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Abstract 

Background:  Some proposed methods for identifying essential proteins have better 
results by using biological information. Gene expression data is generally used to iden-
tify essential proteins. However, gene expression data is prone to fluctuations, which 
may affect the accuracy of essential protein identification. Therefore, we propose an 
essential protein identification method based on gene expression and the PPI network 
data to calculate the similarity of "active" and "inactive" state of gene expression in a 
cluster of the PPI network. Our experiments show that the method can improve the 
accuracy in predicting essential proteins.

Results:  In this paper, we propose a new measure named JDC, which is based on the 
PPI network data and gene expression data. The JDC method offers a dynamic thresh-
old method to binarize gene expression data. After that, it combines the degree cen-
trality and Jaccard similarity index to calculate the JDC score for each protein in the PPI 
network. We benchmark the JDC method on four organisms respectively, and evaluate 
our method by using ROC analysis, modular analysis, jackknife analysis, overlapping 
analysis, top analysis, and accuracy analysis. The results show that the performance 
of JDC is better than DC, IC, EC, SC, BC, CC, NC, PeC, and WDC. We compare JDC with 
both NF-PIN and TS-PIN methods, which predict essential proteins through active PPI 
networks constructed from dynamic gene expression.

Conclusions:  We demonstrate that the new centrality measure, JDC, is more efficient 
than state-of-the-art prediction methods with same input. The main ideas behind JDC 
are as follows: (1) Essential proteins are generally densely connected clusters in the 
PPI network. (2) Binarizing gene expression data can screen out fluctuations in gene 
expression profiles. (3) The essentiality of the protein depends on the similarity of 
"active" and "inactive" state of gene expression in a cluster of the PPI network.

Keywords:  Essential proteins, The PPI networks, Jaccard similarity index, Edge 
clustering coefficient
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Background
Proteins are generally involved in the life activities of organisms. Essential proteins are 
often found in protein complexes. Loss of essential proteins could cause lethality and 
even lead to the inability of the body to survive [1, 2].

Therefore, the identification of essential proteins not only helps us understand the 
minimal requirements for cell life but also plays a vital role in the discovery of human 
disease genes. Various experimental methods are used to identify essential proteins, 
such as a single gene knockout [3], RNA interference [4], and conditional knockouts [5].

Although experimental methods have achieved excellent results, it still has some 
shortcomings such as time-consuming and expensive. Nowadays, a variety of biological 
data have been generating rapidly by high-throughput experimental technologies, such 
as genomics, transcriptomics, and proteomics datasets. For researchers, it has become 
possible to identify essential proteins with computational methods. The computational 
methods can be classified into two categories: unsupervised and supervised machine 
learning methods.

Unsupervised methods usually identify essential proteins based on some essentiality-
related data, including the PPI networks, cellular localization data, and gene expressing 
data, etc. As for the topological of the PPI network, various prediction models based 
on the centrality-lethality rule are proposed. Because essential proteins in the PPI net-
work are more likely to be hubs nodes, and elimination of hubs nodes may cause the PPI 
network to break down. Various centrality measures for prediction of essential proteins 
include Degree Centrality (DC) [6], Betweenness Centrality (BC) [7], Closeness Central-
ity (CC) [8], Subgraph Centrality (SC) [9], Eigenvector Centrality (EC) [10], Information 
Centrality (IC) [11]. However, these measures only consider the topological features of 
the PPI network and ignore false positives of the PPI network. Some researchers adopt 
biological information to eliminate the effect of false-positive data on the PPI network. 
Li and Tang et al. propose essential protein prediction methods called PeC and WDC 
by combining the PPI network and gene expression information [12, 13]. Compared 
with non-essential proteins, essential proteins tend to be conserved. According to this 
observation, Peng et al. adopt the orthology and PPI networks to predict essential pro-
teins [14]. Li et al. propose an identification method,SON, by using the information of 
subcellular localization, orthologous proteins and PPI networks [15]. Li et al. utilize an 
Extended Pareto Optimality Consensus model to find the triangular structure in the PPI 
network and combine the orthology information for the prediction of essential proteins 
[16].Based on prior knowledge, Li et al. propose two essential protein identification algo-
rithms, CPPK and CEPPK [17]. Li et al. propose a new prediction method for evaluating 
the confidence of each interaction in PPI network to infer essential proteins [18]. Based 
on overlapping essential modules, Zhao et al. adopt gene expression profiles to predict 
essential proteins [19].

With the generation and improvement of multi-omics data, it has become possible to 
construct comprehensive dynamic networks to identify essential proteins. For predict-
ing essential proteins better, Lichtenberg et al. build a time series dynamic network by 
combining gene expression data at different time points and the protein interactions 
data [20]. Xiao et al. propose a prediction method by constructing NF-PIN dynamic net-
work using the time series model and 3_sigma principle to filter out the noise of gene 
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expression [21]. Recently, Li et  al. construct TS-PIN dynamic network by combining 
gene expression profile and subcellular localization information to predict essential pro-
teins [22]. Li et al. introduce a sub-network partition method to predict essential pro-
teins by using the subcellular localization information [23]. Fan et al. adopt an improved 
PageRank algorithm to identify essential proteins based on gene expression and sub-
cellular localization information [24]. Lei et  al. incorporate the multiple biological 
characteristics, including PPI network, GO annotation data, subcellular localization 
information, and protein complexes information, to identify essential proteins by using 
random walk algorithms [25]. Zhang et al. propose a method to predict essential pro-
teins by fusing dynamic PPI networks [26].Li et al. identify essential proteins by comput-
ing each protein’s topology potential [27]. Peng et  al. propose the UDoNC method to 
predict the essential proteins [28].

On the other hand, some prediction methods adopt supervised learning methods 
and use machine learning algorithms to identify essential proteins, such as SVM, Ran-
dom Tree, RBF network, and Naïve Bayes. Gustafson et al. propose using Naïve Bayes 
to identify essential proteins based on gene expression data and topological features in 
the PPI network [29]. Compared with unsupervised methods, the performance of super-
vised methods for detecting essential proteins are often better than that of unsupervised 
methods. Hwang et  al. construct an SVM classifier by using some biological features 
(such as ORF, ST, PHY) and some topological features (such as DC, BD, CC) of the PPI 
network [30]. Zhong et al. adopt the GEP method and an XGBFEMF framework to pre-
dict the essential proteins [31, 32]. Deng et al. predict essential proteins by combining 
Naïve Bayes classifier, C4.5 decision tree, CN2 rule, and logistical regression model [33]. 
Kim et al. adopt machine learning methods to predict essential proteins by using top-
ological properties in the GO-pruned PPI network [34]. Recently, Zeng et al. design a 
deep learning framework for the prediction of essential proteins [35].

The methods based on PPI network and gene expression data may, to some extent, 
eliminate false positive and false negative of protein interaction data. However, the gene 
expression profile is a set of values with large fluctuations that may affect prediction per-
formance. When studying complex biological systems, Niehrs et al. point out that the 
"on" and "off" of genes at different times played an important role in biological devel-
opment [36]. To introduce the "on" and "off" of states of genes, we propose an essen-
tial protein prediction method, named JDC, based on the PPI data and gene expression 
data by using the essential Degree Centrality with Jaccard similarity index. JDC can 
eliminate the fluctuations of gene expression data by calculating the similarity of "active" 
and "inactive" state of gene expression in a cluster of the PPI network. Compared with 
the state-of-the-art methods on four organisms, our method is more accurate and has 
higher specificity and sensitivity.

Methods
Overview

Figure 1 illustrates an example of JDC to predict essential proteins. The JDC algorithm 
incorporates gene expression information with PPI network data. The whole process of 
JDC includes the following steps.(1) ECC is used to characterize the probability of two 
proteins being in a cluster from a topology perspective (2) A dynamic threshold is set to 



Page 4 of 21Zhong et al. BMC Bioinformatics          (2021) 22:248 

binarize gene expression data for filtering out the fluctuations in gene expression pro-
files. (3) The Jaccard similarity index measures the similarity of two proteins that has the 
“active” and “inactive” state of gene expression profiles; (4) JDC scores are calculated by 
integrating the ECC values and Jaccard similarity index. According to those steps, we 
use top rank analysis in the JDC value to verify the performance of our method.

Experimental datasets

We have collected the four organisms: Saccharomyces cerevisiae (Bakers’ Yeast), Escher-
ichia coli (E.coli), Drosophila melanogaster (Fly), and Homo sapiens (Human) to evalu-
ate the JDC method.

The PPI data of Yeast and E.coli were obtained from the DIP database. The PPI net-
work of E. coli has 2727 proteins and 11,803 edges after filtering the self-interactions and 
the repeated interactions. There were 5093 proteins and 24,743 edges in the PPI network 
of Yeast. The PPI data of Fly and Human can be downloaded from the BioGRID data-
base. There were 76,480 edges and 9217 nodes in Fly datasets, and the 504,848 edges and 
18,009 nodes in Human datasets. By converting the id and filtering the self-interactions 
and the repeated interactions, there were 37,992 edges and 6481 nodes in Fly network, 
and 348,871 edges and 15,721 nodes in Human network.

Essential proteins were integrated by the four databases of MIPS [37], SGD [38], DEG 
[39], and SGDP [40]. There are 1167 essential proteins present in Yeast PPI network. Out 
of all 2727 proteins in the E.coli network, 254 were essential. The essential proteins of Fly 
and Human can be obtained from the OGEE database. There are 408 essential proteins 
and 13,373 non-essential proteins in Fly datasets. The number of essential genes human 
was 7123.

The Gene Expression data were downloaded from the NCBI Gene Expression Omnibus 
website. After pretreatment and normalization, 6777 Yeast gene products and 36 samples 
were obtained. Similarly, the gene expression data of E.coli was also downloaded from this 
website. After removing the redundant data, the E.coli gene expression data had 7312 genes 
and 8 samples. GSE67547 is the gene-expression profiles of Fly with 11,952 genes and 66 

Fig. 1  An illustration of JDC
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samples, whereas GSE86354 is the human tissue-specific RNA-seq expression profiling by 
high throughput sequencing.

Edge clustering coefficient (ECC)

Radicchi et al. first propose the edge clustering coefficient that is an important topological 
feature in computational networks [41]. Wang et al. adopt the edge clustering coefficient to 
predict essential proteins in the yeast PPI network, which also has achieved a good detec-
tion effect [42]. The advantage of the edge clustering coefficient is to describe the clustering 
characteristics of PPI networks from the perspective of topology. We adopt the ECC shown 
in formula (1) for our method to calculate the topological attribute of the two nodes, i and j:

where z(3)i,j  denotes the number of actual triangles formed by the edge 
(

i, j
)

 in PPI net-
works, then, the number of possible triangles determined by the minimum degree of 
node i and j is defined as min(ki − 1, kj − 1) . ECC is used to describe how tightly two 
proteins are connected. The larger the ECC value is, the more likely two connected pro-
teins are in the same cluster. Thus, the PPI network was divided into multiple clusters by 
calculating the ECC value of each pair of interacting proteins.

Binarization of gene expression data

Gene expression data are continuous and produced from microarray experiments. How-
ever, the gene expression from high-throughput experiments are prone to large fluctua-
tions. Sahoo et al. performed a Boolean analysis of mouse B cell gene expression data to 
understand gene regulation and gene function [43]. In order to eliminate fluctuation of 
gene expression, in this paper, we use a threshold strategy to covert the continuous values 
to the discrete state values, and then characterize gene expression data with "active" and 
"inactive" state.

In this paper, we select one sigma value close to the mean value as the threshold for 
screening the “active” and “inactive" state of gene expressions. Formula (2) is the mean of 
gene expression data. Formula (3) is the standard deviation of gene expression, and Formula 
(4) is the volatility of gene expression. The threshold parameter is defined in Formula (5).

(1)ECC
(

i, j
)

=
z
(3)
i,j

min(ki − 1, kj − 1)

(2)U(i) =
∑n

t=1E
(i)
t

n

(3)
σ 2(i) =

∑n
t=1

(

U(i)− E
(i)
t

)2

n

(4)V (i) =
1

1+ σ 2(i)
(4)

(5)G(i) = U(i)+ 2 ∗ σ(i) ∗ V (i)
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where E(i)
t  is the expression value of protein i at time point t, U(i) is the mean of expres-

sion value of protein i, σ(i) is the standard deviation of expression data of protein i, V (i) 
is the volatility of expression value of protein i, G(i) is the threshold parameter of expres-
sion value of protein i.
G denotes a matrix constructed from gene expression data, N  is the number of genes, 

and M is the time of proteins:

where si,t is the expression level of protein i at time t. If the expression value of si,t is 
higher than the specified threshold, the "active" gene expression is defined as "1". If the 
value of si,t is not higher than the specified threshold G(i) , it is "inactive" gene expression 
and defined as "0". The calculation formula is as follows:

where s′i,t is the activity of protein i at time t. S is updated to the matrix with Boolean val-
ues. In this paper, the gene expression data are transformed into Boolean values that can 
reflect the "active" and "inactive" state of gene expression.

Jaccard similarity index

The Jaccard coefficient is generally used to measure the similarity of two discrete 
objects. Numanagic et  al. proposed the SEDEF framework based on the Jaccard coef-
ficient, which can accurately predict segmental duplications (SDs) [44]. Wallace et  al. 
introduced the Jaccard coefficient into the prediction of disease-disease relationship and 
deduced the information of the interaction network [45]. In this paper, we compare the 
co-expression of two different related proteins with the Jaccard coefficient. Therefore, 
the Jaccard coefficient of edge 

(

i, j
)

 can be defined as:

where Si and Sj represent the Boolean values of the gene expression data of gene i and 
gene j. The Jaccard correlation coefficient should be between 0 and 1. Here, we define the 
value as the similarity of active expression between gene i and gene j in a cluster of PPI 
networks.

JDC measure index

It has been proved that genes with similar functions often exhibit similar expression 
patterns, known as the "guilt-by-association" principle [46]. Based on the edge cluster-
ing coefficient (ECC) and Jaccard coefficient (Jaccard), we propose a new measurement 
method with Jaccard similarity index (JDC), which is named as the essential Degree 

(6)S =







s11 · · · s1M
...

. . .
...

sN1 · · · sNM







(7)s
′

i,t =
{

1, si,t > G(i)
0, si,t ≤ G(i)

(8)Jaccard
(

i, j
)

=
Si ∩ Sj

Si ∪ Sj
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Centrality. We describe the clustering degree of two proteins from topological and bio-
logical perspectives. Therefore, we define the clustering degree of an edge (i, j) in the PPI 
network as follows:

For protein i, we define its JDC value as the sum of the probability that the protein and 
its neighbors belong to the same cluster:

where Di denotes all the neighborhoods of node i. Then, the node i and the neighbors are 
divided into a cluster. The values measured by JDC depend on the similarity of "active" 
and "inactive" state of gene expression in a cluster of PPI networks.

In this paper, we propose an essential protein identification method based on PPI data 
and gene expression. The advantage of this method is that the calculation is simple, and 
the performance of JDC is better than some state-of-the-art prediction methods.

Results
ROC curves and its AUC analysis

In this section, we adopt receiver operating characteristic (ROC) curves to evaluate the 
global performance of each method. The comparison results are shown in Fig. 2.

As shown in Fig.  2, the ROC curve of JDC is almost above that of other prediction 
methods. The area under the ROC curve (AUC) on both two datasets are 0.6996, and 
0.6999 respectively, which are the highest values among all methods. The ROC results 
obtained by ten methods demonstrate that JDC is more suitable for predicting essential 
proteins.

To show that our method has better performance, we focus on comparing JDC with 
WDC and PeC, because these methods use the same input data. Li and Tang have intro-
duced the Pearson correlation coefficient to weight PPI network based on ECC, which 
effectively reduced false positives and false negatives in PPI network on Yeast data [12, 
13]. Compared with those methods, JDC not only takes the false positive and false 
negative data into consideration on PPI data, but also introduces the "active" and "inac-
tive" states of gene expression. The AUC of JDC method on the yeast dataset improves 
more 0.0112 and 0.0665 than that of WDC and Pec, respectively. The similar results are 
obtained in the experimental results of E.coli dataset.

The advantage of introducing different states is to eliminate fluctuations in gene 
expression data, especially between two genes, the expression value of one gene is 
particularly high, and thus affects the similarity value. JDC can fully consider the co-
expression state of the connected genes at multiple different moments, while WDC and 
Pec compare the similarity of the specific expression values of the two genes at different 
times.

To further compare the performance of JDC, WDC and Pec, we analyze the ROC 
curve based on the top 20% of proteins ranked by each method. The ROC curves are 

(9)Jc
(

i, j
)

= Jaccard
(

i, j
)

∗ ECC
(

i, j
)

(10)JDC(i) =
∑

j∈Di
Jaccard

(

i, j
)

∗ ECC(i, j)
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Fig. 2  ROC curves and AUC values of the JDC method and other methods using the individual features. a 
Yeast data. b E.coli data
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Fig. 3  ROC curves and AUC values of the JDC method and other methods using the individual features in 
the top 20% ranked proteins. a Yeast data. b  E.coli data
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shown in Fig. 3. As can be seen from Fig. 3, the AUC of JDC is higher than that of WDC 
and PeC both on yeast and E.coli datasets.

Accuracy analysis

Where denotes the number of true-positive proteins, denotes the number of false-
positive proteins, denotes the number of true negative proteins, and denotes the 
number of false-negative proteins. In this paper, true-positive is that real essential 
proteins are correctly predicted as essential proteins, false positive is that non-essen-
tial proteins are predicted as essential proteins, true negative is that non-essential 
proteins are correctly predicted as non-essential proteins, and false negative is that 
the essential proteins are predicted as non-essential proteins. The results on Yeast 
and E.coli data are in Table 1.

The Formula (11)–Formula (17) are as follows:

where TP denotes the number of true-positive proteins, FP denotes the number of false-
positive proteins, TN  denotes the number of true negative proteins, and FN  denotes 
the number of false-negative proteins. In this paper, true-positive is that real essential 
proteins are correctly predicted as essential proteins, false positive is that non-essential 
proteins are predicted as essential proteins, true negative is that non-essential proteins 
are correctly predicted as non-essential proteins, and false negative is that the essential 
proteins are predicted as non-essential proteins. The results on Yeast and E.coli data are 
in Table 1.

It can be seen from Table  1 that the values of SN  , SP , PPV  , NPV  , F −measure , 
ACC , and MCC of JDC on Yeast data are 0.4604, 0.8403, 0.4604, 0.8403, 0.4604, 
0.7535 and 0.3007 respectively. Each evaluation criterion for JDC is better than other 

(11)SN =
TP

TP + FN

(12)SP =
TN

TN + FP

(13)FPR =
FP

TN + FP

(14)PPV =
TP

TP + FP

(15)F −measure =
2 ∗ TP

2 ∗ TP + FP + FN

(16)ACCuracy =
TP + TN

TP + TN + FP + FN

(17)MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP) ∗ (TP + FN ) ∗ (TN + FP) ∗ (TN + FN )
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prediction methods. Meanwhile, the values of SN  , SP , PPV  , NPV  , F −measure , ACC 
and MCC of JDC on E.coli data are 0.2835, 0.9264, 0.2835, 0.9264, 0.2835, 0.8665 and 
0.2099 respectively, which outperforms all other methods listed in Table 1. The lower 
the FPR , the better the method. The FPR value of JDC is also the lowest of all methods 
in the two data sets.

Top analysis and overlapping analysis

To further validate the performance of JDC, we adopt a top analysis metrics that select 
the scores of each top percentage (top1%, top5%, top10%, top15%, top20%, top25%) of 
the methods and determine how many of these are essential proteins. The experimental 
results are shown in Figs. 4 and 5.

Fig. 4  Compares the top 1%, 5%, 10%, 15%, 20% and 25% of essential proteins obtained by JDC with other 
methods in yeast data. a TOP1%. b Top5%. c Top10%. d Top15%. e Top20%. f Top25%
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As shown in Fig. 4a of Yeast data, when we select the top 1% ranked proteins, JDC 
and other methods (DC, IC, EC, SC, BC, CC, NC, PeC, and WDC) identify 45, 22, 
24, 24, 24, 24, 32,40 and 36 essential proteins, respectively. In the Yeast data, the JDC 
method can identify 45 essential proteins when we select the top 1% ranked proteins. 
Compared with the centrality method, the number of essential proteins that JDC can 
identify has increased by at least 43%. When compared with PeC and WDC, JDC can 
also improve by 12.5% and 25%, respectively. In Fig. 5, JDC can identify 10, 47, 75, 94, 
123 and 141 essential proteins in each top percent (1%, 5%, 10%, 15%, 20% and 25%) 
of proteins on E.coli data. This shows that the JDC method is better than other meth-
ods at 5%, 10%, 20% and 25%.

Fig. 5  Compares the top 1%, 5%, 10%, 15%, 20% and 25% of essential proteins obtained by JDC with other 
methods in E.coli data. a TOP1%. b Top5%. c Top10%. d Top15%. e Top20%. f Top25%
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To find the difference and overlap of essential proteins identified by each method, 
we select the top 100 proteins sorted by each method in yeast data, and investigate 
the overlapping relationships. Table  2 shows the intersection, difference of results 
between JDC and other various methods, and lists corresponding number and pro-
portion of non-essential and essential proteins.

Where JDC ∩Ci denotes the number of overlapping proteins identified by various pre-
diction methods, and | Ci-JDC| denotes the number of non-overlapping proteins identi-
fied by JDC and various centrality measures. As can be seen from Table 2, the number of 
non-essential proteins in JDC is smaller than that of other methods, and the proportion 
of essential proteins is much higher than that of other methods. Take BC as an example. 
The number of BC in | Ci-JDC| is 85. The percentage of essential proteins of BC in | Ci

-JDC| was 42.35%, while JDC identified 78.82% essential proteins. This means that JDC 
can identify more essential proteins that BC is not.

Jackknife analysis

Holman et al. devised a jackknife strategy that tests the performance of ranking meth-
ods [47]. We also use this method to evaluate the JDC method and other nine essential 
protein prediction methods. For each prediction method, we assess the performance by 

Table 1   SN, SP, FPR, PPV, NPV, F-measure, ACC and MCC of Various Methods on Total Ranked 
Proteins

Methods SN SP FPR PPV NPV F-
measure

ACC​ MCC

Yeast data

JDC 0.4604 0.8403 0.1597 0.4604 0.8403 0.4604 0.7535 0.3007
DC 0.4002 0.8217 0.1783 0.4002 0.8217 0.4002 0.7251 0.2219

BC 0.3505 0.8069 0.1931 0.3505 0.8069 0.3505 0.7023 0.1574

CC 0.3548 0.8082 0.1918 0.3548 0.8082 0.3548 0.7043 0.163

SC 0.3676 0.812 0.188 0.3676 0.812 0.3676 0.7102 0.1796

EC 0.3676 0.812 0.188 0.3676 0.812 0.3676 0.7102 0.1796

IC 0.401 0.822 0.178 0.401 0.822 0.401 0.7255 0.223

NC 0.4353 0.8321 0.1679 0.4353 0.8321 0.4353 0.7412 0.2674

PeC 0.4036 0.8227 0.1773 0.4036 0.8227 0.4036 0.7267 0.2263

WDC 0.4576 0.839 0.161 0.458 0.8388 0.4578 0.7516 0.2967

Methods SN SP FPR PPV NPV F-measure ACC​ MCC

E.coli data

JDC 0.2835 0.9264 0.0736 0.2835 0.9264 02,835 0.8665 02,099
DC 0.2559 0.9236 0.0764 0.2559 0.9236 0.2599 0.8614 0.1795

BC 0.2441 0.9224 0.0776 0.2441 0.9224 0.2441 0.8592 0.2665

CC 0.2441 0.9224 0.0776 0.2441 0.9224 0.2441 0.8592 0.1665

SC 0.2283 0.9207 0.0793 0.2283 0.9207 0.2283 0.8562 0.1491

EC 0.2283 0.9207 0.0793 0.2283 0.9207 0.2283 0.8562 0.1491

IC 0.2559 0.9236 0.0764 0.2559 0.9236 0.2559 0.8614 0.1795

NC 0.2165 0.9195 0.0805 0.2165 0.9195 0.2165 0.8541 0.1361

PeC 0.2441 0.9204 0.0776 0.2441 0.9224 0.2441 0.8592 0.1665

WDC 0.2689 0.922 0.078 0.2689 0.922 0.2689 0.859 0.1909
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calculating the sum of the true essential proteins and the number of essential proteins. 
Figure 3 is the jackknife curve of various methods.

The jackknife curve of ten essential protein prediction methods is plotted in Fig.  6. 
Where the vertical axis represents the cumulative count of essential proteins, and the 
horizontal axis represents the predicted number of essential proteins. The jackknife 
curve of the JDC method is higher than that of other nine methods (DC, IC, EC, SC, BC, 
CC, NC, WDC, and PeC). The results from the jackknife analysis show that the perfor-
mance of JDC is superior to other prediction methods in identifying essential proteins. 
The advantage of JDC is that it can overcome the volatility of the gene expression data.

Modularity analysis

Hart et al. indicate that the importance of proteins is not related to themselves, but spe-
cific protein complexes [48]. Zotenko et al. further demonstrate that functional protein 

Fig. 6  Jackknife curve of various prediction methods. a Yeast data. b E.coli data
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modules contain a large number of essential proteins [49]. To verify the conclusion, we 
select the top 100 proteins ranked by JDC, and constructed a small PPI network mod-
ule with those proteins and their neighbor proteins. The result is shown in Fig. 7. The 
top 100 proteins of JDC include 80 essential proteins (yellow nodes in Fig. 7a) and 17 
functional modules by Markov Cluster procedure (MCL) [50]. For WDC, we follow a 
similar analysis as above, 68 essential proteins (yellow nodes in Fig. 7b)and 14 functional 
modules are found. The modularity of JDC presents more obvious than that of WDC. 
Besides, most of the essential proteins are hubs in the network, as shown in Fig.  7a, 
which is consistent with views of He et al. [51]. To compare the functional modules, we 
adopt the GO enrichment analysis by using website(http://​geneo​ntolo​gy.​org/). By using 

Fig. 7  The modularity of interactions among the top 100 essential proteins predicted by JDC and WDC

Table 2  The overlapping relationships between JDC and nine other prediction measures for the top 
100 proteins

Centrality JDC∩Ci Non-essential 
proteins of Ci in 
|Ci − JDC|

Non-essential 
proteins of 
JDCin|Ci − JDC|

Percentage of 
essential proteins 
of Ci in |Ci − JDC| 
(%)

Percentage of 
essential proteins of 
JDC in |Ci − JDC| (%)

DC 16 46 15 45.24 82.14

IC 17 46 18 44.58 78.31

EC 8 61 18 33.70 80.43

SC 8 61 18 33.70 80.43

BC 15 49 18 42.35 78.82

CC 13 52 17 40.23 80.46

NC 36 34 14 46.88 78.13

PeC 67 12 8 63.64 75.76

WDC 55 20 12 55.56 73.33

http://geneontology.org/
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JDC method, 11 out of 17 functional modules have p-value less than 0.05, whereas, 6 out 
of 14 functional modules with WDC have p-value less than 0.05.

Results using fly and human dataset

To further prove the advantage of our method, we compare JDC with PeC and WDC 
methods on other two organisms: Fly and Human. The gene profiles for human are 
RNA-seq expression with tissue-specific labels, we select the two kinds of tissues data-
set for further analysis. The results using Fly and Human datasets are listed in Table 3, 
which show the number of essential proteins in top 100, 200, 300, 400, 500, 600 essential 
candidates ranked by JDC, Pec and WDC. It can be found that the JDC almost presented 
the high-performance in the results, which indicate that the JDC had improvement over 
the other methods based on different organisms.

Comparison with dynamic network framework

In the previous description, we compared JDC with various essential protein predic-
tion methods that are proposed base on the static PPI network. The experimental results 
show that our method can improve the accuracy of essential protein prediction. To fur-
ther prove the advantage of our method, we compare it with some methods that are 

Table 3  Accurate analysis of the number of essential proteins predicted by JDC, PeC and WDC on 
Fly and Human network

Methods name Top100 Top200 Top300 Top400 Top500 T600

Fly JDC 48 65 69 75 79 85

PeC 46 52 58 66 70 73

WDC 43 64 68 73 82 88
Human Colon JDC 93 185 278 360 438 523

PeC 94 182 272 357 445 522

WDC 87 178 271 355 435 512

Human Liver JDC 93 183 267 354 437 517
PeC 93 176 267 352 438 516

WDC 83 171 258 345 430 509

Table 4  Accurate analysis of the number of essential proteins predicted by various central methods 
in the dynamic network of NF-PIN with JDC

Centrality Top100 Top200 Top300 Top400 Top500 T600 Exceed times

JDC 80 153 224 267 315 355 5
NF-DC 55 111 167 221 261 303 0

NF-EC 55 110 157 202 239 276 0

NF-SC 55 116 161 204 239 276 0

NF-BC 50 97 133 188 226 254 0

NF-CC 45 87 122 161 193 230 0

NF-IC 55 111 167 221 261 303 0

NF-LAC 82 141 198 243 280 322 1

NF-NC 80 147 197 252 290 324 0
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designed based on the dynamic PPI network. We compare JDC with both NF-PIN and 
TS-PIN methods. The two existing methods, which use gene expression on yeast data, 
predict essential proteins in dynamic PPI networks. The results are shown in Tables 4 
and  5.

The methods with dynamic PPI network can effectively improve the accuracy of the 
identification of essential proteins in DC, EC, SC, BC, CC, IC, LAC, and NC. As shown 
in Table 4, when the top100, top200, top300, top400, top500, and top600 proteins are 
selected, JDC can identify 80, 153, 224, 267, 315, and 355 essential proteins, respectively. 
As can be seen from Table 4, our method is better than that of other prediction methods 
at the top 200, top 300, top 400, top 500, and top 600. compared with the TS-PIN, which 
incorporated subcellular localization information, our method also has similar results. 
As shown in both Tables 4 and 5, the exceed times of our method are 5 and 5 respec-
tively, which indicate the JDC method is an effective prediction method for essential 
proteins.

Discussion
The difference between JDC and PeC or WDC is how to weight the PPI network. PeC 
and WDC both adopt the Pearson product-moment correlation coefficient to measure 
the similarity between two sets of gene expression values. However, the gene expression 
data can be represented with continuous values, which are prone to fluctuations that 
may affect prediction performance. JDC incorporate the Boolean values to represents 
the "on/off" state of genes at different times in biological development, and adopt Jac-
card similarity index to measure the similarity between genes. JDC can fully consider the 
co-expression state of the connected genes at multiple different moments, while WDC 
and Pec compare the similarity of the specific expression values of the two genes at dif-
ferent times. Based on the results form Figs. 2 and 3, the ROC curve for JDC can almost 
achieve the best on the yeast dataset, and when values of FPR are less than 0.4 on the 
E.coli dataset, the ROC curve of JDC also has the similar results. The results suggest that 
the JDC has better sensitivity than that of WDC and PeC.

Recently, some computational methods for essential proteins prediction have been 
proposed, which employ a variety of biological data including sequence, orthology, evo-
lution, expression, and subcellular localization information. We have further compared 

Table 5  Accurate analysis of the number of essential proteins predicted by various central methods 
in the dynamic network of TS-PIN with JDC

Centrality Top100 Top200 Top300 Top400 Top500 T600 Exceed times

JDC 80 153 224 267 315 355 5
TS-DC 71 143 198 250 297 347 0

TS-EC 71 143 209 259 300 334 0

TS-SC 78 144 210 266 308 351 0

TS-BC 55 117 165 215 252 287 0

TS-CC 55 114 173 221 273 326 0

TS-IC 71 143 198 247 297 347 0

TS-LAC 85 138 196 246 300 350 1

TS-NC 82 142 200 253 301 350 0
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the JDC with recent developed methods for predicting essential proteins by using multi-
ple biological information.

SPP adopts a strategy of sub-network partition and prioritization to predict essential 
proteins by fusing PPI network and subcellular localization data, which can identify 
84, 153, 210, 261, 314, 362 essential proteins with different top set, respectively. Com-
pare with SPP, the results of JDC are improved by 6.25%, 2.32%, and 0.32% in top 300, 
400, 500 essential candidates, respectively. In top 100 and 600, SPP generates better 
results than that of JDC. The results indicate that both subcellular localization data 
and gene expression data can often improve the accuracy of essential protein predic-
tion. NCCO fuses the PPI network and orthology information to predict the essential 
proteins, which integrate NCC (Neighborhood Closeness Centrality) and OS (Orthol-
ogous Scores). Compare with NCC, the result of JDC is better than that of NCC. 
Orthology information is adopted to assessed the conservative property of proteins. 
Many essential proteins of Yeast are conserved comparing with non-essential proteins, 
so OS is useful feature for NCCO to predict the essential proteins. NCCO exhibits 
the higher accuracy than the JDC. RWEP uses the random work algorithm to identify 
essential proteins by fusing PPI network and biological properties including subcel-
lular localization information, gene expression, complex information, and GO annota-
tion information. Comparing with RWEP, JDC achieved the better result at top 1%, the 
optimal results of RWEP are better than that of JDC at top 5%-20%. In order to get the 
optimal results, RWEP adopts a parameter to adjust the contribution of proteins’ own 
scores and their neighbors’ scores, which is a need to tune the parameters, however it 
is difficult to choose the best parameters for different datasets. Different parameters 
have a great influence on the experimental results. In summary, fusing more biological 
data can improve the effectiveness of methods to identify essential proteins.

Conclusions
In this study, we propose a new essential protein recognition algorithm named JDC 
based on the PPI networks and gene expression data. JDC eliminates the influences of 
fluctuations in gene expression data by calculating the similarity of "active" and "inactive" 
state of gene expression in a cluster of the PPI network. Compared with the nine predic-
tion methods using static PPI network and two dynamic prediction methods, JDC is an 
effective essential protein prediction method. As future work, it would be more accurate 
to predict essential proteins by further utilizing the time-series gene expression dataset. 
For the time series data, the dynamic methods can be used to refine the PPI network to 
construct a reliable PPI network, and a method can be revised to segment the time series 
data, and within each segment to construct a static network with binarizing gene expres-
sion data. The new method would be considered both advantages of dynamic network 
methods and the JDC method.
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