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Chagas disease is a neglected tropical disease endemic to Latin America, though

migratory movements have recently spread it to other regions. Here, we have applied

a cascade virtual screening campaign combining ligand- and structure-based methods.

In order to find novel inhibitors of putrescine uptake in Trypanosoma cruzi, an ensemble

of linear ligand-based classifiers obtained by has been applied as initial screening filter,

followed by docking into a homology model of the putrescine permease TcPAT12. 1,000

individual linear classifiers were inferred from a balanced dataset. Subsequently, different

schemeswere tested to combine the individual classifiers: MIN operator, average ranking,

average score, average voting, with MIN operator leading to the best performance. The

homology model was based on the arginine/agmatine antiporter (AdiC) from Escherichia

coli as template. It showed 64% coverage of the entire query sequence and it was

selected based on the normalized Discrete Optimized Protein Energy parameter and the

GA341 score. The modeled structure had 96% in the allowed area of Ramachandran’s

plot, and none of the residues located in non-allowed regions were involved in the active

site of the transporter. Positivity Predictive Value surfaces were applied to optimize the

score thresholds to be used in the ligand-based virtual screening step: for that purpose

Positivity Predictive Value was charted as a function of putative yields of active in the

range 0.001–0.010 and the Se/Sp ratio. With a focus on drug repositioning opportunities,

DrugBank and Sweetlead databases were subjected to screening. Among 8 hits,

cinnarizine, a drug frequently prescribed for motion sickness and balance disorder, was

tested against T. cruzi epimastigotes and amastigotes, confirming its trypanocidal effects

and its inhibitory effects on putrescine uptake. Furthermore, clofazimine, an antibiotic
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with already proven trypanocidal effects, also displayed inhibitory effects on putrescine

uptake. Two other hits, meclizine and butoconazole, also displayed trypanocidal effects

(in the case of meclizine, against both epimastigotes and amastigotes), without inhibiting

putrescine uptake.

Keywords: Chagas disease, Trypanosoma cruzi, putrescine uptake, drug repositioning, drug repurposing,

cinnarizine, virtual screening, positive predictive value

INTRODUCTION

World Health Organization (WHO) describes neglected tropical
diseases (NTDs) as a group of tropical diseases which mainly
affect people living in poverty, lacking adequate sanitary
conditions and in close contact with the infectious vectors
(World Health Organization, 2015). One the most important
NTDs—in numerical terms—is Chagas disease, a parasitic
disease endemic to Latin-America, caused by the infection
by the protozoan Trypanosoma cruzi. This parasite can be
transmitted to humans and more than 150 domestic and
wild mammals, making complete eradication of the parasite
practically impossible. The main route of transmission of T. cruzi
is through the feces of the insect vector, known as vinchuca, a bug
of the subfamily Triatominae. There are also other transmission
routes, as congenital transmission and blood transfusions (Rassi
et al., 2010), which are becoming increasingly important in the
last years. WHO estimates based on 2010 data indicate that more
than 6million people are infected withT. cruziworldwide, mostly
in Latin-American countries (World Health Organization, 2015).
However, several reports suggest that the actual number of
infected people could be quite higher, reaching 10 million people
(Ventura-Garcia et al., 2013; Stanaway and Roth, 2015; Browne
et al., 2017).

Chagas disease presents two clinical phases. The initial or
acute phase, which lasts between 4 and 8 weeks, is in general
asymptomatic or might present as a self-limiting febrile illness.
After the acute phase, an indeterminate, latent phase follows,
with absence of clinical symptoms. About 60–70% of these people
will remain in the indeterminate phase, but the remaining 30–
40% will develop the symptomatic chronic phase characterized
by damage to specific organs—particularly heart, esophagus, or
colon. The chronic phase remains throughout life drastically
reducing life expectancy among these patients (Nunes et al.,
2013).

The only two approved drugs for the treatment of Chagas
disease so far are Benznidazole and Nifurtimox, launched in
the early 1970s. Both compounds are well-tolerated in children
and effective during the acute phase. However, they present
considerable side effects in adults, different susceptibility among
T. cruzi strains and limited efficacy in adults in chronic phase
(Morillo et al., 2015; Bermudez et al., 2016).

Drug repositioning (also known as drug repurposing,
indication expansion and indication shift) represents an
interesting strategy to approach the development of new
medications for NTD (Ekins et al., 2011; Bellera et al., 2015;
Ferreira and Andricopulo, 2016; Sbaraglini et al., 2016). It

consists in finding novel medical uses for existing drugs,
including approved, experimental, discontinued and shelved
drugs. Drug repurposing has several advantages over the
search of de novo drugs. Since the new indication is built
on already available pharmacokinetic and safety data, drug
development time and costs can be considerably shortened.
Possible manufacturing issues have also been solved. There
are several successful cases of repositioned drugs in the field
of NTDs: the anticancer drug eflornithine has been approved
for the treatment of sleeping sickness and the antifungal
drug amphotericin B has been repurposed for treatment of
visceral leishmaniasis. To date, however, although there are
several reports of drug candidates to be repositioned for the
treatment of Chagas disease, none of these has yet been
approved (Andrews et al., 2014; Klug et al., 2016; Sbaraglini
et al., 2016). While initially drug repurposing stories arose
from serendipitous observations, the drug discovery community
has progressively adopted more systematic approximations
to indication expansion (Ekins et al., 2011; Jin and Wong,
2014; Ferreira and Andricopulo, 2016), including genomic and
structural biology tools, in silico screening and high-throughput
screening platforms.

Polyamines (putrescine, spermidine, spermine) are low
molecular weight polycations with crucial physiologic role in
all the eukaryotic cells. They take part in fundamental cellular
processes such as growth, differentiation, macromolecular
biosynthesis and protection against oxidative damage. The
polyamine metabolism in T. cruzi differs significantly from its
human counterpart since the parasite lacks the enzymes arginine
decarboxylase and ornithine decarboxylase, which are necessary
for the biosynthesis of polyamines (Figure 1; Carrillo et al.,
1999, 2003). Thus, T. cruzi depends on the incorporation of
polyamines from the host cell. These functions are carried out
by polyamine transporters such as the high-affinity putrescine
permease TcPAT12 (or TcPOT1.1) which does not present
homologous in the mammalian lineage (Carrillo et al., 2006). The
importance of polyamines for parasites survival, the inability of
the parasite to biosynthesize polyamines and the exclusivity of
the putrescine transporter in T. cruzimakes putrescine uptake an
attractive target for the search of new trypanocidal drugs (Hasne
et al., 2016).

Back in 2016, we reported the first in silico drug repurposing
campaign to discover novel inhibitors of polyamine uptake in
T. cruzi (Alberca et al., 2016); such study applied an ensemble
of ligand-based models to screen DrugBank 4.0 and Sweetlead
databases and resulted in the identification of three candidates
that impaired putrescine transport: paroxetine, triclabendazole

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2 May 2018 | Volume 8 | Article 173

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Alberca et al. Cascade Virtual Screening Trypanocidal Drugs

FIGURE 1 | Comparative scheme of polyamine metabolism in human cells and T. cruzi. ARG, arginase; ADC, arginine decarboxylase; AGM, agmatinase; ODC,

ornithine decarboxylase; SAMDC, s-adenosylmethionine decarboxylase; SRM, spermidine synthase; PAO, polyamine oxidase; SSAT, spermidine acetyltransferase;

TryS, trypanothione synthetase; TryR, trypanothione reductase.

and sertaconazole. Here, we have improved our ligand-based
computational models and complemented them with molecular
docking based on a homology model of TcPAT12; the combined
screening has been applied to identify two newTcPAT12 potential
inhibitors: clofazimine and cinnarizine. We also report, for the
first time, the use of Positivity Predictive Value (PPV) surfaces
analysis to select the score threshold that will be used in the
virtual screening procedure. The two hits were assayed against T.
cruzi epimastigotes and trypomastigotes, and the inhibitory effect
on putrescine uptake was also determined.

MATERIALS AND METHODS

Ligand-Based Virtual Screening
Dataset Collection
Polyamine analogs previously assayed against T. cruzi were
compiled from literature. 256 polyamine analogs were found
and conformed the dataset used here for model calibration and
validation. Such dataset was curated using the standardization
tool available in Instant JCHEM v. 17.2.6.0. We have labeled
the 256 compounds as ACTIVE or INACTIVE according
to their half-maximal effective concentrations (EC50) against
T. cruzi. The ACTIVE category included compounds with
EC50 below 20µM; the remaining compounds were included
in the INACTIVE category. Considering such cut-off, the
dataset includes 116 actives and 140 inactives. The molecular
diversity of the whole dataset and within each category
can be appreciated in the heatmaps displayed in Figure 2,
which show, for every compound pair in the database,
the Tanimoto distance computed using ECFP_4 molecular
fingerprints. The heatmap was built using Gitools v. 2.3.1 (Perez-
Lamas and Lopez-Bigas, 2011) and Tanimoto distances were
calculated using ScreenMD—Molecular Descriptor Screening

v. 5.5.0.1 (ChemAxon, 2002-2011). The dataset is included as
Supplementary Information.

Dataset Splitting
The resulting dataset of 256 polyamine analogs was divided
into two groups using a representative sampling procedure: (a)
training set, that was used to calibrate the models and; (b)
test set, that was used to externally validate the models. The
representative partition of the dataset resulted from a serial
combination of clustering procedures: first, we have used the
hierarchical clustering method included in LibraryMCS software
(version 17.2.13.0–ChemAxon), which relies on the Maximum
Common Substructure (MCS). From the resulting clusters, a
compound from each cluster was randomly chosen and used as a
seed to perform a non-hierarchical clustering using the k-means
algorithm, as implemented in Statistica 10 Cluster Analysis
module (Statsoft, 2011). Such procedure was performed in an
independent manner for the ACTIVE and INACTIVE categories.

Seventy-five percent of the compounds in each cluster of the
ACTIVE category were kept for the training set (totaling 87
compounds); an equal number of compounds were taken from
the INACTIVE category clusters (62.14% of each INACTIVE
cluster). The remaining 29 active and 53 inactive compounds
were assigned to test set. Note that, to obtain the training set, we
have under-sampled the INACTIVE category, so that a balanced
calibration sample was obtained. In that way, model bias toward
predicting a specific category was avoided.

Molecular Descriptor Calculation and Modeling

Procedure
Three thousand six hundred sixty-eight conformation-
independent descriptors were computed with Dragon 6.0
software. A random subspace-based method was applied to
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FIGURE 2 | Heatmaps of dissimilarity of the whole dataset and within each category. (A) active compounds vs. inactive compounds; (B) active compounds vs. active

compounds; (C) inactive compounds vs. inactive compounds.

obtain 1,000 random descriptor subsets of no more than 200
potential independent variables each. In the random subspace
approach, the features (independent variables, e.g., molecular
descriptors) are randomly sampled and each model (learner)
is trained on one subset of the feature space (El Habib Daho
and Amine Chikh, 2015; Vyskovsky et al., 2016), which causes
individual models not to over-focus on features that display high
explanatory power in the training set.

A dummy, binary variable (class label) was used as dependent
variable. Such variable was assigned observed values of 1 for
compounds within the ACTIVE, and observed values of 0 for
compounds in the INACTIVE category.

Using a Forward Stepwise approach and a semi-correlation
approach (Toropova and Toropov, 2017), 1,000 linear classifiers
were obtained, one from each of the random subsets of features.
In order to avoid overfitting, only one molecular descriptor every
10 training instances was allowed into each model, with no
more than 12 independent variables per model. No regression
coefficient with p-value above 0.05 was allowed into the model.

R language and environment was used for all data analysis.
The R package data table (https://cran.r-project.org/package=
data.table) was used to handle datasets.

The robustness and predictive ability of the models were
estimated through randomization and leave-group-out cross-
validation tests. In the case of randomization, the class label
was randomized across the compounds in the training set. The
training set with the randomized dependent variable was then
used to train newmodels from the descriptor selection step. Such
procedure was repeated 10 times within each descriptor subset.
It is expected that the randomized models with perform poorly
compared to the real ones. Regarding the Leave-Group-Out
cross-validation, 18-compound subsets were randomly removed
from the training set in each cross-validation round and the
model was regenerated. The resulting model was used to predict
the class label for the 18 removed compounds. The procedure was
repeated 10 times, removing each of the training set compounds
once.

Ensemble Learning
Classifier ensembles are known to handle complex data and to
provide better generalization and accuracy than single model
classifiers (El Habib Daho and Amine Chikh, 2015; Carbonneau
et al., 2016; Min, 2016; Vyskovsky et al., 2016); they can be
particularly useful to prevent overfitting when handling datasets
that suffer from small sample size while their dimensionality is
large (Vyskovsky et al., 2016), a quite frequent scenario in the
drug design field.

The best individual classifiers were selected and combined
(selective ensemble learning approach) using the area under the
ROC curve metric (AUC ROC) as criterion of performance.
Systematic combinations of the 2–100 best performing classifiers
were analyzed. Four combination schemes were applied to obtain
a combined score: MIN operator (which returns the minimum
score among the individual scores of the combined models);
Average Score; Average Ranking and Average Voting. Voting was
computed according to the equation previously used by Zhang
and Muegge (2006). AUC ROCs were obtained with the pROC
package (Robin et al., 2011); the Delong method was used to
obtain 95% confidence intervals.

Pilot (Retrospective) Screening Campaign
Through simulated ranking experiments, Truchon et al.
demonstrated that the AUC ROC metric is dependent on the
ratio of actives/inactives, and the standard deviation of the metric
converges to a constant value when small yield of actives of the
screened library (Ya, also called ratio of actives or prevalence of
activity) are used (ratios of actives below 0.05 seem to provide
more robust results). Reasonably small Ya also ensures that the
saturation effect is constant or absent. A high number of decoys
(around 1,000 or higher) contribute to a controlled statistical
behavior, especially if poorly performing classifiers/methods
are applied (Truchon and Bayly, 2007). Accordingly, we have
performed pilot (retrospective) VS campaigns for the individual
classifiers and classifier ensembles. For that purpose, we have
dispersed the active compounds from each test set among a
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large number of decoys obtained with the help of the enhanced
Directory of Useful Decoys (DUD-E) (Mysinger et al., 2012).
Each of the test set active compounds from each dataset was
used as a query in the DUD-E website, thus generating paired
putative inactive compounds (decoys) for each of those active
compounds. As a result, the pilot database contained 29 known
active compounds dispersed among 1302 DUD-E decoys and
53 known inactive compounds, adding up a total of 1384
compounds and displaying a Ya of 0.021.

Building Positivity Predictive Value Surfaces and

Choosing an Adequate Score Threshold Value
A practical concern in virtual screening campaigns is to predict
the actual probability that a predicted hit will prove truly active
when submitted to experimental testing (the PPV). Estimation of
such probability is however obstructed due to its dependency on
the Ya of the screened library, which cannot be known a priori:

PPV =
(Se)(Ya)

(Se) (Ya) + (1− Sp)(1− Ya)
(1)

where Se represents the sensitivity associated to a given score
cutoff value and Sp represents the specificity. Equation (1) was
applied to build PPV surfaces. 3D plots illustrating the interplay
between PPV, the Se/Sp ratio andYawere built for each individual
model and for each model ensemble. Using the corresponding
pilot database (as described in previous subsections), Se and Sp
were computed in all the range of possible cutoff score values.
Note that there is no guarantee that the Se and Sp associated to
each score value (and thus, the ratio Se/Sp) will be the same when
applying the classifiers to other compound databases, e.g., in the
real virtual screening campaign; nevertheless, since controlled
statistical behavior is observed for database sizes of about 1000
compounds or more and Ya below 0.05, we can reasonably
assume that the ROC curve and derived metrics will be similar
when applying the models to classify other large chemical
databases with low Ya. In order to build the PPV surfaces,
and taking into consideration that in real VS applications Ya
is ignored a priori but invariably low, Ya was varied between
0.001 and 0.010. The R package plotly (https://cran.r-project.org/
package=plotly) was used to obtain all the PPV graphs. Visual
analysis of the resulting PPV surfaces allowed us to select a score
cutoff value with a desired range of PPV.

Virtual Screening
Based on visual inspections of the resulting of PPV graphs, we
have applied an 8-model ensemble using the MIN operator to
combine individual models for virtual screening, choosing 0.354
as score threshold (above 0.354 compounds from the screened
databases have labeled as predicted active compounds). Such
threshold corresponds to a Se/Sp ratio of 0.666. It was checked
that every hit belonged to the applicability domain of the model
from the model ensemble that assigned the minimum score
(which, was, according to our combination scheme, the one that
ultimately decided if a compound was or was not labeled as an
active). The leverage approach was used to assess if a hit belongs
to the applicability domain, using 3d/n as cutoff value, where d is

the number of descriptors in the correspondent model and n is
the number of compounds in the training set.

We have used the 8-model ensemble to screen two databases:
(a) DrugBank 4.0, an online database containing extensive
information about the US Food and Drug Administration (FDA)
approved, experimental, nutraceutical, illicit and investigational
drugs (Law et al., 2014); (b) Sweetlead, a curated database
of drugs approved by other international regulatory agencies,
compounds isolated from traditional medicinal herbs, and
regulated chemicals (Novick et al., 2013). These two databases
were curated using Standardizer 16.10.10.0 (ChemAxon). We
have applied the following actions to generate homogeneous
representations of the molecular structure for the virtual
screening: (1) Strip salts; (2) Remove Solvents; (3) Clear Stereo;
(4) Remove Absolute Stereo; (5) Aromatize; (6) Neutralize;
(7) Add Explicit Hydrogens; and (8) Clean 2D. Additionally,
duplicate structures were removed using Instant JCHEM v.
17.2.6.0. Based in the results obtained and considering the most
direct candidates for repositioning, two compounds were selected
for experimental evaluation. Hits submitted to experimental
testing were acquired from Sigma-Aldrich.

Structure-Based Virtual Screening
The 24 best solutions from ligand based virtual screening were
submitted to molecular docking calculations. To this end we
employed as target our 3D model of the putrescine permease
TcPAT12 previously constructed (Dietrich et al., 2018). This
model was based on the arginine/agmatine antiporter (AdiC)
from E. coli as template (Protein data bank accession code: 3L1L,
Feng et al., 2000), which was identified through Blast sequence
search and showed 23% of sequence identity and 64% coverage
of the entire query sequence. The model of TcPAT12 architecture
was achieved by Modeller Software (Webb and Sali, 2016). The
best model has been selected based on the normalized Discrete
Optimized Protein Energy parameter (z-DOPE) (Shen and Sali,
2006) and the GA341 score (which analyze the reliability of a
model based on statistical potentials) (Melo and Sali, 2007). This
structure had the highest number of residues in allowed area
(96%) on Ramachandran plot, and none of the residues located
in non-allowed regions were involved in the active site of the
transporter.

The docking conditions were defined according to our
previous studies, which pointed to Autodock4.2 (rigid mode) as
the best software to discriminate known inhibitors from non-
inhibitors of TcPAT12 through the docking score (Dietrich et al.,
2018). The “docking active site” was set according to previous
research of Soysa et al. (2013). They proposed the location of the
putrescine-binding pocket in a region that includes Gly69, Cys66,
Trp241, Ala244, Asn145, Cys396, Asn245, Tyr148, Tyr400 amino
acids. Autodock4.2 calculations were computed in a grid with the
default spacing (0.375A) between the 44 × 58 × 40 grid points
in x, y, z directions respectively. Additionally, we performed
the standard estimation for all the variables such as Marsilli-
Gasteiger partial charges. We computed 100 docking runs for
each compound, with a rigid target and flexible ligands (allowing
the rotation of all non-ring torsion angles of the candidates).
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Experimental Assays
Biological Activity Against Different T. cruzi Stages
For all assays, stock and working solutions of the candidate
drugs were prepared using DMSO as solvent and test or control
conditions were tested in triplicate.

Epimastigotes of the Y strain of T. cruzi were cultured at 28◦C
in BHTmedium supplemented with 20 ug/ml haemin, 10% heat-
inactivated fetal bovine serum (FBS), 100µg/ml streptomycin
and 100 U/ml penicillin. The antiproliferative activity of the
candidates was tested at concentrations from 1 to 100µM in
cultures initiated at 107 cells/ml. After 4 and 8 days, the number
of viable parasites were counted using a hemocytometer chamber
under the light microscope (Bellera et al., 2013). Controls
were performed under the same culture conditions with equal
concentrations of DMSO as for candidate drugs. The EC50 values
were determined from dose response curves fitted to a sigmoidal
equation (Boltzmann model) or extrapolated from linear fitting
plots (Fernández et al., 2013).

T. cruzi trypomastigotes were purified at the parasitemia peak
from peripheral blood of mice infected with the RA strain.
Trypomastigotes (1 × 104 per well) were cultured in a 96 well-
plate (final volume 200 µl) in RPMI medium supplemented with
10% FBS at 37◦C in 5% CO2 atmosphere. After 24 hours motile
parasites were counted in hemocytometer chamber under the
light microscope (Miranda et al., 2015). Results were expressed
as % viability of trypomastigotes at 20µM of the hits. Controls
were performed under the same culture conditions with equal
concentrations of DMSO as for candidate drugs. The negative
control was cultured with PBS and the positive control was
cultured with Benznidazole (20µM).

In vitro evaluation of drug activity against intracellular
amastigotes. J774 cells infected with bloodstream
trypomastigotes of RA strain were cultured at 37◦C in humidified
incubator with 5% CO2 in 24-well plates (1.5× 105 cells per well;
final volume of 500 µl in duplicate). After 24 h of incubation,
increasing doses of freshly prepared dilutions of benznidazole,
meclizine dihydrochloride, cinnarizine, or butoconazole were
added at final concentrations of 5, 20, and 50µM for meclizine,
and cinnarizine and 1, 5, and 20µM for butoconazole nitrate.
Seventy-two hours later, medium was drained and cells were
fixed for 10min in ice-cold methanol and stained with 10% v/v
of Giemsa solution for 15min. The number of amastigotes per
100 host cells was recorded. Control cultures were incubated in
medium alone or with equal DMSO concentrations. Citotoxicity
was analyzed in trypsinized cell suspensions, after addition of
Propidium iodide (PI) (Sigma, St. Louis, USA) (5µg/ml) 10min
prior to analysis by fluorescence and light microscopy of the
number of viable and dead cells.

Aminoacid/Polyamine Transport Assay
Aliquots of T. cruzi epimastigotes (3 × 107 parasites) starved
for 3 hs in 2% glucose—phosphate-buffered saline (PBS)
were collected, centrifuged at 1,500 g for 10min and washed
three times with PBS. Cells were then resuspended in 2ml
of PBS containing 5µM (14C)-putrescine, or (14C) arginine,
and candidates at a final concentration of 50µM previously
solubilized in DMSO. Aliquots were taken at different time

points, centrifuged and washed three times with 1ml of ice cold
10mM solution of unlabeled putrescine/arginine in PBS. Pellets
were resuspended and radioactivity determined in UltimaGold
XR (Díaz et al., 2014). All experiments were performed in
triplicate.

The effect of the candidate on parasite viability under
uptake assay conditions was evaluated through the tetrazolium
salt (MTT) reduction assay (Mosmann, 1983). Briefly, 10
µl of 5 mg/ml MTT dye (3[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide) was added to the eppendorf tubes
containing 106 parasites in 100 µl of BHT and the drug
candidates at 50µM solubilized in DMSO. After incubation
for 3 h at 28◦C, the tubes were spin-dried (3,000 rpm) and
the pellet with the formazan crystals were dissolved with 100
µl of DMSO. The optical density (OD) was determined using
a microplate reader (Labsystems Multiskan MS, Finland) at
570/695 nm. Under such conditions, the OD is proportional
to the viable cell number in each well. All experiments were
performed in triplicate.

RESULTS

Model Development and Validation and
Virtual Screening
Two serial virtual screening methods were applied to find
out putative TcPAT12 inhibitors. First, we resorted to a
computationally inexpensive ligand-based approach. For that
purpose, 1,000 individual linear classifiers were obtained by
applying a random subspace approximation. The individual
models were externally validated by using an independent test
set and, for a more challenging and realistic simulation, by
retrospective screening of a simulated library where a small
proportion of active compounds was dispersed among a high
number of (mostly putative) decoys. 82, 57, and 25% of the
individual classifiers displayed AUC ROCs above 0.8 for the
training set, the test set and the simulated DUD-E database,
in that order. This suggests some degree of overfitting and
corroborates that the pilot (retrospective) screening campaign
against the DUD-E database is the more challenging task for
the classifiers. Table 1 shows the eight individual classifiers that
showed the best performance on the training and test sets, and
also on the DUD-E database.

The best individual model included the following features:

Model 348: Class = 3.12777 + 0.03474 ∗ F06[C-C] + 0.20805
∗ S-107 – 0.04291 ∗ F05[N-N] + 0.39611 ∗ C-039 – 0.34582
∗ SM5_B(s) + 6.25705 ∗ Eta_epsi_A + 0.53013 ∗ nSO2OH –
1.28338 ∗ SpMax_H2 + 0.44827 ∗Eig04_AEA(ri) – 1.73390 ∗

ATSC1e+ 0.05975 ∗ CATS2D_09_PL+ 0.02805 ∗ SaaO
Wilks’ Lambda: 0.59
F(12, 161) = 9.23
p < 0.0000

Dragon’s nomenclature for the molecular descriptors has been
kept in the previous expression. F06[C-C] refers to the count of
C-C at a topological distance of 6; S-107 represents the count
of R2S/RS-SR groups; F05[N-N] stands for the frequency of
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TABLE 1 | Values of the AUROC metric for the best eight individual models and the best 8-model ensemble.

Model Training set Test set DUD-E database

8-MODEL ENSEMBLE (MIN) 0.851 (±0.0281) 0.885 (±0.0367) 0.976*** (±0.0085)

8-MODEL ENSEMBLE (RANKING) 0.886 (±0.0239) 0.878 (±0.0375) 0.976*** (±0.0082)

8-MODEL ENSEMBLE (AVERAGE) 0.891 (±0.0234) 0.887 (±0.0357) 0.970*** (±0.0096)

8-MODEL ENSEMBLE (VOTING) 0.833 (±0.0283) 0.810 (±0.0516) 0.959* (±0.0173)

348 0.882 (±0.0250) 0.885 (±0.0360) 0.934 (±0.0123)

706 0.809* (±0.0319) 0.736** (±0.0565) 0.924 (±0.0205)

981 0.843 (±0.0298) 0.837 (±0.0467) 0.922 (±0.0254)

557 0.778** (±0.0343) 0.818 (±0.0482) 0.919 (±0.0203)

123 0.850 (±0.0285) 0.882 (±0.0382) 0.918 (±0.0185)

693 0.860 (±0.0280) 0.828* (±0.0459) 0.913* (±0.0171)

560 0.775** (±0.0348) 0.779* (±0.0525) 0.911* (±0.0185)

746 0.844 (±0.0288) 0.820 (±0.0456) 0.910 (±0.0195)

AUROCs statistically different from the correspondent column for the best individual model (model 348). *p < 0.05, **p < 0.01, and ***p < 0.001. The highest AUC for an individual

model is indicated in bold.

N - N at a topological distance of 5; C-039 refers to Ar-C(=X)-
R groups; SM5_B(s) corresponds to the spectral moment of
order 5 from the Burden matrix weighted by I-State; Eta_epsi_A
is the eta average electronegativity measure; nSO2OH stands
for the number of sulfonic (thio-/dithio-) acids; SpMax_H2 is
the leading eigenvalue from reciprocal squared distance matrix;
Eig04_AEA(ri) denotes the fourth eigenvalue from augmented
edge adjacency matrix weighted by resonance integral: ATSC1e
corresponds to the Centred Broto-Moreau autocorrelation of lag
1 weighted by Sanderson electronegativity; CATS2D_09_PL is
the CATS2D Positive-Positive at lag 09 and; SaaO corresponds
to the sum of aaO E-states.

Whereas the performance of the best individual classifiers
was quite satisfactory, we resorted to ensemble learning to
obtain meta-classifiers with improved accuracy and a more
robust behavior. The expectations on the model combination
approach were confirmed statistically: no matter which
combination scheme is applied, the model ensembles show a
statistically similar behavior to the best individual model when
classifying the training and test set compounds, while statistically
outperforming the individual models when considering the
DUD-E database (p < 0.05 in all cases). The MIN, RANKING
and AVERAGE combination schemes led to the best results
(Table 1), with p-values below 0.001. When considering the
influence of the number of combined models on the AUROC
metric, it was observed that although the ensemble learning
approach always seems to improve the results in comparison
with the individual classifiers, combinations above 10 models
tend to poorer behavior in terms of AUROC values but also
regarding the standard deviation of the mean, which increases
with the number of models included in the ensemble (Figure 3).

Since all the model combination approaches exhibited similar
behavior against the test set and the DUD-E database for
relatively low number (below 10) of combined classifiers, we
chose to move to the real virtual screening campaign with the
combination scheme based on the MIN. In our experience, this
is the most conservative approach which tends to display the
smallest false positive rate. This was confirmed when comparing

Sp and Se of the 8-model meta-classifier with those of the best
performing individual models, where a substantial improvement
in Sp was observed (Figure 4). This is a particularly good result in
our context (small academic group from a mid-income country,
with limited resources to invest in hit experimental validation);
we often prefer to reduce the false positive rate even if this
means losing sensitivity and sacrificing some active scaffolds.
However, in this particular case we have chosen to refine the
former criteria (prioritizing Sp) by resorting to what we have
called PPV surfaces.With the help of these surfaces, the evolution
of the most relevant metric for our purposes, the PPV value,
can be visually (or, eventually, mathematically) optimized as a
function of the Se/Sp ratio across a range of Ya values. For
this analysis, we have used the association between Se/Sp and
score values that have been observed in the pilot screening
campaign. The strongest assumption of our approach is that the
Se/Sp value observed for a given score during the pilot screening
campaign against the DUD-E database will hold when screening
other databases (e.g., the ones screened in real virtual screening
applications). This is of course not necessarily true. However,
since the AUROC values obtained for the DUD-E database are
unequivocally high (always above 0.9 for the individual models
and very close to the perfect value of 1 for the ensembles) while on
the other hand the DUD-E database Ya ratio (quite below 0.05)
and size (>1,000 compounds) speak of a controlled statistical
behavior, we believe it is a reasonable assumption in the present
setting.

When analyzing the PPV surface for the 8-model combination
based on the MIN operator, it was observed that in the current
scenario favoring Sp over Se has a positive impact on the PPV,
thus resulting in higher probabilities of confirming in silico hits
submitted to experimental validation (Figure 5). It should be
emphasized that such behavior is not general: other situations
linked to different PPV surface shapes might lead to an entirely
different conclusion (that is, the need to prioritize Se over Sp
to enhance PPV). The selection of the best cutoff value should
be based in the specific PPV surface obtained in each particular
modeling situation.
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FIGURE 3 | AUROC metric vs. the number of combined models in the DUD-E database (A) MIN operator; (B) Average score; (C) Average Ranking; (D) Average

Voting.

FIGURE 4 | Discriminating abilities of the individual models and the best model ensemble against the DUD-E database. The MIN combination scheme clearly

improves Sp (note the enhanced separation of the inactives from the actives in comparison with individual models).
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FIGURE 5 | PPV surface for the best 8-model ensemble.

Using the PPV surface, we chose 0.354 as score threshold to
be used in our real virtual screening campaign; such score is
associated to a Se/Sp ratio of 0.666 for the 8-model ensemble
based on the MIN operator. Whereas higher scores linked to
lower Se/Sp ratio would, according to the PPV surface, result
in improved PPVs, the resulting number of hits would also be
substantially diminished, leaving very few choices for subsequent
acquisition and experimental testing (the ligand-based screen
using the 0.354 cutoff score resulted in only 24 hits, with just 15 of
them being approved drugs, the most straightforward candidates
to drug repurposing).

The 24 hits emerging from the ligand-based screening stage
were submitted to the structure-based screening (docking into
the TcPAT12 homology model), with 17 of them surviving the
docking stage and only 9 of them having achieved approved
status. Table 2 shows the hits selected through the combined
ligand- and target-based approach, including the PPV range
for the correspondent score value of the 8-model ensemble
between Ya values of 0.001 and 0.010. Note that 3 of the hits,
namely clomifene, oxiconazole and clofazimine have previously
been assayed against T. cruzi, with positive results (Sykes and
Avery, 2013; Bellera et al., 2015; Kaiser et al., 2015). Most of the
compounds have a docking score lower than the value found
for the natural ligand putrescine (−6.0), which was calculated
previously in the same docking conditions. The results justify the
selection of the structures as promising candidates. The exception
was clofazimine, with a docking score of−1.58. In this particular
case, the drug has been identified as trypanocidal agent within
our research group, during an in silico screening to detect novel
cruzipain inhibitors. The drug later confirmed its potential both
in acute and chronic rodent models of Chagas disease (Bellera
et al., 2015; Sbaraglini et al., 2016). In that occasion, though, it
was observed that the potency of the drug against the parasite was
higher than the inhibitory potency against cruzipain, suggesting
multiple mechanisms of action besides cruzipain inhibition.

Based on access to the chosen compounds, we decided to
test clofazimine, cinnarizine, meclizine dihydrochloride, and
butoconazole nitrate (Sigma Aldrich) effects on putrescine
uptake in T. cruzi. Cinnarizine, meclizine, and butoconazole

were also tested against T. cruzi epimastigotes, trypomastigotes,
and amastigotes. The latter assays were omitted for clofazimine,
since as already discussed, this drug had previously been tested
against the different T. cruzi stages, with positive results. Before
acquisition, it was verified if the compounds obeyed different
druglikeness rules. All compounds satisfy Lipinski’s rules (they
satisfy three out of four of the Lipinski’s proposition, only
violating the proposition linked to clogP), Veber’s rule and the
druglikeness criteria adopted by Monge et al. in previous studies
(Lipinski et al., 2001; Veber et al., 2002; Monge et al., 2006). All
in all, these analysis suggest that they have high probabilities of
displaying good oral bioavailability (Lipinski’s and Veber’s rules)
while also excluding some undesirable properties such as highly
reactive chemical groups and possible toxicophores) (Monge’s
criteria). This is not a surprising result since all the hits submitted
to experimental validation are approved drugs. A summary of the
screening workflow and the number of hits surviving each step is
presented in Figure 6.

Experimental Testing
The effect of different concentrations of cinnarizine, meclizine
and butoconazole against T. cruzi epimastigotes was tested
(Figure 7) and the correspondent EC50 was calculated. The
three drugs showed a clear inhibition in a dose-depend
manner on the proliferation of epimastigotes, with a EC50 (at
day 4) of 6.05µM, 8.39µM and 3.08µM, respectively. The
reference drug benznidazole displayed a EC50 of 2.56µM against
epimastigotes. When tested against trypomastigotes at 20µM,
cinnarizine displayed a slight inhibition in viability (30%). No
inhibition was observed for the other two hits tested. When
testing its effects against amastigotes, butoconazole showed a
considerable cytotoxicity against J774 cells at all the assayed
concentrations (100.0%; 57.5 ± 0.6%; 48.3 ± 6.3% at 50µM;
20 and 5µM respectively), and it was therefore disregarded
for future investigations. Meclizine showed cytotoxicity against
J774 cells at 50µM (13.9 ± 2.0%), though no toxic effects
were observed at lower concentrations. Cinnarizine showed
no toxicity at any of the tested concentrations. Meclizine
significantly reduced the number of amastigotes per 100 cells
at the three assayed concentrations. Cinnarizine showed a weak
effect against amastigotes, displaying almost a 50% inhibition at
50µM (Figure 8).

To determine if the mechanism of action of the candidates
correlates with that predicted by our models, the inhibition
of putrescine uptake by T. cruzi epimastigotes was determined
(Figure 9A). A 10-fold molar excess of the candidate drugs were
tested. Cinnarizine and clofazimine showed a clear effect on
putrescine uptake with a significant initial velocity reduction
to 52.56 ± 4.84 and 30.85 ± 2.74% respectively, compared
with transport in control conditions. In contrast, meclizine and
butoconazole did not display any inhibitory effect on putrescine
uptake, which suggests that their trypanocidal effect is related
to other mechanisms of action. Meclizine has previously been
shown to inhibit cruzipain at lowµMconcentrations (Doak et al.,
2010).

The specificity of the putrescine uptake inhibition by
cinnarizine and clofazimine was checked by testing the effect
of both active hits on other transporter of the same family
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TABLE 2 | Candidates selected through the combined ligand- and target-based approach.

Name MIN Score PPV%

(Ya = 0.001)

PPV%

(Ya = 0.01)

Structure Score docking Current therapeutic

indication

Clomifene 0.4837 14.64 63.38 −9.37 Used mainly in female

infertility due to

anovulation

Butoconazole 0.4768 14.64 63.38 −9.87 Local treatment of

vulvovaginal

candidiasis

Meclizine 0.4546 12.30 58.61 −8.95, −6.64a Motion sickness and

vertigo

Clemizole hydrochloride 0.4544 12.30 58.61 −8.91 Allergies

Cinnarizine 0.4273 9.20 50.56 −7.43 Motion sickness and

vertigo

Centchroman 0.3798 5.67 37.76 −6.31 Primarily used as a

contraceptive

Oxiconazole 0.3751 5.00 34.68 −10.44 Dermal fungal

infections.

Astemizole 0.3666 4.25 30.96 −6.45 Allergies

Clofazimine 0.3605 4.06 29.92 −1.58 Leprosy

aThe docking scores of both isomers were calculated.

(Figure 9B). The MTT assay indicated that under the uptake
conditions (with 50µM of the drug and 1% DMSO), neither
cinnarizine nor clofazimine presented a cytotoxic effect on the
parasites (not shown).

DISCUSSION

Comparison With Previous Studies
Whereas studies to exploit polyamine transporters as molecular
drug targets for the development of new trypanocidal agents

are at an early stage, some interesting considerations may be
outlined from the considering the present study and the few
previous reports describing the screening of new inhibitors of
T. cruzi putrescine uptake. First, some of the hits identified in
earlier studies have shown to be more effective against T. cruzi
trypomastigotes than against other stages of the parasite (Reigada
et al., 2017, 2018). For instance, the reported IC50 of isotretinoin
against trypomastigotes (130 nM) is about 230-fold lower than
the one against epimastigotes (Reigada et al., 2017). The opposite
was observed in this study for cinnarizine, since epimastigotes
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FIGURE 6 | Screening workflow used in the present study. The number of compounds retained at each step for further studies is shown.

FIGURE 7 | Effect of cinnarizine on T. cruzi epimastigotes proliferation. Results

are expressed as the mean ± SD of triplicate experiments.

FIGURE 8 | Inhibitory effects of the three assayed hits against T. cruzi

amastigotes.

were more sensitive to the drug than trypomastigotes. There are
some possible explanations to these varying degrees of sensitivity
to putrescine uptake inhibition acrossT. cruzi stages. It is possible
that different forms of the parasite resort to different primary
transport mechanisms of polyamines (each of themwith different
drug specificities) (Seguel et al., 2016). A similar possibility
has been suggested in Leishmania, where it has been observed

that amastigotes and promastigotes use different transporters for
polyamine uptake (Müller et al., 2001; Colotti and Ilari, 2011).

The comparison of the present study with previous in silico-
guided drug repurposing campaigns targeting T. cruzi polyamine
uptake is hindered by the fact that very few earlier studies exist
and that different virtual screening approaches have been applied
in them. The first report of a virtual screening application to
identify putrescine uptake inhibitors came from Alberca et al.
who back in 2016 used an ensemble of six linear classifiers and
identified three novel confirmed hits (out of five hits submitted
to experimental screening): sertaconazole, triclabendazole, and
paroxetine (Alberca et al., 2016). The same 6-model ensemble
was later applied in parallel with a similarity-based screen and
in sequence with target-based screening, with one out of four hits
validating their predicted activity in vitro (Dietrich et al., 2018).
For their part, Reigada et al. used a combination of similarity-
based virtual screening and molecular docking, obtaining two
experimentally confirmed hits (isotretinoin and acitretin) out of
a total of three tested compounds (Reigada et al., 2017). The
statistical comparison of the true PPV (confirmed hits over total
number of hits tested) in the aforementioned virtual screening
campaigns has no point due to the small number of hits tested in
each occasion. Nevertheless, such PPV was in all cases, including
the current study, well above the median value of hit rate in
virtual screening studies (13%), as reported in a critical literature
analysis of virtual screening results published between 2007 and
2011 (Zhu et al., 2013).

From a visual comparison of the (theoretic) PPV surfaces of
the 6-model ensemble reported by Alberca et al. (2016) and the
currently reported 8-model ensemble, it is clear that the 8-model
ensemble reported here shows a more robust and predictable
behavior in the Se/Sp range that goes from 0.3 to 1.0. (Figure 10).

The Power of Ensemble Learning
The DUD-E database used as a validation tool in our
retrospective virtual screening campaign confirmed that
retrospective screening is the most challenging task (besides
prospective screening) for a model conceived for in silico
screening applications, as in the case of individual classifiers, the
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FIGURE 9 | Effect of 50µM cinnarizine and clofazimine on putrescine (A) and arginine (B) uptake in T. cruzi epimastigotes. Values are expressed as % mean ± SD in

comparison with control. Statistical analysis was performed by one-way ANOVA test followed by a post-hoc Dunnett’s multiple comparison test (***p < 0.005).

FIGURE 10 | Comparison of the PPV surface of the 8-model ensemble of classifiers reported here with that of the 6-model ensemble reported back in 2016.

AUROC tends to fall sharply when progressing from the training
set to the DUD-E database. In fact, whereas an astonishing
82% of the individual models achieved remarkable AUROCs
(above 0.8) when confronted to the training set, the percentage
of individual models that obtains such achievement against the
DUD-E falls to only 25%.

Echoing previous studies, though, the ensemble learning
approximation led to more robust results, improving accuracy
in the predictions and generalization (which, in our case, is
reflected by an improved behavior on the test set and the DUD-E
database).

Do We Have Good Repurposed
Candidates?
Despite two out of four hits did not confirm inhibitory effects
on putrescine uptake, all of them did confirm their trypanocidal
effects using concentrations in the low µM range. However, does
this mean that they are good candidates for drug repurposing?

Not necessarily. Cinnarizine, meclizine, and butoconazole
all belong to therapeutic classes that have shown potential as
antichagasic therapies in the past: calcium channel blockers
(Engel et al., 2010; Benaim and Paniz Mondolfi, 2012; Planer
et al., 2014), antihistaminic drugs (Engel et al., 2010; Planer et al.,
2014; Lara-Ramirez et al., 2017) and antifungals (Lepesheva et al.,
2011).

Butoconazole, however, is not a straightforward candidate
for repositioning, since it is only used topically as antifungal.
Accordingly, most of the advantages of drug repurposing will
be lost if the second indication (in this case, Chagas’ disease
chemotherapy) requires systemic administration (Oprea and
Overington, 2015). Furthermore, our experimental evidence
of cytotoxic activity discourages further investigation. The
advantages of drug repositioning will also be mostly lost if the
dose required for the second indication is above the dose range
clinically used for the original one (Oprea andOverington, 2015),
as would probably be the case for cinnarizine and meclizine,
which are currently administered in low daily doses. This is
especially true in the case of cinnarizine, which showed only
weak activity against the clinically relevant forms of T. cruzi. The
scenario is further complicated by the fact that free drug exposure
will be diminished by plasma protein binding: in the case of
cinnarizine, for instance, around 90% of the drug in plasma is
bound to plasma proteins.

The previous analysis does not imply that is impossible
to efficaciously repurpose meclizine (which showed a very
interesting effect against amastigotes, inhibiting 75% growth at
only 5µM concentration) or that both cinnarizine and meclizine
are not useful as starting points for hit-to-lead programs but, in
any case, many of the advantages of the strategy (i.e., bypassing
some preclinical and clinical studies) will probably be lost.
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CONCLUSIONS

A cascade virtual screening approach comprising an ensemble of
ligand-based classifiers and structure-based screening has been
applied, identifying two new inhibitors of putrescine uptake in
T. cruzi and reporting, for the first time, the trypanocidal effects
of butoconazole (and antifungal) and cinnarizine and meclizine,
two antihistaminic agents of the diphenylmethylpiperazine group
commonly used to treat motion sickness and balance disorders.
Interestingly, neither cinnarizine nor clofazimine modified
arginine uptake by another member of the putative amino acid
transporter (TcPAT) family.

This is, to our knowledge, the first report implementing PPV
surface analysis to select the score value to be applied in a virtual
screening campaign.
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