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ABSTRACT

CD200, a type I membrane glycoprotein, plays an
important role in prevention of inflammatory dis-
orders, graft rejection, autoimmune diseases and
spontaneous fetal loss. It also regulates tumor
immunity. A truncated CD200 (CD200tr) resulting
from alternative splicing has been identified and
characterized as a functional antagonist to
full-length CD200. Thus, it is important to explore
the mechanism(s) controlling alternative splicing of
CD200. In this study, we identified an exonic splicing
enhancer (ESE) located in exon 2, which is a putative
binding site for a splicing regulatory protein SF2/
ASF. Deletion or mutation of the ESE site decreased
expression of the full-length CD200. Direct binding
of SF2/ASF to the ESE site was confirmed by RNA
electrophoretic mobility shift assay (EMSA).
Knockdown of expression of SF2/ASF resulted in
the same splicing pattern as seen after deletion or
mutation of the ESE, whereas overexpression of
SF2/ASF increased expression of the full-length
CD200. In vivo studies showed that viral infection
reversed the alternative splicing pattern of CD200
with increased expression of SF2/ASF and the
full-length CD200. Taken together, our data
suggest for the first time that SF2/ASF regulates
the function of CD200 by controlling CD200 alterna-
tive splicing, through direct binding to an ESE
located in exon 2 of CD200.

INTRODUCTION

CD200 is a type 1 membrane glycoprotein, delivering
immunoregulatory signals through binding to its receptors
(CD200Rs) (1–4). It is present on neurons, B cells,
activated T cells, thymocytes, dendritic cells and endothe-
lium in mice, rats and human (5,6). A large and growing
body of studies demonstrates that expression level of

CD200 regulates graft survival (7–9), susceptibility to
autoimmune diseases (10–12), fetal loss (13), inflamma-
tion/infection (14) and tumor immunity (15–18).

Alternative splicing is a major mechanism for regulating
biological systems, producing multiple messenger RNA
(mRNA) and protein isoforms. Some of these isoforms
have distinct or even opposing functions (19). Many
genes in the immune system have been found to be alter-
natively spliced (20–22) and a growing number of human
diseases are associated with aberrant splicing of the genes
(23–25). However, few studies to date have identified the
mechanisms that regulate alternative splicing in the
immune system. While CD200 exists as a single copy
gene, data from Borriello et al. (26), confirmed by our
experiments (27), have reported that a splice variant of
CD200 exists. Although exon 2 deletion of CD200
caused by alternative splicing results in a frame shift and
premature translational termination, we noted the exist-
ence of a downstream ATG start codon in a perfect Kozak
context (27). When the first start codon is followed shortly
by a terminator codon and creates a small open reading
frame (ORF; 50-mini-cistron), the 40S ribosomal subunit
remains bound to the mRNA, resumes scanning, and po-
tentially reinitiates at the next ATG codon downstream
(28). It is known that the NH2-terminal region of CD200
is important for its biological interaction with CD200Rs
(29,30), and translation from the second ATG start codon
would produce a truncated form of CD200 (CD200tr)
lacking the NH2-terminal 43 amino acids which includes
regions important for the interaction with CD200Rs.
Indeed, our previous studies have shown that expressed
CD200tr is a functional antagonist to CD200 (27).

Exons often contain specific short oligonucleotide
sequences that affect their ability to be spliced. Exonic
splicing enhancers (ESEs) within exons promote splicing
of the corresponding exons and subsequent exon inclusion
mediated by splicing regulatory proteins. The best-studied
family of splicing regulatory proteins are Serine/
Arginine-rich proteins (SR proteins), which include the
proteins SF2/ASF, SC35, SRp20, SRp30c and many
others (31,32). It has become clear that many exons
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contain ESE elements that bind to specific members of the
SR family (25), leading to exon inclusion.

Since CD200 is involved in many diseases and its splice
variant CD200tr is an antagonist to CD200, identification
of the mechanism controlling the relative expression levels
of CD200 versus CD200tr may provide insight into novel
strategies for treatment of clinical disorders. In the present
study, we have explored the mechanism controlling
CD200 alternative splicing and show that SF2/ASF regu-
lates CD200 alternative splicing through its direct binding
to an ESE site in exon 2 of this gene. The level of SF2/ASF
determines the alternative splicing patterns in different
tissues or cells. Interestingly, in a mouse model of viral
infection, we detected for the first time that the normal
splicing pattern of CD200 was reversed in the lung tissue
of A/J mice infected with mouse hepatitis virus strain I
(MHV-1), following an increase in expression of SF2/ASF
in this MHV-1 susceptible mouse strain.

MATERIALS AND METHODS

Cells and reagents

All human cell lines were obtained from American Type
Culture Collection. Human B cell lines Daudi, Raji and
TEM were maintained in RPMI 1640 (Invitrogen) supple-
mented with 10% fetal bovine serum (FBS). The human
neuronal cell lines SK-N and HCN-1A were cultured with
10% FBS in a-MEM media (Invitrogen).

Total RNAs from different human tissues were
purchased from Clontech. A human BAC clone contain-
ing the whole human CD200 gene and a pcDNA3.2 ex-
pression vector containing SF2/ASF were obtained from
The Center for Applied Genomics (Hospital for Sick
Children, Toronto). Taq DNA polymerase, T4 DNA
ligase and all restriction endonucleases were purchased
from New England Biolabs. Random Primers,
Superscript Reverse Transcriptase II, Elongase Enzyme,
pcDNA3.0 expression vector and all competent cells
were purchased from Invitrogen. EndoFree Plasmid puri-
fication Maxi Kit and QIAEX II Gel Extraction Kit were
ordered from QIAGEN. A purified SF2/ASF recombin-
ant protein was kindly provided by Dr. Blencowe
(University of Toronto). Anti-human and mouse SF2/
ASF antibody was obtained from Santa Cruz
Biotechnology. Anti-human and mouse b-actin antibody
was purchased from BD Biosciences. Small-interfering
RNA (siRNA) including SF2/ASF siRNA and a
‘scrambled’ siRNA were synthesized by Eurogentec.
RNA oligonucleotides were synthesized by DNA and
RNA Synthesis Center at Hospital for Sick Children
(Toronto). All the primers used for polymerase chain re-
actions (PCRs), real-time PCRs and mutations were
synthesized by Invitrogen.

Mice and viral infection

Female A/J and C57BL/6J mice, 6–8 weeks of age were
purchased from Jackson laboratories. The mice were
maintained in microisolator cages, housed in the animal
facility at The Toronto Hospital Research Institute,
University of Toronto, and fed standard lab chow diet

and water ad libitum. All protocols were approved by
the animal Welfare Committee. Parental virus Mouse
Hepatitis Virus strain 1 (MHV1) was ordered from the
American Type Culture Collection. As previously
described (33), MHV1 infection was carried out in a
viral isolation room. A/J and C57BL/6J mice were
anesthetized by intraperitoneal injection with 0.2ml 10%
pentobarbital diluted in normal saline. Mice were left un-
treated or received 5000 plaque forming unit (PFU) of
MHV1 intranasally. Mice were sacrificed 12, 36 and 96 h
postinfection and lung tissue was collected.

RNA isolation and regular or real-time reverse
transcriptase-PCR

Total RNA was isolated from human B cell lines (Daudi,
Raji, TEM), human neuronal cell lines (SK-N, HCN-1A)
and mouse lung tissue using TRIzol reagent. Five micro-
grams of total RNA from human tissues (brain, heart,
skeletal muscle, colon, liver, thymus, kidney, intestine,
lung, placenta and spleen), or human B cell lines (Daudi,
Raji, TEM) and human neuronal cell lines (SK-N,
HCN-1A), or mouse lung tissue was treated with DNase
I and reverse transcribed in the presence of 250 ng of
Random Primers, 1� PCR Buffer, 10mM dNTPs and
200U of SuperScript II reverse transcriptase (RT;
Invitrogen) in a final reaction volume of 20 ml. Reactions
were carried out at 25�C for 10min, 42�C for 50min,
followed by a 15-min step at 70�C to denature the enzyme.
For regular PCR, 2 ml of first strand complementary

DNA (cDNA) was amplified in a 50-ml reactions in the
presence of 1� PCR buffer, 1.5mM MgCl2, 2.5mM of
dNTPs, 5U of Taq DNA Polymerase (New England
Biolab). A first cycle of 5min at 94�C was followed by
30 cycles of 30 s at 94�C, 30 s at a different annealing tem-
perature (based on different primer pairs), and 1min at
72�C. The final extension step was at 72�C for 15min.
For real-time PCR, first strain cDNA was diluted 1:20
and quantified using an ABI 7900HT Sequence
Detection System (Applied Biosystems). The sequences
of the primers used for regular and real-time PCR were
indicated in Table 1.
The endogenous human CD200 primer pairs for regular

PCR were also used to construct an amplicon-containing
plasmid (endogenous) for a standard curve. An exogenous
amplicon-containing plasmid (exogenous) for a standard
curve was constructed using the primers shown in Table 1.
Samples were tested in triplicate using 4 ml of first strand
cDNA in a 20 ml total volume with 1� universal master
mix (Applied Biosystems). The results were normalized to
that of the housekeeping gene GAPDH and HPRT. The
copy number of transcripts was determined by compari-
son with a calibration curve of known amounts of
amplicon-containing plasmid.
Control reactions were performed for the specificity of

the real-time PCR primers. A DNA fragment, containing
either exon 1, exon 2 and exon 3 or only exon 1 and
exon 3, was gel purified and subcloned into pcDNA 3.0
between NotI and XhoI sites. The CD200-bearing
plasmids were then linearized by XhoI. In vitro transcrip-
tion was carried out using TranscriptAid T7 High Yield
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Transcription Kit (Fermantas Inc.) following the manu-
facturer’s instruction. Transcribed RNA was treated with
DNaseI to remove template DNA and purified by phe-
nol:choloroform extraction and ethanol precipitation.
First strand cDNA was then synthesized and real time
PCR was performed. The primer pairs used for real-time
PCR are shown in Figure 3A and Table 1.

Preparation of an alternative splicing construct

A human BAC clone containing the whole human CD200
gene was used as a template for long-distance PCR to
obtain a region bearing exon 1, intron 1, exon 2, intron
2 and exon 3 of the human CD200. Two mixtures were
prepared: mix 1 (20ml) contained 0.1 mg of DNA template,
0.5mM dNTP mix and 0.5 mm of sense and antisense
primers; mix 2 (30 ml) included elongase enzyme mix and
1� long-distance PCR buffer A and B provided by the
manufacturer (the ratio of buffer A and B is 1:4).
The sense primer started with the NotI cleavage site and
the antisense primer with the SalI site. The sequences of

the primers were shown in Table 1. Mix 1 and mix 2 were
combined on ice and subject to PCR under the following
condition: 94�C for 1min followed by three cycles at 94�C
for 30 s, 59�C for 30 s, 69�C for 20min, and then 29 cycles
of 94�C for 30 s, 69�C for 20min. The final extension was
69�C for 15min. The 12-kb CD200 fragment was dis-
played on 0.7% TAE-agarose gel and purified using
QIAEX II Agarose Gel Extraction Kit following the
manufacturer’s instruction. For more efficient elution of
the large size DNA, the final incubation time was extended
to 30min at 60�C. The gel-purified DNA fragment was
verified by restriction enzyme digestion with BamHI,
BglII, EcoRI and HindIII, respectively, and DNA
sequencing. For ligation to pcDNA 3.0 expression
vector, the CD200 fragment was digested with NotI and
SalI. Meanwhile, pcDNA 3.0 expression vector was
digested with NotI and XhoI. Afterwards, pcDNA 3.0
vector was further dephosphorylated to remove the
50 phosphoryl group, preventing the vector from self-
ligation. The enzyme-treated CD200 fragment and
pcDNA 3.0 were ligated, at a molar ratio of 3:1, using

Table 1. The oligonucleotides used in this study

Primers for regular PCR
Human CD200
sense (exon 1) 50-AGCAAGGATGGAGAGGCTG-30

antisense (exon 3) 50-GGTATTGAAGAGACACATG-30

Murine CD200
sense (exon 1) 50-GCAAGGATGGGCAGTCTG-30

antisense (exon 3) 50-CATGGGCTTTGCTGTAAG-30

Primers for real-time PCR (the location of the numbered primers was shown in Figure 3A)
Endogenous human full-length CD200
(1) sense (exon 2) 50-CAGCCTGGTTTGGGTCATG-30

(2) antisense (exon 3) 50-GCAGAGAGCATTTTAAGGAAGCA-30

Endogenous human truncated CD200
(3) sense (the end of exon 1 directly linked to the beginning of exon 3) 50-GATGGAGAGGCTGTGCAAGTG-30

(4) antisense (exon 3) 50-GCAGAGAGCATTTTAAGGAAGCA-30

Exogenous human full-length CD200
(5) sense (50-UTR of pcDNA 3.0 vector) 50-TCTGCAGATATCCATCACACTG-30

(6) antisense (exon 2) 50-CCCAAACCAGGCTGTAGGTA-30

Exogenous human truncated CD200
(7) sense (50-UTR of pcDNA 3.0 vector) 50-GTAACGGCCGCCAGTGT-30

(8) antisense (end of exon 3 directly linked to exon 1) 50-CACTTGCACAGCCTCTCCAT-30

Exogenous human total CD200
(9) sense (exon 3) 50-GGCCTGCCTCACCGTCTAT-30

(10)antisense (pcDNA3.0 vector downstream of Xho 1) 50-ATCAGCGAGCTCTAGCATTTAGG-30

Murine full-length CD200
sense (exon 2) 50-GGGCATAGCAGCAGTAGCG-30

antisense (exon 3) 50-TGTGCAGCGCCTTTCTTTC-30

Murine truncated CD200
sense (exon 1 directly linked to exon 3) 50-GATGGGCAGTCTGTGGAAGTG-30

antisense (exon 3) 50-GAGAACATCGTAAGGATGCAGTTG-30

Primers for an exogenous amplicon-containing plasmid construct
sense (50UTR of pcDNA 3.0) 50-AGTGTGCTGGAATTCTGCAG-30

antisense (exon 3) 50-ATGTCACAATGAGGGCTTCC-30

Primers for alternative splicing minigene construct
sense (underlined is Not I site) 50-CTATGCGGCCGCATGGAGAGGCTGGTGAGCGGGGG-30

antisense (underlined is Sal I site) 50-CTATGTCGACCATAGACGGTGAGGCAGGCCGTTCC-30

Primers for mutation (the mutated region was underlined)
sense 50-GCTTTCTGTCTTCAGGTGACGTACGGCCCTTCTCTCATCT

GTC-30

antisense 50-GACAGATGAGAGAAGGGCACGTACGTCACCTGAAGACAG
AAAGC-30

Primers for deletion
sense 50-GCTTTCTGTCTTCAGGTGAGCCCTTCTCTCATCTGTC-30

antisense 50-GACAGATGAGAGAAGGGCATCACCTGAAGACAGAAAGC-30
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400U of T4 DNA ligase in the presence of 1� T4 ligase
buffer in a 20-ml reaction at 16�C overnight.

Transformation and clone screening

Ligation products containing the alternative splicing con-
struct were transformed into DH 10b Escherichia coli cells
by electroporation using a Cell-Porator Electroporation
System (Life Technologies) at 401V, 330mF capacitance,
low � and 4 k� (for Booster). The cells were plated onto
LB/ampicillin plates and incubated at 37�C overnight.
Twenty isolated clones were randomly picked. Only one
clone showed a DNA supercoil band with much larger size
than that of the vector clone on the gel. This clone was
further characterized by the combination of restriction
enzyme digestion and sequence analysis.

Mutation and deletion of the ESE site in exon 2
of CD200

An ESE site was identified in exon 2 of the human CD200
using computational methods RESCUE-ESE (34) and
ESEfinder (35). To mutate the ESE site, site-directed mu-
tagenesis was employed using QuickChange II XL
site-directed mutagenesis kit from Stratagene. Two muta-
genic primers were synthesized, in which the ESE site was
replaced by a BsiWI site or deleted, and purified by poly-
acrylamide gel electrophoresis (PAGE). The sequences of
the primers used are shown in Table 1 (the mutated region
was underlined). The mutagenesis reaction was carried out
in 50 ml total volume with 40 ng of template DNA, 125 ng
of each primer and 2.5U PfuUltra high-fidelity (HF)
DNA polymerase and 3 ml of QuickSolution reagent
provided by Stratagene. The cycling conditions included
a 1-min initial denaturation at 95�C, 18 cycles with 50 s
denaturation at 95�C, 50 s annealing at 58�C and 40min
extension at 68�C, and a final extension of 7min at 68�C.
The product was then subjected to digestion with 10U of
DpnI for 2 h at 37�C, selectively removing the parental,
methylated, and nonmutated strands. Four microliters of
DpnI-treated DNA was then transformed into
XL10-Gold Ultracompetent cells. Cells were plated and
incubated for selection of ampicillin-resistant clones. Ten
isolated ampicillin-resistant clones were picked at random
and their mutated or deleted regions were characterized by
DNA sequencing.

Transient transfection

The B cell line Daudi was washed and resuspended in 1�
Hanks Balanced Salt Solution (HBSS) to a cell density of
2� 107 cells/ml. The neuronal cell line SK-N was
trypsinized and resuspended in 1� phosphate-buffered
saline (PBS) with 2% FBS at a density of 107 cells/ml.
Thee-hundred microliters of the Daudi cells or 500 ml of
the SK-N cells were transfected with 10 mg of the alterna-
tive splicing minigene construct, the minigene construct
with the ESE site deleted or mutated, the minigene con-
struct plus SF2/ASF expression vector, or the ESE deleted
construct plus SF2/ASF expression vector. Electro-
poration was performed with square waves of 700V,
99 ms pulse length for four pulses for Daudi and square
waves of 200V, 70ms pulse length for one pulse for SK-N

using T820 ElectroSquarePorator (BTX). Both Daudi and
SK-N cells were cultured in 5ml of pre-warmed complete
medium for 48 h before harvesting.

RNA gel mobility shift assay

The RNA oligonucleotides used for gel mobility shift
assay were as follows:

CD200 exon 2 with the wild-type ESE, 50-GUGAUCAG
GAUGCCCUUCUC-30;

CD200 exon 2 with the mutated ESE, 50-GUGACGUAC
GUGCCCUUCUC-30;

The RNA gel mobility shift assay was carried out as pre-
viously described (36). The RNA oligonucleotides were
50-end labeled with g-32P-ATP (Perkin Elmer) using
KinaseMax kit from Applied Biosystems following the
manufacturer’s instruction. Unincorporated nucleotides
were removed by using G-25 Sephadex Columns. Fifteen
femtomoles of radiolabeled RNA oligonucleotides were
mixed with 4 pmol of SF2/ASF recombinant protein in a
20-ml binding reaction containing 2 mg yeast tRNA
(Applied Biosystems). For competition, 100� cold
CD200 exon 2 oligonucleotide was added to the reaction
containing the radiolabeled CD200 exon 2 oligonucleotide
and SF2/ASF. After incubation for 20min on ice, the
RNA–protein complexes were separated from free RNA
by electrophoresis on a 5% native polyacrylamide gel, run
at 170V for 2 h in 0.5% TBE buffer. The gel was then
dried and autoradiographed at �80�C with intensifying
screen.

RNA interference

SF2/ASF siRNA was designed based on the information
described by Cartegni et al. (37). A ‘scrambled’ siRNA,
which has no match with any mRNA of the human
database, was used as a control. The siRNAs were
synthesized by Eurogentec with the following sequences:

SF2/ASF siRNA: 50-ACGAUUGCCGCAUCUACG
U-30;

Scramble siRNA: 50-GCCGAUACGUACGCUUAC
U-30.

7.5� 105 Daudi cells or 5� 105 SK-N cells were seeded
into 12-well plates 24 h before transfection. Two-
and-a-half micrograms of siRNA was transfected to
Daudi or SK-N cells using Lipofectamine 2000
(Invitrogen) to examine endogenous expression pattern
of CD200 following silencing SF2/ASF. Two-and-a-half
micrograms of siRNA, together with 10 mg of the alterna-
tive splicing construct DNA, was transfected to Daudi or
SK-N cells by electroporation to detect exogenous expres-
sion pattern of CD200 following silencing SF2/ASF. The
cells were harvested 48 h posttransfection. Total RNA and
protein were then extracted.

Western blot

Nuclear extracts from Daudi and SK-N cells were isolated
using NE-PER Nuclear and Cytoplasmic Extraction
Reagents (38) from Pierce Biotechnology following the
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manufacturer’s instruction. Western blotting was per-
formed using 20 mg of nuclear extracts. After separation
on a 10% SDS-PAGE gel, the proteins were transferred to
a nitrocellulose membrane and probed with anti- human
SF2/ASF antibody [1:200 dilution, goat polyclonal im-
munoglobulin G (IgG; Santa Cruz Biotechnology]
followed by washing in 2% milk-PBS Tween. The
membrane was then incubated with Donkey anti-goat
IgG (1:5000 dilution; horseradish peroxidase- conjugated
(BD Biosciences) and followed by washing again.
Substrates, luminal and enhancer were added onto the
membrane and incubated for 1min. The membrane was
exposed to Kodak XAR-5 film with intensifying screens
for 5min. Anti-human b-actin antibody (1:6000 dilution,
goat monoclonal IgG; BD Biosciences) was used as
loading controls. The exposure time for b-actin was 20 s.

Statistical analysis

Statistical significance was calculated with one-way
analysis of variance (ANOVA) followed by Tukey tests.
P-values �0.05 were considered significant and shown in
the figures.

RESULTS

The existence of discrete CD200 splice variants is
cell and tissue specific

Human CD200 splice variants were examined in human
tissues, B cells and neuronal cells. Total RNAs from dif-
ferent human tissues or human B cell and neuronal cell
lines were used for RT-PCR using a sense primer located
in exon 1 of human CD200 and an antisense primer in
exon 3. As shown in Figure 1A and B, two transcripts
were detected in all the human tissues, B cell lines
(Daudi, Raji and TEM) and neuronal cell lines (SK-N
and HCN-1A). The larger transcript was by far the
dominant one seen in the brain and neuronal cell lines.
Accordingly, for subsequent experiments, the B cell
line Daudi and neuronal cell line SK-N were used as rep-
resentatives of the two different splicing pattern of
CD200. The only tissue not expressing CD200 was
human skeletal muscle. The two transcripts were purified
from the agarose gel and sequenced. It was confirmed that

the larger one represented an exon 2 inclusion, whereas the
smaller one represented an exon 2 exclusion (CD200tr).

An ESE for binding of SF2/ASF was present in
exon 2 of CD200

Since alternatively spliced exons often contain ESEs for
binding of splicing regulators that determine the fate of
the exon (exon inclusion or exclusion), we wondered
whether ESEs for binding of splicing regulatory proteins
existed in exon 2 of CD200. For this purpose, both
RESCUE-ESE (34) and ESEfinder (35) were used to
search for ESEs in the exon 2 of CD200. Only one ESE
was identified in exon 2 by both RESCUE-ESE and
ESEfinder. The ESE existed in exon 2 of CD200 in
human, mouse and rat, with the sequence TCAGGA
(Figure 2A). The identified ESE represents a known
binding site for a splicing regulatory protein SF2/ASF, a
member of the SR protein family (35).

Exogenous expression of CD200/CD200tr shared the
similar pattern with the corresponding endogenous one

To gain insight into the role of the ESE in exon 2 of
CD200, we generated an alternative splicing minigene con-
struct containing the genomic region from exon 1 to exon
3 of the human CD200 (Figure 2B). A 12-kb fragment
bearing this genomic region was characterized by
sequencing and restriction enzyme digestion, and ligated
to a pcDNA 3.0 expression vector. The construct was
transfected independently to human B cell line Daudi
and neuronal cell line SK-N. After 48 h, RNA was ex-
tracted from each cell population for detection of the
exogenous expression of splicing pattern of CD200.
RNA was also isolated from nontransfected Daudi and
SK-N cells for detection of the endogenously expressed
splicing pattern. To measure quantitatively the expression
levels of the two splice variants, real-time RT-PCR was
performed using the primer pairs located in different
regions (Figure 3A). The specificity of the primers for
amplification of full-length and truncated CD200 was
examined. As shown in Figure 3B, the primer pair
used for full-length CD200 did not amplify the template
from CD200 RNA lacking exon 2 (truncated form),
whereas the primer pairs for truncated CD200 were not

M        Brain       Heart        Muscle     Liver     Thymus   Kidney     Intestine      lung       Placenta    Spleen  

Daudi Raji TEM      SK-N HCN-1A

A

B

CD200
CD200tr

CD200
CD200tr

M

Figure 1. Comparison of transcriptional expression of full-length human CD200 with truncated CD200. Five micrograms of total RNA from
different human tissues (A) or from the human B cell lines Daudi, Raji and TEM, and human neuronal cell lines SK-N and HCN-1A (B) was
used for RT-PCR using a sense primer located in exon 1 and an antisense primer located in exon 3. The upper arrow pointed to CD200 containing
exon 2 and the lower one indicated the CD200 without exon 2 (CD200tr).
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able to amplify the template from CD200 RNA containing
exon 2 (full-length form). Each primer pair generated only
a single product (Supplementary Figure 1A) and the stand-
ard curves generated from each primer pair are parallel
with slopes between �3.1 and �3.6 (Supplementary
Figure 1B). The exogenous expression of CD200/
CD200tr had a similar pattern to the corresponding en-
dogenous one in Daudi cells or SK-N cells (Figure 3D
and E).

Exon 2 inclusion was abolished by mutation or
deletion of the ESE

To examine further whether the ESE in exon 2 of CD200
determined the fate of the exon (inclusion or exclusion),
site-directed mutagenesis was performed to mutate the
ESE element in the alternative splicing construct,
replacing the ESE (TCCTGA) with a restriction enzyme
BsiWI site (CGTACG) (Figure 3C) or to delete the ESE.
After characterizing the mutation or deletion construct by
sequencing, the splicing construct was transfected to
Daudi and SK-N cells. Total RNA was extracted from
cells 48 h after transfection and real-time RT-PCR was
carried out. As shown in Figures 3C and D, and 4A
and B, expression of the full-length transcript (exon 2 in-
clusion) was reduced in both Daudi and SK-N cells after
mutation or deletion of the ESE in exon 2. These data
suggest that the ESE in exon 2 of CD200 promotes
exon 2 inclusion.

A splicing regulatory protein SF2/ASF directly binds to
the ESE and determines the fate of exon 2 of CD200

Since the ESE described above is known to contain a
putative binding site for SF2/ASF, we investigated
whether SF2/ASF binds to the ESE. An RNA–EMSA
was performed. As shown in Figure 5, an RNA–protein
complex was detected after the SF2/ASF recombinant
protein with �RS domain was mixed with a radiolabeled
RNA oligonucleotide containing the ESE site. This
protein/RNA interaction is specific since SF2/ASF did
not bind to a radiolabeled RNA oligonucleotide contain-
ing mutated ESE site and the above binding was
eliminated by competing 100� unlabelled oligonucleotide
containing the same ESE (Figure 5). Moreover, this
binding was not competed by the same level of cold oligo-
nucleotide with the ESE site mutated (data not shown).
As previously described, the full-length CD200 was ex-

pressed predominantly in brain and neuronal cells. One
explanation of this observation is that the expression of
SF2/ASF is higher in neuronal cells and brain. To test this
hypothesis, we assessed SF2/ASF levels in Daudi and
SK-N cells by Western blotting. As shown in Figure 6A,
the natural level of SF2/ASF was clearly higher in SK-N
cells than in Daudi cells.
To gain further insight into the role of SF2/ASF in

controlling alternative splicing of CD200, an siRNA
against SF2/ASF was employed to knock down SF2/
ASF in Daudi and SK-N cells. A scramble siRNA was
used as a negative control. After 48 h, cells were collected

A

E1 In1 E2 In2 E3

Not1 Sal1

pCDNA3.0

(5.4 kb)

Not1   Xho1

B

ESE

(12 bp) (7676 bp) (82 bp) (3978 bp) (327 bp)

Human
Mouse
Rat

ESE

Figure 2. Identification of an ESE in exon 2 of CD200 and schematic drawing of the alternative splicing minigene construct. (A) An ESE with the
sequence of TCAGGA was located in exon 2 of human, mouse and rat CD200. (B) A minigene construct was generated by inserting a �12-kb
fragment including exon 1, intron 1, exon 2, intron 2 and exon 3 of human CD200 into the pcDNA3.0 expression vector. The location of restriction
enzyme cleavage sites for ligation of the insert with the vector was indicated in the figure.
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Figure 3. The pattern of expression of exogenous full-length CD200 or truncated CD200 in different cells parallels that of the endogenous molecules
and mutation of the ESE in exon 2 abolishes exon 2 inclusion. (A) The location of the primers used for real-time RT-PCR. Primers 1 and 2 were
used for endogenous expression of full-length CD200; primers 3 and 4 were used for endogenous expression of truncated CD200; primers 5 and 6
were used for exogenous expression of full-length CD200; primers 7 and 8 were used for exogenous expression of truncated CD200; primers 9 and 10
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exogenous expression of the truncated CD200 increased after mutation of the ESE relative to that of wild type in SK-N cells (P< 0.05).

6690 Nucleic Acids Research, 2010, Vol. 38, No. 19



and total RNAs extracted for real-time RT-PCR, along
with nuclear proteins for western blot. As shown in
Figure 6A, SF2/ASF expression was eliminated after
treatment with 2.5mg of siRNA. b-Actin was used as a
loading control. Real-time RT-PCR was then performed
using RNA samples treated with siRNA. As shown in
Figure 6B and C, the endogenous expression of full-length
CD200 (exon 2 inclusion) was reduced in both Daudi and
SK-N cells, compared with Mock (no siRNA) or scramble
siRNA-treated cells. The same pattern was observed for
the exogenous expression of CD200 in Daudi (Figure 6D
or SK-N cells (Figure 6E) following silencing SF2/ASF.
Consistent with the observation resulting from the ESE
mutation or deletion, the expression pattern of full-length

versus truncated CD200 was reversed in SK-N cells after
knockdown of SF2/ASF.
To investigate further the function of SF2/ASF in

exon 2 inclusion or exclusion, we performed over-
expression analysis by transfection of SF2/ASF expression
vector to Daudi or SK-N cells and examined the fate of
exon 2. As shown in Figure 4A–C, overexpression of SF2/
ASF induced exon 2 inclusion but this function was abol-
ished in the absence of the ESE in exon 2, indicating that
SF2/ASF regulates CD200 isoforms only via the ESE.
These results support the hypothesis that the splicing

regulatory protein SF2/ASF, acting through binding to
the ESE in exon 2 of CD200, plays an important role in
controlling alternative splicing of CD200, and regulates
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the relative ratio of expression of full length to truncated
CD200.

The alternative splicing pattern is altered in vivo in A/J
mice infected with MHV-1

Previous studies have shown that several viruses express a
viral protein which mimics human CD200 and
down-regulates host immunity to the virus following

interaction with a human CD200 receptor on host cells
(39–41). Whether viral infection itself affects the expres-
sion of CD200 in host is an issue which remains to be
explored.
Intranasal infection of A/J mice with the coronavirus

murine hepatitis virus strain 1 (MHV-1) has been
described to induce pulmonary pathology with features
reminiscent of severe acute respiratory syndrome
(SARS) (33). To examine the correlation between the

0

0.5

1

1.5

2

2.5

3

3.5

mock 12h 36h

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

mock 12h 36h 96h

Truncated
Full length

Truncated
Full length

A B

D

E
xp

re
ss

io
n 

of
 fu

ll 
le

ng
th

 a
nd

 tr
un

ca
te

d
C

D
20

0 
af

te
r 

in
fe

ct
io

n 
w

ith
 M

H
V

-1
 

E
xp

re
ss

io
n 

of
 fu

ll 
le

ng
th

 a
nd

 tr
un

ca
te

d
C

D
20

0 
af

te
r 

in
fe

ct
io

n 
w

ith
 M

H
V

-1
 

Full

Tr
CD200

β-actin

Mock      12h       36h p<0.01

p<0.05

C

E

β-actin

Mock      12h       36h       96h

CD200 Full

Tr

Mock         12 h          36 h        Mock      12 h        36 h

A/J                                        C57BL/6

SF2/ASF

beta-actin

Figure 7. The ratio of full-length CD200 to truncated CD200 is altered in vivo in A/J mice infected with MHV-1 but not in infected C57BL/6J mice.
Lung tissues from A/J or C57BL/6J mice infected with MHV-1 for 12, 36 or 96 h (C57BL/6J mice only) were collected for total RNA extraction.
Regular or quantitative real-time RT-PCR was performed. (A) Two transcripts (full-length and truncated CD200) in A/J mice were identified by
regular RT-PCR. (1) Lung of A/J mice without infection (Mock); (2) lung of A/J mice infected with MHV-1 for 12 h; (3) lung of A/J mice infected
with MHV-1 for 36 h. (B) Absolute quantitative real-time RT-PCR for detection of full-length and truncated CD200 in lungs of A/J mice without
infection or infected with MHV-1 for 12 or 36 h. (C) Two transcripts (full-length and truncated CD200) in C57BL/6 mice were identified by regular
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using anti-SF2/ASF antibody (1:200). (1,4) No MHV-1 infection; (2,5) 12 h postinfection; (3,6) 36 h postinfection.
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viral (MHV-1) infection and expression of CD200 in host
we collected lung tissues from MHV-1 susceptible A/J
mice and MHV-1-resistant C57BL/6J mice after infection.
RT-PCR was performed using a sense primer located in
exon 1 and an antisense primer present in exon 3.
Interestingly, we observed a reversal of the normal
CD200 splicing pattern in lung tissues of A/J
mice postinfection (Figure 7A). Real-time RT-PCR
provided a more accurate result of this phenomenon.
We documented that the full-length CD200 was
increased after viral infection and was 2-fold higher at
36 h postinfection compared with that before infection
(Figure 7B). All the susceptible A/J mice were dead at
96 h postinfection. In contrast, the relative ratio
of full-length to truncated CD200 did not change in
infected C57BL/6J mice (Figure 7C and D). Thus, the
pattern of alternative splicing of CD200 was
correlated with susceptibility of these strains to viral
infection.
Since the above studies have shown that SF2/ASF regu-

lates alternative splicing of CD200, we wondered whether
expression of SF2/ASF increased in A/J mice post infec-
tion. We performed western blotting using anti-SF2/ASF
antibody. As shown in Figure 7E, no obvious difference of
SF2/ASF level was seen between A/J and C57BL/6J mice
before viral infection. Increased expression of SF2/ASF
was detected in lungs of A/J mice 12 h postinfection,
whereas no increase of SF2/ASF in C57BL/6J mice even
36 h postinfection, suggesting that the role of virus on host
CD200 expression is mediated by SF2/ASF.

DISCUSSION

The studies reported here show that the relative expression
of two isoforms (CD200 and CD200tr) is tissue and cell
specific and the alternative slicing patterns are different
between the pattern in the lymphoid tissues and that of
neuronal tissues. The relative expression of the two
isoforms of CD200 is of interest, given our recent
evidence that the truncated form (CD200tr) can antagon-
ize the functional suppression induced by full-length
CD200 (27). Although Borriello et al. (26) reported no
change in the alternative splicing pattern of murine
CD200 in lymphoid tissue after stimulation by Con A or
LPS in vivo, in our in vivo studies of mouse lung tissues
before/after infection of MHV-1 virus we observed that,
unlike in the natural condition, following viral infection
the expression of total CD200 increased in lung of both
MHV-1 susceptible A/J mice and MHV-1-resistant
C57BL/6 mice. However, the splicing pattern of CD200
is reversed only in A/J mice, with the full-length transcript,
capable of inducing immunosuppresion, becoming the
predominant one. In contrast, for C57BL/6J, an
MHV-1-resistant mouse strain, no change in the splicing
pattern of CD200 was seen in the lung. This result import-
antly demonstrates that only the splicing pattern, but not
the total transcription level, of CD200 determines the
murine immune response to MHV-1 and is consistent
with the hypothesis that the shift in the balance of expres-
sion of CD200/CD200tr to decrease expression of the

truncated product allowing CD200 to function in its im-
munosuppressive role, possibly contributing to the
increased susceptibility to MHV-1 in the A/J mice.
Further studies showed an increased expression of SF2/
ASF in A/J mice postinfection and the increase in SF2/
ASF occurred prior to increased full-length CD200,
strongly suggesting that the regulation of alternative
splicing of CD200 is mediated by SF2/ASF. It remains
to be determined what viral proteins of MHV-1 have
this effect and how the proteins regulate expression of
SF2/ASF. Our studies suggest that viruses escape elimin-
ation by the host’s immune system not only through
producing viral proteins which mimic CD200 but also
by inducing host CD200 expression and reducing expres-
sion of the antagonist CD200tr. Posttranscriptional regu-
lation, including mRNA stability, plays an important role
for gene expression (42). Whether the increase of
full-length CD200 in A/J mice is also due to differential
mRNA stability cannot be ruled out.

In this report, we searched ESEs in the human and
murine exon 2 sequence using two ESE-detecting algo-
rithms RESCUE-ESE and ESE finder (35,43). Only one
ESE, which is a putative binding site for SF2/ASF, was
detected by both RESCUE-ESE and ESEfinder 2.0. No
ESE was identified in the whole exon 2 when using higher
stringent ESEfinder 3.0. Thus, we focused on this ESE for
the rest of the experiments.

Since an ESE can promote exon inclusion, mutation or
deletion of the ESE would lead to less full-length but more
truncated CD200. Our results showed that after mutating
the ESE in exon 2, expression of full-length CD200 was
reduced in both Daudi and SK-N cells. This expression
pattern is the reverse of that seen for endogenous CD200
expression in SK-N cells, in which the predominant ex-
pression is of full-length CD200. To exclude the possibility
that the mutation created a new exonic splicing silencer
(ESS) which led to decreased full-length, and increased
truncated CD200, we deleted the ESE and examined the
changes in CD200:CD200tr. Our result showed that
deletion of the ESE promoted exon 2 exclusion, the
same result as we obtained from mutation analysis,
indicating that mutation of the ESE does not create an
ESS.

Identification of a putative ESE for SF2/ASF binding
does not provide direct evidence that SF2/ASF recognizes
and binds to the ESE. To examine whether the identified
ESE in exon 2 is bound by SF2/ASF, we performed
RNA–EMSA using RNA radiolabeled oligonucleotides
bearing the ESE in exon 2 and a recombinant SF2/ASF
with �RS domain to reduce nonspecific binding. The
result showed a binding of SF2/ASF to the ESE and the
binding is specific because either mutated ESE or 100�
cold oligonucleotides abolished the binding.

Knockdown of SF2/ASF decreased expression of
full-length CD200 in both Daudi and SK-N cells.
Consistent with data seen following mutation or deletion
of the ESE, the expression pattern of CD200 was again
reversed in SK-N cells. The western blot performed con-
firmed the efficiency of knockdown of SF2/ASF. In
contrast, overexpression of SF2/ASF increased expression
of full-length CD200 but only in the presence of the ESE
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in exon 2, highlighting the critical role of the ESE in the
mechanism of alternative splicing of CD200. Ubiquitously
expressed splicing factors, among them is SF2/ASF, are
thought to control tissue specific alternative splicing
through their different expression levels in different
tissues (44). Our result showed that the natural level of
SF2/ASF was higher in the neuronal cell line SK-N than
in B cell line Daudi. This may help explain why endogen-
ous full-length CD200 (exon 2 inclusion) is expressed at
much higher level than that of truncated CD200 (exon 2
exclusion) in SK-N.

A recent report has described a higher expression level
of SF2/ASF in many tumors, including lung, thyroid,
kidney, colon, small intestine and melanoma, relative to
their respective normal controls. One mechanism to
explain this observation is that SF2/ASF abolished the
tumor suppressor activity of BIN1, a tumor suppressor
gene, by inclusion of exon 12A which interferes with
MYC binding (45). In contrast to its roles in transplant-
ation, autoimmune diseases and inflammation, CD200
enhances the growth of malignant tumors and it has
been suggested that a novel approach to anticancer
therapy might include blockade of CD200 (15,16,46–49).
Since CD200tr is an antagonist to CD200 (27), our data
are consistent with the hypothesis that increased CD200tr
expression and decreased expression of full-length CD200
by blockade of SF2/ASF may also be of potential benefit
for cancer treatment.

In conclusion, we have identified an alternative splicing
pattern for expressed human CD200 in different cells and
tissues, and compared this with the pattern observed
in vivo following viral infection. Our data suggest that
regulation of expression of alternative splicing transcripts
may be important in controlling susceptibility to viral in-
fection. An ESE in exon 2 of CD200 is a binding site for a
splicing regulatory protein, SF2/ASF, which we have
shown to control the alternative splicing pattern of
CD200. A drug-mediated manipulation of alternative
splicing has recently been reported which includes modu-
lation of SF2/ASF (25). It would be of interest to know if
this drug treatment alters the expression ratio of CD200 to
CD200tr and thereby produces change in immune
function.
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