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Abstract
Identifying disease-associated changes in DNA methylation can help us gain a
better understanding of disease etiology. Bisulfite sequencing allows the gener-
ation of high-throughput methylation profiles at single-base resolution of DNA.
However, optimally modeling and analyzing these sparse and discrete sequenc-
ing data is still very challenging due to variable read depth,missing data patterns,
long-range correlations, data errors, and confounding from cell type mixtures.
We propose a regression-based hierarchical model that allows covariate effects to
vary smoothly along genomic positions and we have built a specialized EM algo-
rithm, which explicitly allows for experimental errors and cell type mixtures, to
make inference about smooth covariate effects in the model. Simulations show
that the proposed method provides accurate estimates of covariate effects and
captures the major underlying methylation patterns with excellent power. We
also apply our method to analyze data from rheumatoid arthritis patients and
controls. The method has been implemented in R package SOMNiBUS.
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1 INTRODUCTION

Heritability is high for a wide range of human diseases
(Maurano et al., 2012), but only a portion of it is attributable
to additive genetic variation (Ober and Vercelli, 2011).
Maher (2008) suggested that environmental exposures play
an important role in explaining the “missing” heritability.
Plausibly, such exposures, in interaction with genetic
predisposition, may lead to epigenetic modification that
alters gene regulation without changing genome sequence
(Jaenisch and Bird, 2003). For example, differences in
epigenetic profiles may explain how risk factors like age
(Horvath, 2013) and smoking (Teschendorff et al., 2015)
impact disease susceptibility. Consequently, examining
how epigentic profiles contribute to disease development
and are influenced by environmental factors can provide
novel insights into disease etiology and possible therapies
(Feinberg, 2007).
The most-studied epigenetic mark is DNA methylation

that primarily occurs at a cytosine-guanine dinucleotide
(ie, CpG site) (Lister et al., 2009). Localized differential
methylation is a characteristic feature of many diseases,
such as diabetes (Nilsson et al., 2014), Alzheimer’s disease
(De Jager et al., 2014) and autoimmune disorders (Liu et al.,
2013).
Measuring large-scale DNA methylation at single

nucleotide resolution is now possible owing to the devel-
opment of bisulfite sequencing protocols (Frommer
et al., 1992), which can be implemented genome-wide
or in a set of targeted regions. Targeted Custom Cap-
ture Bisulfite Sequencing (TCCBS) platforms produce
DNA methylation levels for comprehensive subsets of
informative CpGs. Thus, epigenomic dysregulation can
be captured at a much lower cost than whole-genome
bisulfite sequencing (WGBS). This approach’s capacity
to detect novel disease associations has been demon-
strated (Allum et al., 2015; Li et al., 2015). In this work,
we focus on analysis of predefined regions targeted by
TCCBS, with the aim to identify differentially methylated
regions (DMRs) that are associated with phenotypes or
traits.
Methods for extracting interpretable results from the

rawmethylation data derived from eitherWGBS or TCCBS
are greatly hindered by the variability in read depths, the
many missing values, and the possibility of data errors.
Specifically, due to the stochastic nature of sequencing and
alignment, coverage—the total number of reads spanning
a CpG site—varies substantially across sites and individual
samples, which leads to wide-ranging precision for methy-
lation proportions, and to many missing values. In fact,
estimates of DNA methylation are correlated with read
depths (Stephens et al., 2016). Furthermore, the observed

counts of methylated and unmethylated reads could be
contaminated by errors arising from excessive or insuffi-
cient bisulfite treatment, and from misalignment of reads
or other aspects of the sequencing processes. Studies show
that ignoring these errors could bias inference about the
associations of interest (Cheng and Zhu, 2013; Lakhal-
Chaieb et al., 2017).
Additionally, due to cell type specific differences in

methylation levels, variability in cell type mixture propor-
tions has a strong effect on observed levels of methylation
frommixed tissue samples. This mixture, as well as factors
known to alter methylation levels, such as age (Horvath,
2013), can confound associations of interest. Hence, it is
essential to develop methods to adjust methylation signals
for multiple covariates.
Moving in this direction, approaches have been pro-

posed for identifying DMRs from bisulfite sequencing
data; see overviews in Shafi et al. (2017) and Yu and Sun
(2016a). Typically, to account for spatial correlations of
methylation between neighboring CpG sites, strategies
include Hidden Markov models (HMM) (Sun and Yu,
2016; Yu and Sun, 2016b; Shokoohi et al., 2018), hierarchi-
calmodels with autoregressive or randomwalk correlation
structures (Rackham et al., 2017; Korthauer et al., 2019),
and kernel-based smoothing methods (Hansen et al.,
2012; Hebestreit et al., 2013; Lakhal-Chaieb et al., 2017).
However, none of these methods meet all the desirable
objectives simultaneously: regional testing, estimation
of multiple covariate effects, adjustment for read depth
variability, and experimental errors. For example, several
of the current HMM-based (Sun and Yu, 2016; Yu and
Sun, 2016b) and hierarchical methods (Rackham et al.,
2017) only test for differential methylation between two
independent groups of samples and do not allow for the
adjustment of multiple covariates. Approaches using a
binomial mixed model for DNA methylation analysis
(Lea et al., 2015; Weissbrod et al., 2017) allow for multiple
covariates and can capture sample correlations, but were
only designed for single site analysis. BSmooth (Hansen
et al., 2012), a kernel-based method, detects differential
methylation after converting the methylated and total
counts to proportions. However, this conversion could lead
to reduced power since it disregards read depth variability
and fails to distinguish between noisy and accurate mea-
surements (Rackham et al., 2017). Moreover, most of the
existing methods ignore experimental errors. On the other
hand, the only approach accounting for data errors, the
Smooth Methylation Status Call (SMSC) (Lakhal-Chaieb
et al., 2017), is only developed for data from a single cell
type.
More importantly, most of the existing methods are

of a two-stage nature (Hansen et al., 2012; Hebestreit
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et al., 2013; Lakhal-Chaieb et al., 2017). Typically, they first
smooth the raw methylation data for each sample sepa-
rately, and then, in the second stage, they estimate covari-
ate effects by modeling the smoothed methylation data.
These per-sample smoothing strategies do not take advan-
tage of information contained across samples and fail to
fully exploit the fact that samples with similar covariate
profiles (eg, disease status, cell type composition, or other
phenotypes of interest) can be expected to share similar
methylation patterns. In addition, separating smoothing
and inference steps results in biased uncertainty estimates.
In summary, it would be highly desirable to develop a
general framework of analysis, which collapses smooth-
ing and testing steps into a single step, and simultaneously
addresses regional testing, estimation ofmultiple covariate
effects, adjustment for read depth variability, and experi-
mental errors.
In this paper, we propose such a general framework.

Our strategy allows information to be shared not only
between nearby CpGs, but also across samples, thus pro-
viding greater sensitivity for capturing patterns common to
several samples of similar characteristics (rather than one
sample).
Specifically, our approach is built on a hierarchical

regression model that describes bisulfite sequencing data.
We assume, as in Lakhal-Chaieb et al. (2017) and Cheng
and Zhu (2013), that the observed read counts arise from
an unobserved latent true methylation state compounded
by errors. These true methylation counts are then mod-
eled by a binomial distribution, dependent on read depth.
Note that the probability parameter of this binomial distri-
bution depends on the sample-level covariates of interest,
such as cell-type mixture proportions and the trait of inter-
est, but also nearby methylation information. To capture
realistic methylation patterns across regions, we addition-
ally allow baseline methylation levels, covariate effects,
and adjustment effects to vary smoothly along genomic
positions: this is done by using spines. This amounts to
borrowing information from the local correlation struc-
tures between methylation levels, and allows us to remedy
local information gaps due to missingness. This formula-
tion naturally allows for any number of covariates in the
model.
This article is organized as follows. Section 2 describes

the proposed model along with its estimation and infer-
ence procedures. A motivating data example from a study
of cases with rheumatoid arthritis (RA) and controls is
described in Section 3. Simulation studies evaluating the
performance of our proposed method and comparing our
type I errors and power to existing methods are summa-
rized in Section 4. The paper concludes with a discussion
in Section 5.

2 METHOD

2.1 Notation and data

We consider DNA methylation measures over a targeted
genomic region from 𝑁 independent samples. Let 𝑚𝑖 be
the number of CpG sites for the 𝑖th sample, 𝑖 = 1, 2, …𝑁.
We write 𝑡𝑖𝑗 for the genomic position (in base pairs) for
the 𝑖th sample at the 𝑗th CpG site, 𝑗 = 1, 2, … ,𝑚𝑖 . The set
of genomic positions captured in different samples do not
have to be identical because each sample has an individ-
ual profile of covered CpG sites, due to read depth vari-
ability. Methylation levels at a site are quantified by the
number ofmethylated reads and the total number of reads.
We define 𝑋𝑖𝑗 as the total number of reads aligned to
CpG 𝑗 from sample 𝑖. The tissue samples sent for bisulfite
sequencing experiments from most studies will normally
be composed of a mixture of cell types. For example, com-
mon cell types are in blood: granulocytes, T cells, B cells,
monocytes, neutrophils, and eosinophils; in adipose tis-
sues: adipocyte, preadipocyte, endothelial and mural cells.
Thus, the reads obtained at a CpG site are likely to capture
contributions from different cell types; the true underly-
ingmethylation statuses are probably different across these
𝑋𝑖𝑗 reads. We denote the true methylation status for the
𝑘th read obtained at CpG 𝑗 of sample 𝑖 as 𝑆𝑖𝑗𝑘, where 𝑘 =
1, 2, …𝑋𝑖𝑗 . 𝑆𝑖𝑗𝑘 is binary andwe define 𝑆𝑖𝑗𝑘 = 1 if the corre-
sponding read is methylated and 𝑆𝑖𝑗𝑘 = 0 otherwise. In the
presence of experimental errors in sequencing or prepro-
cessing, the observed methylation status, written as 𝑌𝑖𝑗𝑘,
can be distinct from the true underlying information 𝑆𝑖𝑗𝑘.
We denote 𝑌𝑖𝑗𝑘 = 1 if the corresponding read is observed
as methylated and 𝑌𝑖𝑗𝑘 = 0 otherwise. We additionally
denote the true and observedmethylated counts at CpG 𝑗 for
sample 𝑖with 𝑆𝑖𝑗 =

∑𝑋𝑖𝑗
𝑘=1

𝑆𝑖𝑗𝑘 and𝑌𝑖𝑗 =
∑𝑋𝑖𝑗
𝑘=1

𝑌𝑖𝑗𝑘, respec-
tively. Furthermore, we assume that we have the informa-
tion on 𝑃 covariates for the 𝑁 samples, denoted as 𝒁𝒊 =
(𝑍1𝑖, 𝑍2𝑖, …𝑍𝑃𝑖), for 𝑖 = 1, 2, …𝑁.

2.2 Model

We built here on concepts introduced in Cheng and Zhu
(2013) and Lakhal-Chaieb et al. (2017) to account for exper-
imental errors. We assume that, depending on the true
underlying methylation status 𝑆𝑖𝑗𝑘, the observed status
𝑌𝑖𝑗𝑘 is a Bernoulli variable with parameters 𝑝0 or 𝑝1, that
is,

𝑝0 = ℙ(𝑌𝑖𝑗𝑘 = 1 ∣ 𝑆𝑖𝑗𝑘 = 0),

𝑝1 = ℙ(𝑌𝑖𝑗𝑘 = 1 ∣ 𝑆𝑖𝑗𝑘 = 1). (1)
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Here, these two parameters capture errors; 𝑝0 is the rate of
false methylation calls, and 1 − 𝑝1 is the rate of false non-
methylation calls. These rates are assumed to be constant
across all reads and positions. The error parameters 𝑝0 and
𝑝1 can be estimated by looking at raw sequencing data at
CpG sites known in advance to bemethylated or unmethy-
lated (Wreczycka et al., 2017). We assume hereafter that 𝑝0
and 𝑝1 are known. Implications of such an assumption is
discussed later in the Supporting Information Section 2.2.
We then assume the true methylated counts 𝑆𝑖𝑗 fol-

lows a binomial distributionwith amethylation proportion
parameter 𝜋𝑖𝑗 that depends on the sample-level covariates
𝒁𝒊, and on nearby methylation patterns. Specifically,

𝑆𝑖𝑗 ∣ 𝒁𝒊, 𝑋𝑖𝑗 ∼ Binomial(𝑋𝑖𝑗, 𝜋𝑖𝑗),

𝑔(𝜋𝑖𝑗) = 𝛽0(𝑡𝑖𝑗) +

𝑃∑
𝑝=1

𝛽𝑝(𝑡𝑖𝑗)𝑍𝑝𝑖, (2)

where 𝑔(⋅) is a logit link function and 𝛽0(𝑡𝑖𝑗) and
{𝛽𝑝(𝑡𝑖𝑗)}

𝑃
𝑝=1 are functional parameters for the intercept

and covariate effects. This amounts to assuming smoothly
varying methylation levels and covariate effects on methy-
lation levels across our targeted small genomic regions. In
practice, to estimate Model (2), the functions 𝛽𝑝(𝑡𝑖𝑗) can
be represented by the coefficients of a chosen spline bases
of rank 𝐿𝑝,

𝛽𝑝(𝑡𝑖𝑗) =

𝐿𝑝∑
𝑙=1

𝛼𝑝𝑙𝐵
(𝑝)

𝑙
(𝑡𝑖𝑗), for 𝑝 = 0, 1, …𝑃,

where {𝐵
(𝑝)

𝑙
(⋅)}

𝐿𝑝
𝑙=1

denotes the spline basis, and
𝜶𝒑 = (𝛼𝑝1, …𝛼𝑝𝐿𝑝 )

𝑇 ∈ 𝐿𝑝 are the coefficients to be
estimated. In this way, model (2) becomes a gen-
eralized linear model (GLM), 𝑔(𝝅) = 𝕏𝜶, where
𝝅 = (𝜋11, …𝜋1𝑚1

, 𝜋21, …𝜋2𝑚2
, …𝜋𝑁𝑚𝑁

)𝑇 ∈ [0, 1]𝑀 with
𝑀 =

∑𝑁

𝑖=1
𝑚𝑖 , 𝜶 ∈ 𝐾 with 𝐾 =

∑𝑃

𝑝=0
𝐿𝑝, and 𝕏 is the

spanned design matrix of dimension𝑀 × 𝐾, stacked with
elements 𝐵(𝑝)

𝑙
(𝑡𝑖𝑗) × 𝑍𝑝𝑖; for detailed forms, see Supporting

Information Appendix A.
To avoid over-fitting, we penalize departure from

smoothness, using penalized regression splines (Wahba,
1980; Parker and Rice, 1985). Specifically, we use a com-
paratively large number of knots (equivalent to large 𝐿𝑝)
and a penalization, quantified by the integrated squared
curvature of the splines, is added as an extra term in the
log-likelihood function (loss function),

Penalization =
𝑃∑
𝑝=0

𝜆𝑝 ∫
(
𝛽′′𝑝 (𝑡)

)2
𝑑𝑡 =

𝑃∑
𝑝=0

𝜆𝑝𝜶
𝑇
𝒑𝑨𝒑𝜶𝒑.

(3)

In Equation (3), 𝑨′𝒑𝑠 are 𝐿𝑝 × 𝐿𝑝 positive semidef-
inite matrices with the (𝑙, 𝑙′) element 𝑨𝒑(𝑙, 𝑙

′) =

∫ 𝐵(𝑝)′′𝑙 (𝑡)𝐵(𝑝)′′𝑙′ (𝑡)𝑑𝑡; these are fixed quantities given
the specified set of basis functions. The weights 𝜆𝑝,
that is, the smoothing parameters, are positive param-
eters that establish a trade-off between the closeness of
the curve to the data and the smoothness of the fitted
curves. Note that there is one smoothing parameter
per covariate in our model. The smoothing process
across targeted regions is accomplished by adding the
penalization terms in Equation (3) to the model in
Equation (2).

2.3 Estimation

2.3.1 Penalized complete likelihood

If the true methylated counts 𝑆𝑖𝑗 were available, model (2)
with penalization (3) would be estimated by maximizing
the penalized log-likelihood,

𝑙complete(𝑺; 𝜶, 𝝀) = 𝑙(𝑺; 𝜶) −
1

2

𝑃∑
𝑝=0

𝜆𝑝𝜶
𝑻
𝒑𝑨𝒑𝜶𝒑

= 𝑙(𝑺; 𝜶) −
1

2
𝜶𝑻𝑨𝝀𝜶,

where 𝑙(𝑺; 𝜶) =
∑𝑁

𝑖=1

∑𝑚𝑖

𝑗=1
{𝑆𝑖𝑗 log(𝜋𝑖𝑗) + (𝑋𝑖𝑗 − 𝑆𝑖𝑗)

log(1 − 𝜋𝑖𝑗)}, and 𝑨𝝀 is a 𝐾 × 𝐾 positive semidef-
inite block diagonal matrix of the form 𝑨𝝀 =

Diag{𝜆0𝑨𝟎, 𝜆1𝑨𝟏, … , 𝜆𝑃𝑨𝑷}. This is also the complete-
data log-likelihood of the joint distribution of 𝒀 and
𝑺, that is, log(𝑓(𝑆)) + log(𝑓(𝑌 ∣ 𝑆)); indeed, 𝑓(𝑌 ∣ 𝑆)

only depends on the known error rates 𝑝0 and
𝑝1, and bears no information on the parameters of
interest.

2.3.2 Smoothed E-M algorithm

In practice, the true methylation data, 𝑆𝑖𝑗 , are unknown
and one only observes 𝑌𝑖𝑗 , which is a mixture of binomial
counts arising from both the truly methylated and truly
unmethylated reads. The EM algorithm (Dempster et al.,
1977) allows us to estimatemodel (2) based on the observed
data 𝑌𝑖𝑗 , by repeatedly replacing a trial estimate (𝜶⋆, 𝝀⋆)
by a new (𝜶, 𝝀), which is a maximum of the function

𝑄(𝜶 ∣ 𝜶⋆) = 𝔼
{
𝑙complete(𝑺; 𝜶, 𝝀) ∣ 𝒀, 𝜶⋆

}

= 𝑙(𝜼⋆; 𝜶) −
1

2
𝜶𝑻𝑨𝝀𝜶. (4)
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E step In Equation (4) 𝜼⋆ = (𝜂⋆11, … , 𝜂
⋆
1𝑚1

, 𝜂⋆21, … ,

𝜂2𝑚⋆
2
, … , 𝜂⋆𝑁𝑚𝑁

)𝑇 ∈ 𝑀 are conditional expectations
of 𝑆𝑖𝑗 given 𝑌𝑖𝑗 evaluated at the trial estimates (𝜶⋆, 𝝀⋆); in
our case, these take the form

𝜂⋆
𝑖𝑗
= 𝔼

(
𝑆𝑖𝑗 ∣ 𝑌𝑖𝑗; 𝜶

⋆, 𝝀⋆
)
=

𝑌𝑖𝑗𝑝1𝜋
⋆
𝑖𝑗

𝑝1𝜋
⋆
𝑖𝑗
+ 𝑝0(1 − 𝜋

⋆
𝑖𝑗
)

+

(
𝑋𝑖𝑗 − 𝑌𝑖𝑗

)
(1 − 𝑝1)𝜋

⋆
𝑖𝑗

(1 − 𝑝1)𝜋
⋆
𝑖𝑗
+ (1 − 𝑝0)(1 − 𝜋

⋆
𝑖𝑗
)
, (5)

with 𝜋⋆
𝑖𝑗
= 𝑔−1(𝕏𝜶⋆), which depends on 𝝀⋆ via the depen-

dence of 𝜶⋆ on 𝝀⋆. Calculating these conditional expecta-
tions 𝜂⋆

𝑖𝑗
from (5) constitutes the E step of our algorithm.

M step Each M step involves maximizing the Q function in
(4) to update 𝜶 and 𝝀. This is a penalized (GLM) likelihood
maximization problem with multiple quadratic penalties,
previously studied in Wood (2011), Wood et al. (2016), and
Wood and Fasiolo (2017). Our computational strategy for
estimating smoothing parameters 𝝀 is a nested optimiza-
tion procedure (Wood, 2011), with an outer iteration for
optimizing 𝝀 and an inner penalized iteratively reweighted
least squares (P-IRLS) iteration to estimate 𝜶 given the trial
value of 𝝀 from the outer iteration.
For given values of smoothing parameters

𝝀 = (𝜆0, 𝜆1, … 𝜆𝑃), a unique maximizer of expression
(4) is readily computed by P-IRLS; see more details in
the Supporting Information Appendix B. Specifically, the
outer iteration involves maximizing a restricted likeli-
hood for smoothing parameters 𝝀, which is obtained by
integrating 𝜶 out of the joint likelihood for 𝝀 and 𝜶. We
rely on the work done by Wood (2011) and use a Laplace
approximated restricted likelihood; see more details in the
Supporting Information Appendix C. As the analytical
forms for derivatives and Hessians of this restricted likeli-
hood are also available, the optimization for 𝝀 in the outer
iteration can be readily achieved via Newton’s method.
Although the combination is undoubtedly computation-

ally complex, the nested iterations will guarantee conver-
gence formodels with properly defined likelihoods (Wood,
2011; Wood et al., 2016).

E-M iteration We iterate between the E and M steps
until convergence to obtain 𝜶 and 𝝀. Given the esti-
mates of basis coefficients 𝜶𝑝, for 𝑝 = 0, 1, …𝑃, the func-
tional parameters 𝛽𝑝(𝑡) can be thus estimated by 𝛽𝑝(𝑡) =
{𝑩(𝑝)(𝑡)}𝑇{𝜶𝑝}, where 𝑡 is a genomic position lying within
the range of the input positions {𝑡𝑖𝑗}, and 𝑩(𝑝)(𝑡) =

(𝐵
(𝑝)
1 (𝑡), 𝐵

(𝑝)
2 (𝑡), …𝐵

(𝑝)
𝐿𝑝
(𝑡))𝑇 ∈ 𝐿𝑝 is a column vector with

nonrandom quantities obtained from evaluating the set of
basis functions {𝐵(𝑝)

𝑙
(⋅)}𝑙 at position 𝑡.

2.4 Inference for smooth covariate
effects

To obtain a quantification of the uncertainty accompany-
ing the smoothed EM estimates for the covariate effects
{𝛽1(𝑡), 𝛽2(𝑡), … 𝛽𝑃(𝑡)}, we additionally estimate their point-
wise confidence intervals (CI) in Section 2.4.1, and obtain
tests of hypotheses for these effects in Section 2.4.2. This
inference is carried out conditional on the values of
smoothing parameter 𝝀; that is, the uncertainty in esti-
mating 𝜆 is not accounted for. The potential bias associ-
ated with this assumption is shown to be small; see the
pointwise confidence interval coverage in Figure 4 and
the distribution of region-based P-values under the null in
Figure 5.

2.4.1 Confidence interval estimation

Analytical derivation for standard errors usually involves
calculating the observed Fisher information for parame-
ters 𝜶 from the marginal log-likelihood for 𝒀. However, in
this case, a direct calculation of the observed Fisher infor-
mation is analytically intractable because the observed
𝒀 follows a mixture of two binomial distributions. To
circumvent this problem, we rely on the work of Louis
(1982) and Oakes (1999), which showed that this Fisher
information can be calculated solely from the 𝑄 func-
tion (4), without referring to the marginal distribution
of 𝒀.

Theorem 1. Under the usual regularity conditions for
maximum likelihood, we have the following asymptotic
results for the estimators 𝜶 obtained from the smoothed-EM
algorithm,

√
𝑀(𝜶 − 𝜶)


⟶𝑴𝑽𝑵𝐾(𝟎,

−1
), as𝑀 →∞.

Here,𝐾 is the dimension of the spline coefficients 𝜶, and  =

𝔼[−𝑖𝑗(𝜶)]. Specifically𝑖𝑗(𝜶) has the form

𝑖𝑗(𝜶) = 𝕏𝑇
(𝑙,)

(
−𝑋𝑖𝑗𝑤𝑖𝑗 + 𝛿𝑖𝑗𝑤𝑖𝑗

)
𝕏(𝑙,) − 𝑨𝝀,

where 𝕏(𝑙,) is the 𝑙𝑡ℎ row of the design matrix 𝕏, which cor-
responds to the CpG 𝑗 of sample 𝑖, 𝑤𝑖𝑗 = 𝜋𝑖𝑗(1 − 𝜋𝑖𝑗) is the
element of the weight matrix, and

𝛿𝑖𝑗 =
𝑌𝑖𝑗𝑝1𝑝0

[
𝑝1𝜋𝑖𝑗 + 𝑝0(1 − 𝜋𝑖𝑗)

]2

+

(
𝑋𝑖𝑗 − 𝑌𝑖𝑗

)
(1 − 𝑝1)(1 − 𝑝0)

[
(1 − 𝑝1)𝜋𝑖𝑗 + (1 − 𝑝0)(1 − 𝜋𝑖𝑗)

]2 .
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The proof of Theorem 1 is given in the Supporting
Information Appendix D. Theorem 1 provides the desired
variance-covariance matrix of the EM estimators 𝜶, which
can be estimated using the observed Fisher information

𝕍ar(𝜶) = {−(𝜶)}−1,
where(𝜶) = ∑

𝑖,𝑗
𝑖𝑗(𝜶). Let𝑽 denote this variance esti-

mator and 𝑽𝒑 be the diagonal blocks of 𝑽 corresponding
to 𝜶𝑝, with dimensions 𝐿𝑝 × 𝐿𝑝. As 𝛽(𝑡) is a linear combi-
nation of coefficients 𝜶𝒑, the estimated variance of 𝛽𝑝(𝑡)
takes the form 𝕍ar(𝛽𝑝(𝑡)) = {𝑩(𝑝)(𝑡)}𝑇𝑽𝒑{𝑩

(𝑝)(𝑡)}. There-
fore, the confidence interval for 𝛽𝑝(𝑡) at significance level 𝜈

can be estimated by 𝛽𝑝(𝑡) ± ℤ𝜈∕2
√
𝕍ar(𝛽𝑝(𝑡)), for any 𝑡 in

the range of interest, where ℤ𝜈∕2 is 𝜈∕2 (upper-tail) quan-
tile of a standard normal distribution.

2.4.2 Hypothesis testing for a regional
zero effect

Wecan also construct a region-wide test of the null hypoth-
esis

𝐻0 ∶ 𝛽𝑝(𝑡) = 0, for any 𝑡 in the genomic interval.

This test depends on the association between covariate
𝑍𝑝 and methylation levels across the region, after adjust-
ment for all the other covariates, and the null hypothesis
is equivalent to 𝐻0 ∶ 𝜶𝑝 = 𝟎. A Wald-type statistic can be
naturally proposed as

𝑇𝑝 = 𝜶𝒑
𝑇 {

𝑽𝒑

}−1
𝜶𝒑,

where {𝑽𝒑}
−1 denotes inverse if 𝑽𝒑 is nonsigular; for sin-

gular 𝑽𝑝, the inverse is replaced by the Moore-Penrose
inverse {𝑽𝒑}

−. If 𝜶𝒑 is a vector of unpenalized coeffi-
cients, under the null hypothesis, 𝑇𝑝 asymptotically fol-
lows a Chi-square distribution with degrees of freedom
𝐿𝑝. In the presence of smoothness penalization, 𝐿𝑝 should
be replaced by the effective degrees of freedom (EDF), 𝜏𝑝,
which depends on the magnitude of smoothing parameter
𝜆𝑝 and is smaller than 𝐿𝑝. Motivated by the work of Wood
(2013), we define the EDF 𝜏𝑝 as

𝜏𝑝 =

𝑏𝑝∑
𝑙=𝑎𝑝

(
2𝑭 − 𝑭𝑭𝑇

)
(𝑙,𝑙)
, for 𝑝 = 0, 1, …𝑃, (6)

where 𝑎𝑝 =
∑𝑝−1

𝑚=0
𝐿𝑚 + 1 if 𝑝 > 0 and 𝑎𝑝 = 1 if 𝑝 = 0,

𝑏𝑝 =
∑𝑝

𝑚=0
𝐿𝑚 for any 𝑝, and (∙)(𝑙,𝑙) stands for the 𝑙th lead-

ing diagonal element of amatrix. In (6),𝑭 is the smoothing

matrix of our model, which has the form 𝑭 = (𝕏𝑇𝑾𝕏+

𝑨𝝀)
−1𝕏𝑇𝑾𝕏, where𝑾 is the weight matrix whose diag-

onal is 𝑋𝑖𝑗 𝜋𝑖𝑗(1 − 𝜋𝑖𝑗). A joint null hypothesis that evalu-
ates the effects of multiple covariates can be defined in a
similar way.
Hereafter we refer the proposed novel method includ-

ing the region-wide test and the smooth covariate esti-
mation as SOMNiBUS (SmOoth ModeliNg of BisUlfite
Sequencing).

3 METHYLATION DATA FROMAN RA
STUDY

To illustrate our method, we report our analysis on data
from an RH study (Hudson et al., 2017). Methylation
profiles of cell-separated blood samples of 22 rheuma-
toid arthritis (RA) patients and 21 healthy individuals
were measured with custom captured targeted bisulfite
sequencing. We focus on one targeted region on chro-
mosome 4 near gene BANK1, which is known to show
cell-type-specific methylation levels (Hillier et al., 2005).
Three additional targeted regions from the same data set
are also analyzed in the Supporting Information Section 3.
In this BANK1 region, methylation levels are available at
123 CpG sites. There are 25 samples from circulating T
cells and 18 samples from monocytes. We consider two
binary covariates—RA status and cell type—and study
their impact on methylation pattern in this region.
To fit SOMNiBUS, we specified error parameters 𝑝0 =

0.003 and 1 − 𝑝1 = 0.1; the value 0.003 was reported by
Prochenka et al. (2015) as insufficient conversion rate and
0.1 was estimated as the average excessive conversion rate
in our data using the method proposed by Lakhal-Chaieb
et al. (2017).We used cubic splines of rank 𝐿𝑝 = 5 to expand
the smooth terms in the model. Figure 1A shows the esti-
mated smooth covariate effects on methylation levels in
the targeted BANK1 region. The panel “Intercept” displays
the methylation pattern (on the logit scale) for control
samples with the monocyte cell type. The panel “Effect of
RA” displays the pattern of methylation difference (on the
logit scale) between RA samples and control samples with
the same cell type. This figure suggests that RA patients
show slightly higher methylation levels in the middle part
of the region, compared to controls. The panel “Effect of
Tcell” represents the difference of methylation levels (on
the logit scale) between T cell samples and monocyte sam-
ples with the same disease status. This effect curve, along
with the confidence interval bands, clearly shows a highly
significant increase of methylation in T cells relative to
monocytes. Figure 1B displays the predicted methylation
proportions in the four groups of samples, defined by cell
type and RA status. Overall, Figure 1 demonstrates the
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F IGURE 1 (A), The estimates (solid lines) and 95% pointwise confidence intervals (dashed lines) of the intercept, the smooth effect of
RA and cell type (T cells versus monocytes) on methylation levels. (B), The predicted methylation levels in the logit scale (left) and proportion
scale (right) for the four groups of samples with different disease and cell type status. The region-based P-values for the effect of RA status and
T cell type are calculated as 1.11𝐸 − 16 and 6.37𝐸 − 218, respectively

smoothness of the fits, the ability to usemultiple covariates
simultaneously, and the ease of interpretation of results
across the region. Region-wide tests of significance for the
two covariates are highly significant (Figure 1). We also
applied five alternative methods, described in Section 4;
see Table S3 in the Supporting Information.

4 SIMULATION STUDY

We conducted simulation to (a) demonstrate that the pro-
posed inference of smooth covariate effects is valid, and
to (b) compare the performance of our method with five
existing methods: BiSeq (Hebestreit et al., 2013), BSmooth
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(Hansen et al., 2012), SMSC (Lakhal-Chaieb et al., 2017),
dmrseq (Korthauer et al., 2019) and GlobalTest (Goeman
et al., 2006), in terms of type I error and power. The first
three methods are typical examples of two-stage analytic
approaches. In the first stage, kernel smoothing (local like-
lihood estimation) is applied to the methylation data of
each sample separately. In the second stage, the smoothed
methylation data are further analyzed. Specifically, BiSeq
calculates the average of Wald statistics from single-site
beta regression models, while BSmooth and SMSC calculate
the sum of t-statistics across loci; these statistics are used
to test for differential methylation of a region. In contrast,
dmrseq and GlobalTest are one-stage approaches that fit
theirmodels directly to the rawmethylation proportions in
a region. Specifically, dmrseq assesses the strength of the
covariate effect using aWald test statistic within a general-
ized least square regression model, whereas GlobalTest
uses an improved score test in a linear regression
model.
Notably, like SOMNiBUS, both GlobalTest and BiSeq

are primarily tailored to targeted bisulfite sequencing
data with previously identified regions, whereas BSmooth,
SMSC and dmrseq are designed forWGBS data. Specifically,
BSmooth and SMSC define DMRs at adjacent CpG sites
with absolute t-statistics above a defined threshold. The
final product from the original software of BSmooth is a
list of DMRs that are ranked by the sum of t-statistics;
however, BSmooth does not provide region-based P-values.
To allow comparisons with SOMNiBUS, we estimated the
empirical regional P-values for BSmooth by permuting
the values of the covariate of interest 1000 times. When
analyzing WGBS data, dmrseq first constructs candidate
regions based on a user-defined cutoff of the smoothed
methylation proportion differences, and then fits a gener-
alized least squares regression model with autoregressive
error structure to the transformed methylation propor-
tions. Furthermore, the inference inside dmrseq is drawn
from permutations—its approximate null distribution is
generated by pooling a set of region-level statistics of many
candidate regions from all permutations. To better adapt
dmrseq to a single targeted region: (i) we used a small
cutoff of methylation differences (1𝐸 − 5) for detecting
candidate (sub)regions, which ensures fewer CpG sites to
be filtered out; (ii) we applied a relatively large number of
permutations (𝐵 = 500) to generate a null distribution of
test statistics; (iii) we reported the rawP-valueswithout the
multiplicity corrections. Note that in some simulations,
dmrseq reportedmore than one DMR in the region. There-
fore, for a fairer comparison, we calculated the dmrseq’s P-
value as the minimum over the reported chunks’ P-values.
Among the five competitive methods, dmrseq,

GlobalTest, and BiSeq allow adjustment for multi-

ple covariates. SMSC is the only approach accounting for
experimental errors; however, it is conceptually restricted
to data from a single cell type.

4.1 Simulation design

Our simulation design is inspired by the data example
described in Section 3.Methylation regions of the same size
and with the same CpG distribution as the BANK1 region
were simulated under various settings. We first generated
the read depth 𝑋𝑖𝑗 by resampling with replacement the
read depth values from the real data. To specify covariates
𝑍𝑝 and their effect curves 𝛽𝑝(𝑡), we then considered the
following two scenarios.

Scenario 1 – Multiple covariates
In this case, 𝑃 = 3 binary covariates 𝑍1, 𝑍2, and 𝑍3 were
generated independently for each sample. 𝑍1 and 𝑍2 were
simulated from Bernoulli distributions with proportions
0.51 and 0.58, which were the proportions of RA and T
cell samples in the RA data set. The functional param-
eters for intercept and covariate effects, 𝛽0(𝑡), 𝛽1(𝑡), and
𝛽2(𝑡), were specified to have the same shapes as seen in
the BANK1 region (Figure 1A). Covariate 𝑍3 was generated
from a Bernoulli distribution with proportion parameter
0.5 and had zero effect on methylation, that is, 𝛽3(𝑡) = 0,
for all 𝑡 in the region. The inference results for the effect of
the null covariate, 𝑍3, provide information on type I error.

Scenario 2 – Single covariate
We also considered the case of a single binary covariate
(𝑃 = 1), generated from Bernoulli (0.5), with a variety of
regional effect curves. The forms of the functional parame-
ters 𝛽0(𝑡) and 𝛽1(𝑡)were specified to yieldmethylation pro-
portion parameters 𝜋0(𝑡) and 𝜋1(𝑡) as depicted in Figure 2,
where 𝜋0(𝑡) and 𝜋1(𝑡) denote the methylation parameters
for samples with 𝑍 = 0 and 𝑍 = 1 at position 𝑡. As shown
in Figure 2, these 14 settings of 𝜋0(𝑡) correspond to vary-
ing levels of closeness between methylation patterns from
the two groups.The corresponding values of 𝛽0(𝑡) and 𝛽1(𝑡)
under these 14 settings are shown in the Supporting Infor-
mation Figure S1. We defined the maximum deviation as
the maximum difference between 𝜋1(𝑡) and 𝜋0(𝑡), for 𝑡 in
the section indicated by the dashed lines in Figure 2, where
the curves of 𝜋1 and 𝜋0 mainly differ. Simulation scenario
2 is aimed at investigating the power for detecting DMRs
at varying levels of maximum derivations.
Given the values of {𝑍1, …𝑍𝑃} and {𝛽𝑝(𝑡), 𝑝 = 0, 1, …𝑃}

under each setting, the true methylation counts 𝑆𝑖𝑗 were
simulated from the model specified in (2). We then gen-
erated the observed methylated counts 𝑌𝑖𝑗 according to
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F IGURE 2 The 14 simulation settings of
methylation parameters 𝜋(𝑡) in Scenario 2.
Methylation parameters for samples with 𝑍 = 1

(dotted-dashed black curve) are fixed across settings,
whereas the methylation parameters for samples
from group 𝑍 = 0 (solid gray lines) vary across
simulations corresponding to different degrees of
closeness between methylation patterns in the two
groups

Equation (1), which implies

𝑌𝑖𝑗 ∣ 𝑆𝑖𝑗 ∼ Binomial(𝑆𝑖𝑗, 𝑝1) + Binomial(𝑋𝑖𝑗 − 𝑆𝑖𝑗, 𝑝0).

We considered two settings for error parameters 𝑝0 and 𝑝1:
(1) 𝑝0 = 0.003 and 1 − 𝑝1 = 0.1, and (2) 𝑝0 = 1 − 𝑝1 = 0.
Under each scenario and setting, we generated data sets

with sample sizes 𝑁 = 40, 100, 150 and 400, each 1000
times. We then applied SOMNiBUS along with methods
BiSeq, dmrseq, BSmooth, SMSC, and GlobalTest to the
simulated data sets. Unless otherwise stated, default set-
tings were used for the five alternative methods. For our
approach SOMNiBUS, we used cubic splineswith dimension
𝐿𝑝 = 5 to parameterize the smooth terms of interest. We
also assumed that the correct values of error parameters
𝑝0 and 𝑝1 were known, although we conducted sensitivity
analyses to this assumption (see Discussion and Support-
ing Information Section 2.2 ). All simulation parameters
are summarized in the Supporting Information Table S1.

4.2 Simulation results

Figure 3 presents the estimates of the functional param-
eters 𝛽0(𝑡), 𝛽1(𝑡), 𝛽2(𝑡) and 𝛽3(𝑡) over 100 simulations,
obtained from SOMNiBUS; here, data were generated under
Scenario 1, with sample size 𝑁 = 40 and error parameters
𝑝0 = 0.003 and 1 − 𝑝1 = 0.1. It demonstrates that the pro-
posedmethod provides unbiased curve estimates for all the
four functional parameters in the model, and it can cor-
rectly capture both linear and nonlinear smooth covari-
ate effects.
Figure 4 displays the empirical coverage probabilities

of CIs over 1000 simulations of Scenario 1. The empirical
coverage probabilities are defined as the percentage of sim-
ulations where the analytical 95% confidence interval (pro-

posed in Section 2.4.1) covers the true value of the param-
eter. Overall, the coverage probabilities for 𝛽2(𝑡) and 𝛽3(𝑡)
with linear shapes are closer to the nominal level 95% than
the two nonlinear shapes for 𝛽0(𝑡) and 𝛽1(𝑡). This result
can be expected, because nonlinear patterns require more
parameters, which leads to less accurate inference results
than linear patterns, given the same amount of informa-
tion. When sample size is 40, the coverages for 𝛽1(𝑡) tend
to be less than 95%, especially at the boundaries. This may
be because 𝛽1(𝑡) has a nonlinear shape with relatively
small effect sizes across the region, which poses extra diffi-
culties in estimation compared to the shapes that are away
from the null, such as 𝛽0(𝑡). In summary, Figure 4 shows
that the coverages of our 95% confidence intervals attain
their nominal values in most of the simulation settings.
This suggests that the proposed CI estimation approach
quantifies the underlying uncertainty in the smoothed-EM
estimateswith reasonable accuracy, although it ignores the
uncertainty from estimating the smoothing parameters.
Figures 5 and 6 further demonstrate the performance of

the proposed regional test, described in Section 2.4.2. The
results of type I error rate and power from our smoothed-
EM method are compared to the five existing methods
GlobalTest, dmrseq, BSmooth, SMSC, and BiSeq. Figure 5
shows the distributions of P-values for the regional effect
of the null covariate 𝑍3, obtained from the six methods.
Because none of GlobalTest, dmrseq, BSmooth nor BiSeq
accounts for the presence of experimental errors, for a
fair comparison, the simulated data used in Figure 5 were
generated without error (ie, 𝑝0 = 1 − 𝑝1 = 0). The corre-
sponding results for data generated with error are shown
in the Supporting Information Figure S2. Figure 5 shows
that the region-based P-values for 𝑍3, calculated from our
smoothed-EM approach (black dots), are uniformly dis-
tributed, under all sample sizes considered. In contrast,
the distributions of P-values from dmrseq, BiSeq, and
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F IGURE 3 Estimates of smooth covariate effects (gray) over the 100 simulations in Scenario 1, using SOMNiBUS. The black curves are the
true functional parameters used to generate the data. Data with sample size 𝑁 = 40 were generated with error

GlobalTest are biased away fromwhat would be expected
under the null. Because the inferences for BSmooth and
SMSC are drawn from permutations, both methods are
able to control type I error. Similar results were observed
when data were generated with error. The results demon-
strate that the distribution of the SOMNiBUS region-based
statistics under the null is well calibrated even at a rela-
tively small sample size 𝑁 = 40, indicating the proposed
regional zero effect test can correctly control the type I
error. Figure 6 shows the powers of the six methods for
detecting DMRs under the 14 settings of methylation pat-
terns displayed in Figure 2. In Figure 6, the left panel
presents the results obtained from data with error (𝑝0 =
0.003 and 1 − 𝑝1 = 0.1); the right panel presents results
obtained from data without error (𝑝0 = 1 − 𝑝1 = 0). Fig-
ure 6 shows that the proposed smoothed-EMmethod has a
higher power than the five alternative methods; this supe-
riority is even more pronounced when the data were gen-
erated with error.
In summary, SOMNiBUS provides accurate estimates for

smooth covariate effects; when compared with the exist-
ing methods considered here, SOMNiBUS exhibits greater
power to detect DMRs, while correctly controlling type I
error rates.

5 DISCUSSION

Currently, there are no tools for estimating smooth covari-
ate effects for bisulfite sequencing data. In this paper, we
propose and evaluate a method, SOMNiBUS, that aims to fill
this gap. Our contribution is threefold. First, we develop
a novel model to represent the bisulfite sequencing data
from multiple samples, which naturally accounts for vari-
able read depth, experimental errors, and a mixture of cell
types. Second, we provide a formal inference for smooth
covariate effects across a region of interest, where out-
comesmay be contaminated by errors. Third, we construct
a region-based statistic with a simple chi-squared limit-
ing distribution for jointly testing multiple coefficients in
the presence of penalization. Results from simulations and
one real data example show that the newmethod captures
important underlyingmethylation patterns, provides accu-
rate estimates of covariate effects, and correctly quantifies
the underlying uncertainty in the estimates. The method
has been implemented in R package SOMNiBUS, which will
be submitted to CRAN.
Our method assumes that the error parameters 𝑝0

and 𝑝1 are known and do not vary across the region of
interest. Although it is conceptually feasible to estimate
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F IGURE 4 Coverage probability of confidence intervals over 1000 simulations under different sample sizes (𝑁 = 40, 100, 150, 400). Data
were generated with error, under simulation Scenario 1

these parameters by an EM-type approach, the added com-
putational burden in the E step would be substantial,
because the complete-data likelihood is not linear in the
methylated counts. Moreover, there are cases in which
these parameters can actually be measured, for example
by adding spike-in sequences of DNA that are known in
advance to be methylated or unmethylated into the bisul-
fite sequencing procedure. The results from the sensitivity
analyses (Supplementary Information Figures S3 and S4)
show that misspecified error rates can introduce a minor
bias in regionalP-values; however, this is not likely to affect
the power of our tests, as demonstrated in the Support-
ing Information Table S2. An extension worth exploring in
the future will be to accommodate variations of 𝑝0 and 𝑝1
across genomic positions into our model. For example, the
error rates could bemodeled to depend on prior annotation
information, CG content, or on the experimental quality in
the test region.
Another potential limitation of our inference procedures

is the treatment of the smoothing parameters as fixed, dis-
regarding the uncertainty in estimating them. However,
our simulation results show that both the confidence inter-
val coverage at each site and the type I error rates at the
region level, are close to their nominal value; hence, our

compromise does not lead to amajor efficiency loss. Never-
theless, this uncertainty could be accounted for by adding
in our method an approximate correction, as proposed
by Kass and Steffey (1989), or considering a full Bayesian
inference where one could specify a prior distribution for
the smoothing parameters 𝝀.
There is a substantial computational burden in our

estimation algorithm, because the M step includes two
inner iteration schemes: P-IRLS for updating smooth
covariate effects, and Newton’s optimization for updat-
ing smoothing parameters. A summary of runtimes for
SOMNiBUS and the five alternative methods is displayed
in the Supporting Information Figure S5. This figure
shows that SOMNiBUS requires longer computational
times than GlobalTest, BSmooth, SMSC and BiSeq,
but less than dmrseq. Note that our proposed method,
SOMNiBUS, is capable of estimating the effects of multi-
ple covariates simultaneously, whereas, other methods
require repeating the analysis for each covariate, which
will multiply the runtimes. Our algorithm could be sped
up by transforming the methylation proportions into a
continuous-type variable, as in Korthauer et al. (2019),
which allows us to replace the P-IRLS with the ordinary
least square, and mitigate any instability in estimation of
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F IGURE 5 Quantile-Quantile (Q-Q) plots of the region-based P-values for the null covariate 𝑍3, obtained from the six methods, over 1000
simulations. Data were generated without error with a range of sample sizes (𝑁 = 40, 100, 150, 400), under simulation Scenario 1. Here, the
Expected P-values are uniformly distributed numbers, equal to = (1∕1001, 2∕1001, … , 1000∕1001).

F IGURE 6 Powers to detect DMRs using the six methods for the 14 simulation settings in Scenario 2 under different levels of maximum
deviation between 𝜋0(𝑡) and 𝜋1(𝑡), calculated over 100 simulations. (Sample size 𝑁 = 100).
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methylation levels near the boundaries (proportions of
zero or one). However, transforming the count outcome
into a continuous variable causes extra difficulties in
the Expectation step, for which no closed-form exact
expression is available.
The proposed approach is tailored to targeted bisulfite

sequencing data. Another future direction is to extend
our method to WGBS data. This requires first parti-
tioning whole genome into regions or using a slid-
ing window; optimal partitioning or choices of window
sizes are challenges to be met. We recommend for the
moment that algorithms such as BSmooth or dmrseq
be used to find interesting regions. These regions could
then be re-analyzed with SOMNiBUS to more comprehen-
sively and simultaneously estimate covariate influences on
methylation.
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SUPPORT ING INFORMATION
Web Appendices, Tables, and Figures, referenced in Sec-
tion 2, 3, 4 and 5, are available with this paper at the Bio-
metrics website on Wiley Online Library. Codes to repli-
cate the simulation results in the article are deposited
in the Github repository https://github.com/kaiqiong/
SOMNiBUS_Simu. The R package, SOMNiBUS, imple-
menting the proposed method is available from Github
at https://github.com/GreenwoodLab/SOMNiBUS, with a
user guide.
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