cells into induced pluripotent stem

(iPS) cells has been achieved with a wide array of cell types (Takahashi and Yamanaka,

2006; Hanna et al., 2008). The reprogramming efficiency is typically extremely low with

terminally differentiated cells and can be hundreds of times higher with stem or progenitor

cells (Eminli et al., 2009). It has been recently demonstrated that the reprogramming

efficiency of SCs isolated from mature adult muscles is more than 100 times that of lineage-

committed myoblasts (Tan et al., 2011a). Because iPS reprogramming requires a stable

reversion of the epigenetic state, the preservation of bivalent domains in QSCs and the

similarity to ESCs may contribute to efficient reprogramming. Furthermore, it has been

reported that early-passage iPS cells retain an “epigenetic” memory of their somatic cell of

origin and preferably differentiate into the same type of cells (Polo et al., 2010). In contrast,

iPS cells derived from muscle stem cells do not appear to preferentially differentiate along

the myogenic lineage (Tan et al., 2011a). The permissive state of a large number of lineage

genes marked by bivalent domains in QSCs may therefore also explain the unbiased

differentiation potential of iPS cells generated from them (Taberlay et al., 2011; Tan et al.,

2011a).

Low H3K27me3 as a Chromatin Feature of Stem Cell Potential

Regardless of the difference in the number of genes marked by bivalent domains in QSCs

and HF-SCs, one common chromatin feature between these two types of stem cells is the

low level of the repressive H3K27me3 at the TSSs of annotated genes (Figure 2A; Lien et

al., 2011). Only about 2,000 genes are marked by H3K27me3 in both SCs and HF-SCs.

Particularly in QSCs, over 90% of the genes marked by H3K27me3 have bivalent TSSs.

This leaves merely 127 genes that are “H3K27me3 only,” less than 0.5% of all the genes in

the mouse genome (Waterston et al., 2002). Upon SC activation, the level of H3K27me3

increases significantly across the genome at both TSSs and intergenic regions.

Interestingly, a low level of H3K27me3 is also associated with the pluripotency of ESCs

(Mikkelsen et al., 2007; Marks et al., 2012). A serum-independent culture condition has

recently been established for ESCs (Marks et al., 2012). ESCs in this condition exhibit

greater homogeneity in morphology and expression of pluripotent factors in comparison to

those maintained with serum. Although the H3K4me3 pattern is similar in ESCs from these

two culture conditions, a global redistribution of H3K27me3 occurs in ESCs in the absence

of serum that results in a much-reduced level of H3K27me3 at promoters. In addition, the

removal of H3K27me3 across the chromatin occurs during reprogramming of somatic cells

into iPS cells, and cells that lack the expression of the H3K27me3 demethylase Utx fail to

initiate reprogramming (Mansour et al., 2012). Therefore, the low level of H3K27me3 at

promoters may be a common feature in both embryonic and adult stem cells. This general

lack of repressive H3K27me3 and the presence of H3K4me3 at TSSs of a large number of

genes may constitute a permissive chromatin state that underlies the potentiality of stem

cells.
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Posttranscriptional Regulation of Adult Myogenesis

Increasing evidence has suggested that QSCs are not in a dormant state but, rather, primed

for activation and differentiation (Cheung et al., 2012; Crist et al., 2012). As lineage-

uncommitted progenitors residing in the muscle, QSCs respond to injury by rapidly

activating the myogenic program. This primed state is reflected at the chromatin level by a

general lack of the repressing H3K27me3 across the QSC genome and the presence of

H3K4me3 at the TSSs of a large number of genes, including the myogenic regulatory

factors, Myf5 and MyoD (Figure 5A), whose protein products are the primary activators of

the myogenic program. MyoD protein is not detectable in QSCs but becomes highly induced

by activation (Figures S1B and S1E).

Interestingly, unlike the MyoD protein, there are conflicting data as to the expression pattern

of the MyoD transcript in QSCs and how the pattern changes with activation. The

conclusion of an early single-cell PCR study was that the MyoD and Myf5 transcripts are

expressed in a small subset of QSCs (Cornelison and Wold, 1997). However, in that study, a

large percentage of ASCs were considered to be MyoD−ve, a finding that would be at odds

with the observations that virtually 100% of ASCs are MyoD+ve at the protein level.

Therefore, a repeat of that study using a less-stringent cutoff for the determination of the

expression of MyoD would likely reveal a much higher percentage of both QSCs and ASCs

expressing MyoD at the transcript level. Using microarray analysis, Fukada et al. (2007)

reported a significant induction of the MyoD transcript in ASCs from in vitro activation. By

contrast, and similar to our data, Pallafacchina et al. (2010) detected MyoD transcripts in

QSCs and found that levels of MyoD transcript did not exhibit a significant increase in

ASCs during in vivo activation.

Similarly, whereas Myf5 was found to be expressed at high levels in QSCs by transcriptome

analysis (Table S1), the protein product appeared to be at low abundance in QSCs and

increase with activation (Figure S1E). Recently, it has been demonstrated that Myf5

transcript, together with microRNA-31 that regulates its translation, was sequestered in

mRNP granules in QSCs (Crist et al., 2012). In ASCs, the mRNP granules were dissociated,

and the level of microRNA-31 decreased, allowing the translation of Myf5 protein. In light

of this study, it is possible that similar mechanisms are at play for the MyoD transcript and

protein, whereby the protein expression is unequivocally a marker of ASCs, but the

transcript is nevertheless expressed in QSCs. Thus, the transcription and translation of the

MyoD gene may be uncoupled, and the level of MyoD protein may be regulated by similar

posttranscriptional mechanisms as the Myf5 protein. Other posttranscriptional regulatory

processes, such as splicing or RNA editing, could also be utilized by QSCs to allow the

accumulation of the MyoD transcript without the production of the corresponding protein

product. Because the specificity of transcription in different types of cells is determined by

both the availability of transcription factors and the epigenetic features around their binding

sites (Guccione et al., 2006), it is intriguing to consider the uncoupling of the transcription

and translation of key myogenic regulatory factors as a feature of the primed state of QSCs.

Despite a lack of H3K27me3 on myogenic genes in both QSCs and ASCs, SC activation

appeared to be accompanied by an increase in H3K27me3 in a large number of the bivalent

TSSs of nonmyogenic lineage genes (Figures S5A and S5B), suggesting that these genes
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may be resolving to a fully repressed state. Our microarray analysis revealed a significant

increase in the expression of the Polycomb component Ezh2 in ASCs (Figure S4B). Specific

ablation of Ezh2 in myogenic progenitors during development leads to the transcriptional

activation of nonmyogenic lineage genes, including ZIC-1, Isl1, and Tbx1 (Juan et al.,

2011), all of which were marked by bivalent domains at their TSSs as revealed by our

analysis. Ezh2-mediated H3K27me3 may therefore be critical to ensure the myogenic

identity of SC progeny by suppressing the expression of genes that have the potential to

drive alternative cell fates during adult muscle regeneration.

Change of H3K27me3 with Age

Change of H3K27me3 level has been described in aged tissues in animals and C. elegans. A

decrease in H3K27me3 level is associated with derepression of the Ink4a/Arf locus in

pancreatic islets in old mice (Dhawan et al., 2009). H3K27me3 levels decrease strikingly

with age throughout the tissues of C. elegans (Maures et al., 2011). Genetic manipulations

of H3K27me3 methyltransferases or demethylases that increase the H3K27me3 level have

been shown to extend the lifespan of worms and flies (Siebold et al., 2010; Maures et al.,

2011). All of these data indicate that organismal aging is associated with a decrease of

H3K27me3 in differentiated tissues.

Our ChIP-seq profiling of H3K27me3 revealed a global increase of H3K27me3 across the

genome in SCs with age. This increase of H3K27me3 was prominent at both the TSSs and

intergenic regions (Figures 6E, 6F, and S3B). Unlike the changes in the expression of Ezh2

and Jmjd3, which may contribute to the H3K27me3 increase upon SC activation in young

animals, the expression of these genes did not exhibit a pattern of change that correlated

with the accumulation of H3K27me3 in QSCs with age (Figure S6D). Whereas the vast

majority of genes marked by H3K27me3 (including bivalent and H3K27me3 only) retained

the mark with age in QSCs, the breadth of coverage was found to decrease at a subset of

these genes, although the shifts were not associated with transcriptional changes.

Redistribution of the Sir-silencing complex on the chromatin has been described in yeast

cells during replicative aging (Kennedy et al., 1997). It is possible that a global increase of

H3K27me3 leads to the redistribution of the PcG complexes across the genome in old QSCs,

when the level of H3K27me3 methyltransferase and demethylase remains unchanged. The

PcG complexes have been shown to be recruited to sites of DNA damage in mammalian

cells (O'Hagan et al., 2008; Chou et al., 2010). Rossi et al. reported the presence of DNA

double-strand breaks (DSBs) in hematopoietic stem cells with age (Rossi et al., 2007).

Similarly, we have observed an accumulation of DSBs by γH2AX staining in QSCs from

aged mice, whereas they are nearly undetectable in QSCs from young mice (G.W.C.,

unpublished data). Whether the accumulation of DSBs in old QSCs is a cause or

consequence of the redistribution of the PcG complexes remains to be determined.

Nevertheless, it is intriguing to consider that the increase of H3K27me3 with age may be the

bridge between the reversible epigenetic changes and the irreversible genomic changes that

occur in stem cells.
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Reduction in Histone Biosynthesis in Chronological Stem Cell Aging

Histone reduction has been observed in budding yeast and cultured mammalian cells during

replicative aging (Feser et al., 2010; O'Sullivan et al., 2010). In late passages of human

fibroblasts, a decrease in histone biosynthesis is caused by telomere shorting as a DNA

damage response and appears to contribute to replicative senescence (O'Sullivan et al.,

2010). Reduction in histone biosynthesis leads to transcriptional dysregulation in old yeast

cells, and elevated expression of histones promotes the extension of replicative lifespan

(Feser et al., 2010). These findings raise an interesting question as to whether a reduction in

histone biosynthesis is a universal manifestation of cellular aging across eukaryotic species.

As a population of cells that lasts the lifetime of the organism, adult stem cells undergo both

replicative aging when they divide and chronological aging when they remain in quiescence

(Liu and Rando, 2011). QSCs provide an excellent model to study chronological aging due

to their extremely low turnover. We report here that the transcription of histones decreases

in QSCs during chronological aging (Figure 7C). In old QSCs, the reduction of histone

expression is associated with acquisition of H3K27me3 at the histone loci (Figures 7A and

7B). This raises an intriguing question as to how the reduced level of histones affects

cellular processes and function of nondividing cells.

A large body of biochemical and structural evidence has demonstrated that transcriptional

elongation by RNA Pol II involves eviction and exchange of core histones in a histone

chaperon-dependent manner (Workman, 2006). After the passage of RNA pol II, both

evicted and newly synthesized histones can be incorporated into nucleosomes to restore

chromatin configuration (Dion et al., 2007; Jamai et al., 2007). Histone turnover therefore

accompanies active transcription in the absence of DNA replication. The nucleosome

disassembly and reassembly in this process involve a number of factors, including recycling

of evicted histones, synthesis of new histones, and availability of histone chaperones. In

budding yeast, a moderate decrease in histone expression influences the DNA damage

response, whereas substantial reduction of histones leads to a genome-wide decrease of

nucleosome occupancy and global transcriptional noise (Celona et al., 2011). In response to

a decrease in nucleosome occupancy, genes located within 20 kb from the telomeres are

commonly derepressed in old yeast cells, whereas genes farther away from telomeres can be

both up- and down-regulated. As such, reduced histone expression may have a broad impact

on the global transcription in QSCs from old animals.

Concluding Remarks

Functional decline of stem cells has been associated with many age-related conditions and

diseases (Rossi et al., 2008). Because attenuation or reversal of the age-induced functional

decline of stem cells has been achieved by modulating the environment to which they are

exposed or their ability to cope with the aging environment (Conboy et al., 2005; Adler et

al., 2007; Villeda et al., 2011), it has been postulated that the aging of stem cells occurs

largely at the epigenetic level (Oberdoerffer et al., 2008; Liu and Rando, 2011; O'Sullivan

and Karlseder, 2012; Rando and Chang, 2012). By profiling the histone methylation patterns

of QSCs from young and aged mice, we provide here direct evidence for the epigenetic

aspect of the aging of SCs. These findings not only reveal epigenetic features associated
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with the normal function of adult stem cells but also provide a framework for dissecting the

epigenetic changes that impair stem cell function with age. Understanding the fundamental

mechanisms of stem cell aging is necessary to develop interventions for age-related

conditions and diseases that are related to the decline of stem cell function and, ultimately,

to promote healthy aging.

Experimental Procedures

All animal protocols were approved by the Administrative Panel on Laboratory Animal Care

of the VA Palo Alto Health Care System. Additional details about the methods described

below are provided in the Extended Experimental Procedures.

Isolation of SCs

Hindlimb muscles were collected, finely minced, and subjected to Collagenase II and

Dispase (Invitrogen) digest. The resulting suspension was then passed through a 20G needle

to release the associated SCs. Cell suspensions were filtered through 45 mm cell strainers.

The mononuclear cell suspension was then stained with a cocktail of antibodies and sorted

on a BD FACS Aria II or BD FACSAria III cell sorter.

Microarray Analysis of SCs

RNA isolation from SCs was performed with the TRIzol reagent (Invitrogen). The RNA was

then processed and assayed by Affymetrix GeneChip Mouse Gene 1.0 ST Arrays.

ChIP-Seq

FACS-sorted cells were immediately crosslinked with 1% formaldehyde following standard

ChIP protocols. Each ChIP reaction was performed with 106 cells and 5 μg of antibody. A

library for deep sequencing was generated with Illumina ChIP-seq Sample Prep Kit with 15

cycles of PCR amplification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Ziming Weng, Keith Bettinger, and Nathan Hammond at the Stanford Genome Technology Center for
assistance in high-throughput sequencing; Elizabeth Zuo and Natalie Kosovilka at the Stanford Protein and Nucleic
Acid Facility for assistance in microarray; and Lucijah Roth for assistance in FACS. We also thank Pinky Tripathi
and Yuzhen Wang for assistance with animal care. This work was supported by the Glenn Foundation for Medical
Research and by grants from the NIH (P01 AG036695) to A.B. and the Department of Veterans Affairs (Merit
Review) and the NIH (P01 AG036695, R01 AG23806, and R01 AR062185) to T.A.R.

References

Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E, Chang HY. Motif module map reveals
enforcement of aging by continual NF-kappaB activity. Genes Dev. 2007; 21:3244–3257. [PubMed:
18055696]

Bentzinger CF, Wang YX, Rudnicki MA. Building muscle: molecular regulation of myogenesis. Cold
Spring Harb Perspect Biol. 2012; 4:a008342. [PubMed: 22300977]

Liu et al. Page 14

Cell Rep. Author manuscript; available in PMC 2014 July 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M,
Plath K, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem
cells. Cell. 2006; 125:315–326. [PubMed: 16630819]

Bjornson CR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA. Notch signaling is necessary
to maintain quiescence in adult muscle stem cells. Stem Cells. 2012; 30:232–242. [PubMed:
22045613]

Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar
A, Ray MK, et al. Polycomb complexes repress developmental regulators in murine embryonic stem
cells. Nature. 2006; 441:349–353. [PubMed: 16625203]

Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA. Increased Wnt signaling during
aging alters muscle stem cell fate and increases fibrosis. Science. 2007; 317:807–810. [PubMed:
17690295]

Cao Y, Yao Z, Sarkar D, Lawrence M, Sanchez GJ, Parker MH, MacQuarrie KL, Davison J, Morgan
MT, Ruzzo WL, et al. Genome-wide MyoD binding in skeletal muscle cells: a potential for broad
cellular reprogramming. Dev Cell. 2010; 18:662–674. [PubMed: 20412780]

Celona B, Weiner A, Di Felice F, Mancuso FM, Cesarini E, Rossi RL, Gregory L, Baban D, Rossetti
G, Grianti P, et al. Substantial his-tone reduction modulates genomewide nucleosomal occupancy
and global transcriptional output. PLoS Biol. 2011; 9:e1001086. [PubMed: 21738444]

Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, Yoo B, Hoang P, Rando TA.
Maintenance of muscle stem-cell quiescence by microRNA-489. Nature. 2012; 482:524–528.
[PubMed: 22358842]

Chou DM, Adamson B, Dephoure NE, Tan X, Nottke AC, Hurov KE, Gygi SP, Colaiácovo MP,
Elledge SJ. A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of
the repressive polycomb and NuRD complexes to sites of DNA damage. Proc Natl Acad Sci USA.
2010; 107:18475–18480. [PubMed: 20937877]

Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged
progenitor cells by exposure to a young systemic environment. Nature. 2005; 433:760–764.
[PubMed: 15716955]

Cornelison DD, Wold BJ. Single-cell analysis of regulatory gene expression in quiescent and activated
mouse skeletal muscle satellite cells. Dev Biol. 1997; 191:270–283. [PubMed: 9398440]

Crist CG, Montarras D, Buckingham M. Muscle satellite cells are primed for myogenesis but maintain
quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell
Stem Cell. 2012; 11:118–126. [PubMed: 22770245]

Dhawan S, Tschen SI, Bhushan A. Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell
proliferation. Genes Dev. 2009; 23:906–911. [PubMed: 19390085]

Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ. Dynamics of replication-
independent histone turnover in budding yeast. Science. 2007; 315:1405–1408. [PubMed:
17347438]

Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G, Hock H, Hochedlinger K.
Differentiation stage determines potential of hematopoietic cells for reprogramming into induced
pluripotent stem cells. Nat Genet. 2009; 41:968–976. [PubMed: 19668214]

Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, Tyler JK. Elevated histone expression
promotes life span extension. Mol Cell. 2010; 39:724–735. [PubMed: 20832724]

Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki
Y, Takeda S. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells.
2007; 25:2448–2459. [PubMed: 17600112]

Gayraud-Morel B, Chrétien F, Flamant P, Gomès D, Zammit PS, Tajbakhsh S. A role for the
myogenic determination gene Myf5 in adult regenerative myogenesis. Dev Biol. 2007; 312:13–28.
[PubMed: 17961534]

Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall' Olio V, Zardo G, Nervi C, Bernard
L, Amati B. Myc-binding-site recognition in the human genome is determined by chromatin
context. Nat Cell Biol. 2006; 8:764–770. [PubMed: 16767079]

Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA. A chromatin landmark and transcription
initiation at most promoters in human cells. Cell. 2007; 130:77–88. [PubMed: 17632057]

Liu et al. Page 15

Cell Rep. Author manuscript; available in PMC 2014 July 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, Creyghton MP, Steine EJ,
Cassady JP, Foreman R, et al. Direct reprogramming of terminally differentiated mature B
lymphocytes to pluripotency. Cell. 2008; 133:250–264. [PubMed: 18423197]

Jamai A, Imoberdorf RM, Strubin M. Continuous histone H2B and transcription-dependent histone H3
exchange in yeast cells outside of replication. Mol Cell. 2007; 25:345–355. [PubMed: 17289583]

Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM. Muscle injury
activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol. 2010;
12:153–163. [PubMed: 20081841]

Juan AH, Derfoul A, Feng X, Ryall JG, Dell'Orso S, Pasut A, Zare H, Simone JM, Rudnicki MA,
Sartorelli V. Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of
skeletal muscle stem cells. Genes Dev. 2011; 25:789–794. [PubMed: 21498568]

Kamminga LM, Bystrykh LV, de Boer A, Houwer S, Douma J, Weersing E, Dontje B, de Haan G. The
Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood. 2006; 107:2170–
2179. [PubMed: 16293602]

Kennedy BK, Gotta M, Sinclair DA, Mills K, McNabb DS, Murthy M, Pak SM, Laroche T, Gasser
SM, Guarente L. Redistribution of silencing proteins from telomeres to the nucleolus is associated
with extension of life span in S. cerevisiae. Cell. 1997; 89:381–391. [PubMed: 9150138]

Kouzarides T. Chromatin modifications and their function. Cell. 2007; 128:693–705. [PubMed:
17320507]

Li J, Jiang TX, Hughes MW, Wu P, Yu J, Widelitz RB, Fan G, Chuong CM. Progressive alopecia
reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of
DNA methyltransferase 1. J Invest Dermatol. 2012; 132:2681–2690. [PubMed: 22763785]

Lien WH, Guo X, Polak L, Lawton LN, Young RA, Zheng D, Fuchs E. Genome-wide maps of histone
modifications unwind in vivo chromatin states of the hair follicle lineage. Cell Stem Cell. 2011;
9:219–232. [PubMed: 21885018]

Liu L, Rando TA. Manifestations and mechanisms of stem cell aging. J Cell Biol. 2011; 193:257–266.
[PubMed: 21502357]

Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome
core particle at 2.8 A resolution. Nature. 1997; 389:251–260. [PubMed: 9305837]

Mansour AA, Gafni O, Weinberger L, Zviran A, Ayyash M, Rais Y, Krupalnik V, Zerbib M, Amann-
Zalcenstein D, Maza I, et al. The H3K27 demethylase Utx regulates somatic and germ cell
epigenetic reprogramming. Nature. 2012; 488:409–413. [PubMed: 22801502]

Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, Nichols J, Kranz A, Stewart AF,
Smith A, Stunnenberg HG. The transcriptional and epigenomic foundations of ground state
pluripotency. Cell. 2012; 149:590–604. [PubMed: 22541430]

Marzluff WF, Wagner EJ, Duronio RJ. Metabolism and regulation of canonical histone mRNAs: life
without a poly(A) tail. Nat Rev Genet. 2008; 9:843–854. [PubMed: 18927579]

Matthews AG, Oettinger MA. RAG: a recombinase diversified. Nat Immunol. 2009; 10:817–821.
[PubMed: 19621044]

Maures TJ, Greer EL, Hauswirth AG, Brunet A. The H3K27 demethylase UTX-1 regulates C. elegans
lifespan in a germline-independent, insulin-dependent manner. Aging Cell. 2011; 10:980–990.
[PubMed: 21834846]

Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961; 9:493–495.
[PubMed: 13768451]

McKinnell IW, Ishibashi J, Le Grand F, Punch VG, Addicks GC, Greenblatt JF, Dilworth FJ, Rudnicki
MA. Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat
Cell Biol. 2008; 10:77–84. [PubMed: 18066051]

Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim
TK, Koche RP, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed
cells. Nature. 2007; 448:553–560. [PubMed: 17603471]

Moazed D. Mechanisms for the inheritance of chromatin states. Cell. 2011; 146:510–518. [PubMed:
21854979]

Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and
function. Nat Rev Mol Cell Biol. 2012; 13:448–462. [PubMed: 22722607]

Liu et al. Page 16

Cell Rep. Author manuscript; available in PMC 2014 July 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, Hartlerode A, Stegmuller J,
Hafner A, Loerch P, et al. SIRT1 redistribution on chromatin promotes genomic stability but alters
gene expression during aging. Cell. 2008; 135:907–918. [PubMed: 19041753]

O'Hagan HM, Mohammad HP, Baylin SB. Double strand breaks can initiate gene silencing and
SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet.
2008; 4:e1000155. [PubMed: 18704159]

O'Sullivan RJ, Karlseder J. The great unravelling: chromatin as a modulator of the aging process.
Trends Biochem Sci. 2012; 37:466–476. [PubMed: 22959736]

O'Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J. Reduced histone biosynthesis and chromatin
changes arising from a damage signal at telomeres. Nat Struct Mol Biol. 2010; 17:1218–1225.
[PubMed: 20890289]

Pallafacchina G, Francçois S, Regnault B, Czarny B, Dive V, Cumano A, Montarras D, Buckingham
M. An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and
activated muscle satellite cells. Stem Cell Res (Amst). 2010; 4:77–91.

Pelosi L, Giacinti C, Nardis C, Borsellino G, Rizzuto E, Nicoletti C, Wannenes F, Battistini L,
Rosenthal N, Molinaro M, Musarò A. Local expression of IGF-1 accelerates muscle regeneration
by rapidly modulating inflammatory cytokines and chemokines. FASEB J. 2007; 21:1393–1402.
[PubMed: 17264161]

Penn BH, Bergstrom DA, Dilworth FJ, Bengal E, Tapscott SJ. A MyoD-generated feed-forward circuit
temporally patterns gene expression during skeletal muscle differentiation. Genes Dev. 2004;
18:2348–2353. [PubMed: 15466486]

Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda
T, et al. Cell type of origin influences the molecular and functional properties of mouse induced
pluripotent stem cells. Nat Biotechnol. 2010; 28:848–855. [PubMed: 20644536]

Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock.
Cell. 2012; 148:46–57. [PubMed: 22265401]

Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA
damage repair limit the function of haematopoietic stem cells with age. Nature. 2007; 447:725–
729. [PubMed: 17554309]

Rossi DJ, Jamieson CH, Weissman IL. Stems cells and the pathways to aging and cancer. Cell. 2008;
132:681–696. [PubMed: 18295583]

Schultz E, Gibson MC, Champion T. Satellite cells are mitotically quiescent in mature mouse muscle:
an EM and radioautographic study. J Exp Zool. 1978; 206:451–456. [PubMed: 712350]

Siebold AP, Banerjee R, Tie F, Kiss DL, Moskowitz J, Harte PJ. Polycomb Repressive Complex 2 and
Trithorax modulate Drosophila longevity and stress resistance. Proc Natl Acad Sci USA. 2010;
107:169–174. [PubMed: 20018689]

Spivakov M, Fisher AG. Epigenetic signatures of stem-cell identity. Nat Rev Genet. 2007; 8:263–271.
[PubMed: 17363975]

Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000; 403:41–45.
[PubMed: 10638745]

Taberlay PC, Kelly TK, Liu CC, You JS, De Carvalho DD, Miranda TB, Zhou XJ, Liang G, Jones PA.
Polycomb-repressed genes have permissive enhancers that initiate reprogramming. Cell. 2011;
147:1283–1294. [PubMed: 22153073]

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult
fibroblast cultures by defined factors. Cell. 2006; 126:663–676. [PubMed: 16904174]

Tan KY, Eminli S, Hettmer S, Hochedlinger K, Wagers AJ. Efficient generation of iPS cells from
skeletal muscle stem cells. PLoS One. 2011a; 6:e26406. [PubMed: 22028872]

Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, et
al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone
modification. Cell. 2011b; 146:1016–1028. [PubMed: 21925322]

Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, et
al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature.
2011; 477:90–94. [PubMed: 21886162]

Liu et al. Page 17

Cell Rep. Author manuscript; available in PMC 2014 July 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Wang ZF, Krasikov T, Frey MR, Wang J, Matera AG, Marzluff WF. Characterization of the mouse
histone gene cluster on chromosome 13: 45 histone genes in three patches spread over 1Mb.
Genome Res. 1996a; 6:688–701. [PubMed: 8858344]

Wang ZF, Tisovec R, Debry RW, Frey MR, Matera AG, Marzluff WF. Characterization of the 55-kb
mouse histone gene cluster on chromosome 3. Genome Res. 1996b; 6:702–714. [PubMed:
8858345]

Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R,
Alexandersson M, An P, et al. Initial sequencing and comparative analysis of the mouse genome.
Nature. 2002; 420:520–562. [PubMed: 12466850]

Woodhouse S, Pugazhendhi D, Brien P, Pell JM. Ezh2 maintains a key phase of muscle satellite cell
expansion but does not regulate terminal differentiation. J Cell Sci. 2013; 126:565–579. [PubMed:
23203812]

Workman JL. Nucleosome displacement in transcription. Genes Dev. 2006; 20:2009–2017. [PubMed:
16882978]

Liu et al. Page 18

Cell Rep. Author manuscript; available in PMC 2014 July 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. Microarray Analysis of QSCs and ASCs during Muscle Regeneration
(A) Clustered heatmap of the gene expression profiles of QSCs and ASCs prior to and 36,

60, and 84 hr after muscle injury. Three replicates were used for each sample.

(B–D) Box and whisker plots of the expression value (Log2 intensity) and GO analysis of

genes specific to QSCs and ASCs 36 and 60 hr postinjury.

(E) Transcription network in QSCs. Pathway analysis of the transcription factors that

expressed at a substantially higher level in QSCs than ASCs was performed with the

Ingenuity software package. Interactions were found between 59 transcription factors. In the
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map, transcription factors with the most interactions were placed in the center, and those

with the least interactions were placed at the periphery.

See also Figures S1 and S2 and Table S1.
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Figure 2. The Global Profiles of H3K4me3 and H3K27me3 in QSCs and ASCs
(A) Immunofluorescence of Pax7 and H3K4me3 on freshly isolated single fibers. The

arrows indicate a fiber-associated QSC that is positive for both Pax7 and H3K4me3.

(B) Distribution of H3K4me3 around the TSSs in QSCs and ASCs. Normalized tag intensity

of H3K4me3 3 kb upstream and downstream of the TSSs across the genome is shown in the

plot.

(C) Venn diagram of genes marked by H3K4me3 at their TSSs in QSCs and ASCs.
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(D) H3K4me3 and H3K27me3 distribution at the TSS of genes that expressed at high levels

in QSCs but were downregulated in ASCs. The H3K4me3 and H3K27me3 profiles of

representative genes are shown in the top panels, and the level of changes in their expression

upon SC activation revealed by microarray analysis is shown in the bottom bar graphs. Error

bars represent SDs.

(E) Distribution of H3K27me3 around the TSSs in QSCs and ASCs. Normalized tag

intensity of H3K27me3 3 kb upstream and downstream of the TSSs across the genome is

shown in the plot.

(F) Immunofluorescence of freshly isolated myofibers with Pax7 and H3K27me3 antibodies

(top panels) and fibers cultured for 2 days ex vivo with MyoD and H3K27me3 antibodies

(bottom panels). Images were acquired with the same exposure and gain. Fiber-associated

SCs are indicated by the arrows, and all other DAPI+ nuclei are myonuclei within the fiber.

See also Figures S3 and S4 and Table S2.
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Figure 3. Identification of H3K4me3 and H3K27me3 Bivalent Chromatin Domains in QSCs
(A) Comparison of the proportion of genes marked by one of the four H3K4me3 and

H3K27me3 patterns, H3K4me3 only (K4), H3K27me3 only (K27), both (bivalent), and

neither (none), in ESCs and QSCs.

(B) Box and whisker plot of the expression level of genes that were found bivalent at the

TSS in comparison to all genes in QSCs.

(C) Venn diagram of genes with bivalent domains at the TSS in QSCs and ASCs. Among

the 1,892 genes marked by bivalent domains in QSCs, 1,760 were also found in ASCs.

(D) Box and whisker plot of the expression level of genes bivalent at the TSS in QSCs and

ASCs of different time points in muscle regeneration.

(E) Venn diagram of genes with bivalent domains at TSSs in ESCs and QSCs.

(F) H3K4me3 and H3K27me3 patterns in QSCs of genes that are marked by bivalent

domains in ESCs. The middle pie chart depicts the proportion of bivalent ESC genes that
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exhibited different H3K4me3 and H3K27me3 marks in QSCs. Among all genes that are

bivalent in ESCs, 46% were found bivalent in QSCs (orange), and another 46% were found

to be H3K4me3 only (blue). GO analysis of genes that were found bivalent in QSCs is

shown by the bar graph on the left panel. The heatmap on the right panel depicts the

expression level in QSCs and ASCs of representative genes that are bivalent at TSS in ESCs

but H3K4me3 only in QSCs. The top panel of the heatmap shows genes known as QSC

markers, and the bottom panel shows 15 of all 411 genes that encode glycoproteins (p =

10−39).

See also Figure S5.
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Figure 4. The Hox Loci Exhibit a Mosaic Pattern of Genes Marked by Bivalent Domains
(A–D) The distribution of H3K4me3 and H3K27me3 at the four Hox loci in QSCs and

ESCs.

(E) Box and whisker plot of the expression levels of Hox genes that are bivalent at the TSSs

and those that are marked by H3K4me3 only in QSCs.

See also Table S3.
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Figure 5. Chromatin Patterns of Myogenic Genes
(A) The distribution of H3K4me3 and H3K27me3 at the TSSs of myogenic transcription

factors Pax3, Pax7, Myf5, MyoD, Myogenin (Myog), and Myf6.

(B) GO analysis of genes that were neither H3K4me3 nor H3K27me3 in QSCs but acquired

H3K4me3 in ASCs.

(C) Box and whisker plot of the expression levels of all genes associated with the GO terms

listed in (B).

(D) The distribution of H3K4me3 and H3K36me3 on representative genes associated with

the GO terms listed in (B).
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Figure 6. Changes in the H3K4me3 and H3K27me3 Profiles in QSCs with Age
(A and B) FACS isolation of QSCs from hindlimb muscles of (A) 2-month-old and (B) 24-

month-old mice. QSCs are shown in orange. The number indicates the percentage of QSCs

among the total population of mononucleated cells in the muscle.

(C) Distribution of H3K4me3 around the TSSs in young and old QSCs. Normalized tag

intensity of H3K4me3 3 kb upstream and downstream of the TSSs across the genome is

shown in the plot (p < 0.0001).

(D) H3K4me3 intensity plot at TSSs in young and old QSCs.
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(E) Distribution of H3K27me3 around the TSSs in young and old QSCs. Normalized tag

intensity of H3K27me3 3 kb upstream and downstream of the TSSs across the genome is

shown in the plot (p < 0.0001).

(F) H3K27me3 intensity plot at TSSs in young and old QSCs.

See also Figure S6.
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Figure 7. Histone Genes Acquire H3K27me3 in QSCs with Age and Exhibit a Reduced Level of
Expression
(A and B) Distribution of H3K4me3 and H3K27me3 in histone genes on (A) chromosome 3

and (B) chromosome 13 in young and old QSCs.

(C) Box and whisker plot of the expression levels of all histone genes in QSCs from young

and old mice.

(D) The histone genes that exhibited a reduction in expression with age. Error bars represent

SDs.
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See also Table S4.
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