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A B S T R A C T

Objective: To evaluate brai structural connectivity in children with traumatic injury (TI) following a motor
vehicle accident using graph theory analysis of DTI tractography data.
Methods: DTI scans were acquired on a 3 T Philips scanner from children aged 8–15 years approximately
2 months post-injury. The TI group consisted of children with traumatic brain injury (TBI; n=44) or extra-
cranial injury (EI; n=23). Healthy control children (n=36) were included as an age-matched comparison
group. A graph theory approach was applied to DTI tractography data to investigate injury-related differences in
connectivity network characteristics. Group differences in structural connectivity evidenced by graph metrics
including efficiency, strength, and modularity were assessed using the multi-threshold permutation correction
(MTPC) and network-based statistic (NBS) methods.
Results: At the global network level, global efficiency and mean network strength were lower, and modularity
was higher, in the TBI than in the control group. Similarly, strength was lower and modularity higher when
comparing the EI to the control group. At the vertex level, nodal efficiency, vertex strength, and average shortest
path length were different between all pairwise comparisons of the three groups. Both nodal efficiency and
vertex strength were higher in the control than in the EI group, which in turn were higher than in the TBI group.
The opposite between-group relationships were seen with path length. These between-group differences were
distributed throughout the brain, in both hemispheres. NBS analysis resulted in a cluster of 22 regions and 21
edges with significantly lower connectivity in the TBI group compared to controls. This cluster predominantly
involves the frontal lobe and subcortical gray matter structures in both hemispheres.
Conclusions: Graph theory analysis of DTI tractography showed diffuse differences in structural brain network
connectivity in children 2months post-TI. Network differences were consistent with lower network integration
and higher segregation in the injured groups compared to healthy controls. Findings suggest that inclusion of
trauma-exposed comparison groups in studies of TBI outcome is warranted to better characterize the indirect
effect of stress on brain networks.

1. Introduction

Pediatric traumatic injury (TI) is a major public health pro-
blem.> 9million children—about 1 in 4—visit the emergency de-
partment for treatment of injuries each year in the United States (Borse
and Sleet, 2009). Traumatic brain injury (TBI), a subset of TI, is the
most common cause of death and acquired brain injury among youth in
the United States. TBI occurs in> 100,000 children each year and in-
curs an estimated annual cost of more than $1 billion (Graves et al.,
2015). After TI due to motor vehicle collision in particular, children
with TBI and extracranial bodily injury (EI) are at risk of experiencing
traumatic stress (Max et al., 1998). Indeed, 1 in 3 survivors of TI are

estimated to develop posttraumatic stress disorder, and even more will
experience significant posttraumatic stress symptoms including hyper-
arousal, avoidance, re-experiencing, and emotional numbing (Holbrook
et al., 2005; Langeland and Olff, 2008). Other commonly occurring co-
morbid conditions following TI include anxiety, depression, and sub-
stance abuse, as well as reduced adaptive behavior and health-related
quality of life (Fay et al., 2009; Max et al., 2012; Zatzick et al., 2008).
Such psychological health problems, of which TI is a significant risk
factor, can far outlast the physical injury.

Although there is a substantial literature regarding changes to brain
structure following TBI, very little is known regarding the impact of
bodily injury on brain structure in other forms of TI. In TBI, multifocal
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tissue damage occurs at macrostructural and microstructural levels re-
sulting from rotational and translational forces. Frontal and temporal
regions, and especially the hippocampus, are most susceptible to injury
(DeMaster et al., 2017; Wilde et al., 2012; Wilde et al., 2007; Wilde
et al., 2005). Beyond direct injury to the brain following impact, it is
possible that the psychological health problems after TI might also re-
sult from the stress response disrupting functioning of prefrontal cortex
and the limbic system, particularly the amygdala and hippocampus
(Carrion et al., 2007; Jackowski et al., 2009; Juranek et al., 2012; Karl
et al., 2006). These brain regions continue to mature through adoles-
cence and, being central to the hypothalamic-pituitary-adrenal (HPA)
axis, are vulnerable to increased stress (McEwen et al., 2015; McEwen
et al., 2016). Consequently, limbic-prefrontal structures (i.e., prefrontal
cortex, amygdala, hippocampus, and anterior cingulate cortex) may be
disproportionately affected by injury to the brain or other body regions,
as well as by traumatic stress. Furthermore, these regions are especially
likely to show aberrant connectivity when extreme stress or mechanical
brain injury occur in childhood or adolescence (Nooner et al., 2013).

Diffusion tensor imaging (DTI) has been employed in many TBI
studies due to its sensitivity to white matter (WM) microstructure.
During the past decade, a number of DTI studies of pediatric TBI have
revealed widespread injury to commissural, association, and projection
pathways (Ewing-Cobbs et al., 2016; Genc et al., 2017; Ryan et al.,
2018). While WM microstructure has been extensively studied in pe-
diatric TBI, very little research using DTI has been carried out in non-
specific TI or in EI. There is, however, some research in children who
have experienced significant stress in the context of posttraumatic stress
disorder (PTSD), often related to maltreatment. The majority of ana-
lyses have been restricted to a few major WM tracts, but tend to show
reductions in fractional anisotropy (FA) in the corpus callosum, un-
cinate fasciculus, and inferior and superior longitudinal fasciculi after
childhood trauma (Choi et al., 2012; Choi et al., 2009; Jackowski et al.,
2008). In the months following injury, studies consistently find that FA
is lower and MD is higher in children with TBI, particularly those with
moderate to severe injury (Ewing-Cobbs et al., 2016; Genc et al., 2017).
These differences are considered to reflect WM injury and the impact of
ongoing neurodegenerative processes (DeKosky and Asken, 2017). Im-
portantly, this WM injury is present in the majority of tracts that have
been studied, highlighting the global effects of TBI on brain con-
nectivity. To our knowledge, there have been no DTI studies of children
with TI as the primary focus, except for inclusion of children with non-
brain injuries as “trauma controls” to compare to TBI. There is limited
understanding of how TI alters the structural connectivity between
distributed brain networks. Moreover, it is unclear how injury sustained
during childhood or adolescence may affect the structural architecture
of brain circuitry with protracted developmental trajectories such as the
prefrontal-limbic and fronto-parietal networks. Due to the substantial
development of WM connectivity during childhood and adolescence, TI
experienced during these developmental stages may significantly dis-
rupt functioning during the early stages of recovery and may have a
disproportionately negative impact on subsequent brain maturation
and strengthening of connectivity of key neural circuitry.

Application of graph analysis to DTI data may illuminate the diffuse
consequences of TI by characterizing changes in brain network orga-
nization (Irimia et al., 2012). In the graph-theoretical approach, the
brain is represented as a network (or graph in mathematics) consisting of
vertices (brain regions or nodes) and edges (connections between re-
gions) (Newman, 2010). With this representation, a number of metrics
can be calculated which are measures of different aspects of global or
local network connectivity. Characteristic path length is a measure of
integration of information processing; an increase in this metric implies
that it takes more “steps” for any two brain regions, on average, to
communicate with one another. Global efficiency, another measure of
integration, quantifies a network's parallel information processing ef-
ficiency in a network and is proportional to the inverse path length
(Latora and Marchiori, 2001). Strength is simply a weighted average of

the measured connectivity strength among all of a region's connections.
Finally, modularity is a measure of network segregation, calculated by
partitioning a network into groups of regions (modules, or commu-
nities) with high connectivity within modules relative to the con-
nectivity between regions in distinct modules (Girvan and Newman,
2002; Newman and Girvan, 2004). Segregation is related to the concept
of functional specialization (Baum et al., 2017). Metrics from healthy
adult brains typically have lower characteristic path length, higher
global efficiency, higher strength, and lower modularity. Across child-
hood and adolescence, developmental changes reflecting greater net-
work integration are associated with increases in global efficiency and
vertex/node strength and decreases in path length and modularity
(Dennis et al., 2013; Hagmann et al., 2010).

To date, only a few studies have used graph analysis to investigate
brain structural connectivity in children after TBI, with discrepant
findings which may be due to differences in: patient groups (i.e., injury
severity); comparison groups (healthy or TI); time since injury; and
network construction methods. Caeyenberghs et al., 2012 created net-
works from DTI tractography using “fiber count” as a measure of con-
nectivity strength in adolescents with moderate-to-severe TBI approxi-
mately 3 years after injury. They reported that characteristic path
length was increased and local efficiency was decreased across the
brain, compared to a healthy control group (Caeyenberghs et al., 2012).
More recently, increased modularity and path length was also evident
using fiber count-based tractography networks for adolescents with
acute mild TBI (mTBI) compared to children with orthopedic injury
(Yuan et al., 2015). In contrast to Yuan and colleagues, Konigs et al.,
2017 did not find differences in any network-based metrics between
children with mTBI and TI. In agreement with Caeyenberghs et al.,
2012 who also acquired DTI 3 years post-injury, characteristic path
length was increased in the moderate-to-severe TBI group (Konigs et al.,
2017). More recently, Dennis et al. studied children and adolescents
with post-acute moderate-to-severe TBI, and found network differences
between children who experienced post-traumatic seizures and those
who did not (Dennis et al., 2017). Although the limited available stu-
dies provide important information regarding the effects of TBI on brain
network structure in children, little is known about the direct or in-
direct impact of extracranial injuries. Moreover, there is a dearth of
information regarding the effects of different levels of injury severity or
the effects of demographic variables such as age, sex, or pubertal status
on brain architecture after injury.

To address the gaps in the literature, our aim is to examine the
impact of microstructural changes post-TI on brain connectivity. We
used a graph theoretical approach to analyze brain WM networks in
children approximately 2months after injury to determine how changes
in the integrity of the brain structural network differ from those in
children with injuries to other body regions as well as in healthy con-
trols. To do so, we used the multi-threshold permutation correction
(MTPC) approach (Drakesmith et al., 2015), which assesses differences
in either global or local network metrics, and the network-based sta-
tistic (NBS) (Zalesky et al., 2010), which assesses differences in the
strength of each individual connection. Our central hypothesis is that TI
disrupts—directly and/or indirectly—brain network connectivity
globally and between prefrontal and limbic structures specifically. We
expected both EI and TBI sub-groups to differ from the control group,
with the TBI group showing greater deviation in network metrics from
the control group than the EI group. In addition, network metrics were
expected to differ based on severity of TI, such that more severe injury
is associated with more disrupted networks, and age, such that older
age at injury is associated with less disrupted networks.

2. Methods

2.1. Subjects

This study is part of a prospective longitudinal study. Youth ages
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8–15 years sustaining TBI or EI in motor vehicular-related accidents (as
passengers or pedestrians) were recruited from the Emergency
Department or Level 1 Pediatric Trauma Center at Children's Memorial
Hermann Hospital/University of Texas Health Science Center at
Houston (UTHealth) between September 2011 and August 2016.
Participants with TBI and EI met the following inclusion criteria: 1)
injured in a motor vehicle accident between ages 8 and 15 years (fur-
ther described in the next paragraph); 2) proficiency in English or
Spanish; 3) residing within a 125mile catchment radius; 4) no prior
history of major neuropsychiatric disorder (intellectual deficiency or
low-functioning autism spectrum disorder) that would complicate as-
sessment of the impact of injury on brain outcomes; 5) no metabolic,
endocrine, or systemic health problems (e.g., hypertension); 6) no prior
medically-attended TBI; and 7) no habitual use of steroids, tobacco, or
alcohol. The latter four criteria were assessed during screening using a
brief parent interview.

For the present study, “motor vehicular-related accidents as pas-
sengers or pedestrians” includes the involvement of any type of motor-
ized vehicle, defined as a vehicle not operating on rail and powered by a
motor. Regarding the “mechanism of injury” in Table 1, “bicycle” in-
juries were those in which the subject was riding a bicycle and struck by
a motor vehicle. Furthermore, “fall from vehicle” injuries occurred
when the vehicle, such as a Quad 4Wheeler, was in motion.

Of the 220 injured youth who met study inclusion criteria, 131 were
consented and enrolled, and 112 were scanned at the 2month follow-up
(TBI: n=80; EI: n=32). Youth with EI were included to investigate
the effects of different types of traumatic injuries on brain network
connectivity while also allowing us to account for stresses of injury that
may influence brain development. We removed 2 subjects from the EI

group due to their having history of traumatic (extracranial) injury. A
healthy comparison group was recruited from the community and met
criteria 2–7; of 78 eligible youth, 56 were consented and 52 were
scanned. Informed written consent was obtained from the guardian of
each participant and written assent was obtained from all participants
in accordance with Institutional Review Board guidelines.

2.1.1. Procedure
Exposure to adversity prior to the injury was assessed by trained

interviewers at the time of enrollment and included the following
common indicators: 1) severe marital discord defined as parental di-
vorce or separation; 2) low social status defined as levels IV or V on the
Hollingshead Index; 3) large family size defined as three or more
children living in the child's primary home; 4) history of investigation
by protective service agency regarding this child; 5) parental criminal
conviction; and 6) treatment of parental mental health problems
(Biederman et al., 2002). Items were scored “yes/no” and summed to
yield a total Psychosocial Adversity Index (PAI).

Pubertal changes, including growth, body hair, skin, and sex-spe-
cific changes were independently rated by both children and their
parents at the time of scanning using the Petersen Pubertal Development
Scale (PDS) (Petersen et al., 1988). Each item was then coded on a 5-
point scale similar to Tanner staging (Shirtcliff and Essex, 2008); ratings
were averaged to yield a score ranging from 1 (pre-pubertal) to 5 (post-
pubertal). If ratings of parents and children differed by> 1 point, they
were asked to discuss and come to consensus, and the consensus rating
was used in analyses.

Subjects in the TBI group were further subdivided based on injury
severity using the Glasgow Coma Scale (GCS) score, obtained upon

Table 1
Subject demographic and injury variables.
Values are N (%) or median (IQR). P-values were calculated using the Kruskal-Wallis rank sum test for continuous variables, and Fisher's exact test for categorical

variables. P-values for injury-related variables were calculated based on comparison between the EI and TBI groups only, as the control group did not have values for
those variables.

Control (N=36) Extracranial Injury (N=21) Traumatic Brain Injury (N=44) P-value

Demographic Variables
Age at MRI, mo 144 (128–174) 150 (119–172) 153 (131–172) 0.85
Sex, F 15 (42) 8 (38) 19 (43) 0.97
Scanner change, Post 13 (36) 5 (24) 18 (41) 0.42
Pubertal Development Scale 3 (2–3) 2 (1–3) 3 (2–3) 0.93
Psychosocial Adversity Index 1 (1–2) 1 (1–2) 1 (1–2) 0.97
Ethnicity, Hispanic 24 (67) 12 (57) 23 (52) 0.44

Race 0.69
White 25 (69) 17 (81) 30 (68) –
African American 8 (22) 4 (19) 12 (27) –
Asian 0 (0) 0 (0) 1 (2) –
Multi 3 (8) 0 (0) 1 (2) –

Injury Variables
Mechanism of injury 0.39
Bicycle – 8 (38) 16 (36) –
Motor vehicle collision – 4 (19) 14 (32) –
All-terrain vehicle – 4 (19) 7 (16) –
Motorcycle – 3 (14) 1 (2) –
Fall from vehicle – 2 (10) 6 (14) –
Time since injury, wk – 7 (6–9) 7 (6–8) 0.17
Injury Severity Score (ISS) – 10 (5–14) 11 (9–17) 0.24
ISS (no head) – 10 (5–14) 2 (1–5) < 0.001

Abbreviated Injury Scale≥ 2
Head and neck – 1 (5) 38 (86) <0.001
Face – 0 (0) 3 (7) 0.55
Chest – 6 (29) 11 (25) 0.77
Abdomen – 4 (19) 0 (0) 0.009
Extremity – 18 (86) 9 (20) <0.001
External – 0 (0) 4 (9) 0.30

Lowest Glasgow Coma Scale
3–8 (severe) – – 11 (25) –
9–12 (moderate) – – 4 (9) –
13–15 (mild) – – 29 (66) –

mo: months; F: female; wk: weeks; ISS: Injury Severity Score; GCS: Glasgow Coma Scale.
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admission to the hospital (Teasdale and Jennett, 1974). The GCS con-
sists of a 1–5 rating in three domains: eye responses (eye opening to
stimuli), verbal response, and motor response. The total score is a sum
of the three domains and ranges from 3 (coma or death) to 15 (normal).
We defined 3 subgroups: mild (GCS 13–15), complicated-mild (GCS
13–15 combined with acute hemorrhage or parenchymal injury), and
moderate-severe (GCS 3–12). Injury severity in the EI and TBI groups
was measured using the Abbreviated Injury Scale (AIS), which classifies
severity of injury to specified anatomical regions (head/neck, face,
chest, abdomen, extremities, and external/other) on a scale from 1 to 6.
The injury severity score (ISS) is the sum of the square of the highest AIS
scores from three anatomical regions and ranges from 0 to 75 (S. P.
Baker et al., 1974). We calculated both the total ISS and an ISS ex-
cluding head/neck injury. We report the number of subjects with
AIS≥ 2, excluding subjects with minor injury, for each anatomical
region in Table 1.

2.2. MRI acquisition

Subjects were scanned on a Philips 3 Tesla (T) Intera system (Philips
Healthcare, Amsterdam, Netherlands) with a 32-channel head coil at
University of Texas McGovern Medical School. During the study, sev-
eral datasets were corrupted due to scanner equipment failure (n=8);
these subjects were excluded from the present study. In November
2014, the scanner was upgraded to a Philips 3 T Ingenia; as such, we
adjust for scanner hardware upgrade in our statistical analyses. The T1-
weighted sequence was acquired in the sagittal plane with parameters:
TR/TE=8.07/3.68ms, flip angle= 6°, acquisition ma-
trix= 256×256, FOV=256mm, slice thickness= 1mm, with re-
sultant voxel size= 1×1×1mm3. The DTI sequence was acquired
using single-shot spin-echo echo planar imaging with parameters: TR/
TE=8700/67ms, flip angle= 90°, acquisition matrix= 96×96,
FOV=240mm, slice thickness= 2.5 mm, with resultant voxel
size= 2.5×2.5× 2.5mm3. A single non-diffusion weighted volume
was acquired (b=0 s / mm2), along with 32 diffusion-weighted vo-
lumes (b=1000 s / mm2).

2.3. DTI preprocessing and tractography

To define regions of interest (ROI), each subject's T1-weighted
image was parcellated using Freesurfer v5.3.0 and the Desikan-Killiany
(DK) atlas (Dale et al., 1999; Desikan et al., 2006; Fischl and Dale,
2000; Fischl et al., 1999). Surfaces and parcellations were manually
inspected and corrected if errors were present. The 82 regions of the DK
atlas (68 cortical and 14 subcortical) were registered to diffusion space
using boundary-based registration (BBR) in Freesurfer (Greve and Fischl,
2009). In addition to the 82 gray matter regions, a mask of the ven-
tricles was created and registered to diffusion space. All registrations
were checked visually for accuracy. Subjects with large lesions which
could not be processed accurately (N=1) were excluded from further
analyses. Image quality was assessed visually by 2 of the study's authors
(CGW and DD), and subjects were excluded based on agreement be-
tween the two.

All DTI image processing was performed with FSL v5.0.9 and the FSL
Diffusion Toolbox (FDT) (Smith et al., 2004). We used the Texas Ad-
vanced Computing Center (TACC) (University of Texas) for all DTI pro-
cessing steps. First, eddy-current correction was performed using the
latest GPU version of eddy to correct for image distortions and head
motion (Andersson et al., 2016; Andersson et al., 2003; Andersson and
Sotiropoulos, 2015, 2016; Graham et al., 2016). Distributions of dif-
fusion parameters were calculated at every voxel using the latest GPU
version of bedpostx with default parameters (Behrens et al., 2007;
Behrens et al., 2003; Hernandez et al., 2013; Jbabdi et al., 2007). This
program fits parameters for 3 fibers per voxel with the “ball and multi-
stick with a Gamma distribution of diffusivities” deconvolution model
(Jbabdi et al., 2012).

Probabilistic tractography was performed with the tool probtrackx2
(Behrens et al., 2007, 2003). Fiber tracking was initiated from each
seed region individually, with the remaining 81 regions as targets. For
each seed voxel, 5000 samples were drawn from the probability dis-
tribution of the principal fiber direction (estimated by bedpostx); each
step in the process was 0.5 mm, and tracking stopped after a maximum
of 2000 steps. The ventricles mask was specified as an “avoid” mask, so
that streamlines entering the ventricles were rejected. Additionally, we
corrected the resulting path distributions for pathway lengths: for each
seed region, the average length of all samples reaching a target was
calculated and multiplied by the number of samples reaching that
target. All other parameters used were program defaults.

2.4. Network construction

Network construction and statistical analyses were performed in R
version 3.4.3 (2017-11-30), using the packages igraph v1.2.1 and
brainGraph v2.4.0 (Csardi and Nepusz, 2006; Kolaczyk and Csardi,
2014; R Core Team, 2015; Watson, 2018). For each subject, a con-
nectivity matrix A was obtained from the probabilistic tractography
procedure described above. The matrices for all subjects were combined
into a multidimensional array, such that each element A(i, j, k) equals
the number of streamlines (i.e., fibers that connect two regions),
weighted by pathway length, between regions of interest (ROIs) i and j
for subject k. The operations performed on these matrices to remove
spurious connections are described in the remainder of this section.

Pairs of larger brain regions have higher streamline counts by virtue
of being larger targets. To account for the variation in ROI size, we
divided each matrix entry by the average volume of the ROI pairs (Gong
et al., 2009; Hagmann et al., 2008). Next, a set of thresholds T (n=30)
was applied at the individual level to remove the lowest connectivity
weights (i.e., entries less than that threshold were changed to 0). These
values were chosen empirically and resulted in a range of densities si-
milar to the literature (range: 4.9–31.1%) (Gong et al., 2009; Hagmann
et al., 2008).

An additional threshold was applied at the individual subject level
to balance the number of false positive and false negative structural
connections. Conducted separately for each group (i.e., TBI, EI, and
control), only connections that were present in at least 50% of subjects
per group were retained. This group threshold (50%) is within the
optimal range determined by a previous report (de Reus and van den
Heuvel, 2013). In sum, 30 connectivity matrices per subject were
generated through this thresholding process. The final edge weights are
pathway length-corrected streamline counts normalized by average
ROI-pair volumes.

2.4.1. FA-weighted networks
After we generated networks weighted by normalized streamline

counts, we calculated mean FA along the streamlines between ROI pairs
and set these values as edge weights of the networks (Konigs et al.,
2017). To remove the influence of spurious streamlines when calcu-
lating mean FA, the path distribution was thresholded such that only
the top 10% voxels (in terms of number of streamlines) were included
when calculating mean FA.

2.5. Statistical analysis

Between-group differences in demographic variables were assessed
using the Kruskal-Wallis rank sum test for continuous variables, and
Fisher's exact test for categorical variables. Differences in injury-related
variables were calculated between the EI and TBI groups only. For
between-group comparisons of network metrics, we specified General
Linear Models (GLMs) adjusting for age at MRI, sex, and scanner (either
pre- or post-hardware update). From this model, we added interaction
terms to test for significant interactions: group X sex, group X age, and
group X scanner, but removed the interaction terms from the final
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models due to lack of statistical significance for all network measures
tested. Analyses of the associations between network metrics and injury
severity included both the EI and TBI groups in a single GLM; a group X
ISS interaction was tested but removed from the final model due to lack
of statistical significance.

2.5.1. Network metrics
Between-group differences in network metrics were assessed using

the multi-threshold permutation correction (MTPC) method (Drakesmith
et al., 2015). This approach determines significance based on the pre-
sence of significant effects across multiple adjacent thresholds. MTPC
was applied to both vertex- (strength, nodal efficiency, local efficiency,
average shortest path length, and weighted participation coefficient)
and graph-level metrics (global efficiency, characteristic path length,
modularity, and strength). Briefly, a GLM is specified at each threshold
(and, for vertex-level metrics, at each vertex) to test for a significant
group difference in the network metric. The data were permuted ac-
cording to the Freedman-Lane procedure (Freedman and Lane, 1983;
Winkler et al., 2014). The same GLM is tested on the permuted data (at
each vertex, if applicable) and the maximum statistic is recorded,
building a null distribution.

We repeated this procedure 10,000 times for graph-level and 5,000
times for vertex-level measures per threshold. A critical statistical
threshold (Scrit) is calculated as the 1− αth percentile of the set of all
permuted (maximum) statistics (here, α=0.05). The area under the
curve (AUC) is calculated for the observed test statistics Sobs where the
observed statistic exceeded Scrit for 3 or more consecutive thresholds
(denoted Amtpc),

∑= ∀ > = …A AUC S x x S x S x( ( )) : ( ) ( 1, 2, ,30)
x

mtpc obs obs crit

Similarly, a critical AUC (Acrit) was calculated as the average of the
AUC's for the null statistics (under the same conditions as the calcula-
tion of Amtpc). A significant difference is present if Amtpc > Acrit.

2.5.2. Network-based statistic
To determine group differences in connection-wise connectivity

strength, the network-based statistic (NBS) method was employed
(Zalesky et al., 2010). This method allows for family-wise error control
of network data that is analogous to cluster-based thresholding in the
functional MRI literature. To calculate the NBS, first a GLM adjusting
for age at MRI, sex, and scanner (either pre- or post-hardware update)
was specified for each element of the N×N connectivity matrix (i.e.,
the matrices thresholded by ROI size). A N×N matrix of t-statistics
associated with the contrast of interest was thresholded by an initial P-
value threshold (here, P < .001). A graph was then created from this
matrix, and the largest connected component recorded. Next, the data
were permuted 5,000 times in which each subject was randomly as-
signed to one of the subject groups (of equal size as the original control,
EI, and TBI groups). The same GLM was again specified at every matrix
entry, a t-statistic matrix calculated for the permuted dataset, and the
associated P-values were thresholded (again by P < .001). Finally, the
largest connected component was recorded for the resultant graph; this
procedure was repeated for each permutation. The null distribution of
largest connected component sizes was used to calculate a P-value as-
sociated with the connected components of the observed data (as the
proportion of times the permutation component sizes exceeded the
observed size).

3. Results

3.1. Subjects

A flowchart of subject inclusion and exclusion numbers is shown in
Supplementary Fig. 1 (S1). Of the 164 subjects scanned, 63 were ex-
cluded; the most common reason was motion-related artifact (the DTI

sequence; N=37). Proportionally, more TBI subjects were excluded
(28%) compared to control (17%) or EI subjects (16%). Furthermore, a
comparison of included vs. excluded subjects found a significant dif-
ference only in ethnicity, such that a higher percentage of subjects in-
cluded were of Hispanic ethnicity (P= .025). A total of 44 TBI subjects,
21 EI subjects, and 36 control subjects were included in the analyses.
Relevant subject demographic and injury-related variables are sum-
marized in Table 1. Study groups did not differ in age at MRI, sex, in the
number of subjects scanned before vs. after the hardware upgrade,
stage of pubertal development, or psychosocial adversity (all P > .05).
There were no differences between EI and TBI groups regarding me-
chanism of injury, time since injury, or ISS. There was a significant
difference between EI and TBI groups in ISS excluding head injury
(P < .001). As expected, excluding minor injuries, the number of pa-
tients with AIS scores ≥2 was higher in the TBI group for head and
neck injuries (P < .001) and higher in the EI group for abdominal
(P= .009) and extremity (P < .001) injuries.

3.2. Global differences

3.2.1. Three-group analyses
Using the MTPC method, there were no significant group X age,

group X sex, group X scanner, or group X puberty effects for any graph
metrics tested, so interaction terms were removed from the models.
Several graph-level metrics were found to differ between groups.
Weighted global efficiency (Amtpc= 37,338.1; Acrit = 15,304.3;
P < .05) and strength (Amtpc= 72,521.0; Acrit = 14,883.3; P < .05)
were significantly lower, and modularity (Amtpc= 37,637.7;
Acrit = 2605.6; P < .05) was significantly higher in the TBI group
compared to the control group. Strength was also lower in the EI group
compared to controls (Amtpc= 31,683.7; Acrit = 12,422.8; P < .05).
Modularity (Amtpc= 5606.3; Acrit = 1181.8; P < .05) was significantly
higher in the EI group compared to controls, and also higher in the TBI
group compared to the EI group (Amtpc= 23,239.7; Acrit = 0; P < .05).

3.3. Vertex-level differences

Fig. 1 shows the vertices with significantly higher weighted nodal
efficiency for pairwise comparisons across the three groups. Table 2
provides the results of these group comparisons for each region by
hemisphere. Although the “control > TBI” comparisons were sig-
nificant across most regions bilaterally, significant differences were also
found for “control > EI” and “EI > TBI” in several (predominantly
cortical) regions. Table 3 and Supplementary Fig. 2 (S2) show results of
group comparisons for vertex strength. A similar pattern of group dif-
ferences was noted, with significantly lower vertex strength in TBI than
controls in numerous regions within bilateral cortical, cingulate, and
subcortical gray matter regions. The EI group showed significantly
lower strength relative to controls in bilateral regions, particularly in
frontal and parietal lobes. Table 4 and Supplementary Fig. 3 (S3) show
regions with significantly lower average path length. Widespread in-
creased path length was found between the TBI group and controls, and
was clustered in parietal and temporal lobes in the EI group compared
to controls.

3.4. Network-based statistic

Calculation of the network-based statistic revealed 1 connected
component with 22 vertices in which connectivity strength was sig-
nificantly higher in the control group compared to the TBI group
(P= .011). Axial and sagittal views of the vertices and edges in this
component are shown in Fig. 2. This component spanned both hemi-
spheres although the majority are left-hemispheric. Furthermore, many
of the regions involved were in the temporal and frontal lobes along
with subcortical gray matter. Table 5 provides a comprehensive list of
the regions in the component with reduced connectivity strength in the
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TBI group compared to the control group. There were no significant
differences between the control and EI group, or between the EI and TBI
groups.

3.5. Associations of graph metrics with age and injury severity

Several graph metrics were associated with age at MRI. Global ef-
ficiency (Amtpc= 27,334.0; Acrit = 15,983.0; P < .05) and strength
(Amtpc= 26,969.2; Acrit = 17,133.1; P < .05) were positively asso-
ciated, and characteristic path length (Amtpc= 30,160.4;
Acrit = 14,519.7; P < .05) was negatively associated, with age at MRI.
Associations with pubertal status (excluding age at MRI from the model)
were the same as the results for age at MRI (data not shown).

At the vertex-level, two network metrics were significantly asso-
ciated with age at MRI in multiple regions. Supplementary Fig. 4 (S4)
shows the vertices for which weighted nodal efficiency had a significant
positive association with age at MRI (Table 6). Supplementary Fig. 5
(S5) shows the vertices for which average shortest path length had a
significant negative association with age at MRI (Table 7).

We also tested for associations between graph-level metrics and
injury severity, both the ISS and lowest GCS scores. There were no
significant correlations with ISS for any network metrics, nor were
there any significant group X ISS interactions. Global efficiency
(Amtpc= 19,984.0; Acrit = 16,072.9; P < .05) and strength
(Amtpc= 19,728.9; Acrit = 16,908.0; P < .05) were positively asso-
ciated with lowest GCS.

4. Discussion

Despite the high incidence of pediatric TI, little is known regarding
how different types of injury affect overall brain network organization

and its individual components. Here, we used graph theory methods to
analyze DTI tractography networks in children approximately 2months
post-TI, and found widespread differences between children with TBI,
EI, and healthy controls without injury. The effect of group on all
network metrics was consistent across age, pubertal stage, and sex. At
the graph (whole brain) level, we found that strength was lower and
modularity was higher in both the EI and TBI groups compared to the
control group suggesting more segregated networks following TI.
Furthermore, global efficiency was lower in the TBI compared to the
control group, which is indicative of a less integrated network. At the
vertex (regional) level, connectivity strength and nodal efficiency were
significantly lower for the TBI group compared to both EI and control
groups, and lower in the EI compared to the control group. Lower
connectivity strength and nodal efficiency was widespread such that TI
effects were evident in brain regions spanning all major lobes of the
brain and in both hemispheres. EI-TBI differences were particularly
prevalent in prefrontal-limbic circuitry including bilateral frontal,
subcortical/striatal, and cingulate regions. Vertex-level average
shortest path length similarly showed extensive group differences, but
was significantly higher in TBI compared to the EI and control groups.
Despite the extensive significant group differences in vertex-level graph
metrics, the NBS analysis did not show any differences between the EI
group and either the TBI or control group. There was a single connected
component with significantly lower connectivity in the TBI group
compared to controls, largely consisting of left-lateralized frontal and
subcortical regions. These results together show that there are quanti-
fiable differences between non-injured children and children with TI, as
well as between children with TBI and EI, which are in agreement with
our hypothesized relationships of injury type to network structure.
Increasing age was associated with increases in global efficiency and
strength and decreases in characteristic path length. The increased

Fig. 1. Group differences in vertex weighted nodal
efficiency. The vertices shown are those in which
weighted nodal efficiency was significantly different
between groups. Significance was determined by the
MTPC procedure. Vertex color corresponds to lobe
membership (red: frontal; green: parietal; blue:
temporal; magenta: occipital; yellow: insula; orange:
cingulate; light green: subcortical). The left hemi-
sphere is displayed on the left side of each figure.(For
interpretation of the references to color in this figure
legend, the reader is referred to the web version of
this article.)
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segregation associated with TI suggests that injured children may have
greater reliance on neural subnetworks and reduced interconnectivity
with other regions, which may contribute to the cognitive and psy-
chological health difficulties often experienced after TI in general and
TBI in particular.

Graph theory analysis is well-suited to study brain structural
changes after pediatric TI and has been applied to studies of TBI but not
EI. Consistent with our finding of decreased global efficiency and in-
creased modularity in TBI versus controls, Yuan et al., 2015 found a
similar pattern in children with mild TBI (mTBI) within the first week
following injury (Yuan et al., 2015). A combination of higher efficiency
and lower modularity, as seen in the control group, has been shown to
provide an ideal network structure for performing more cognitively-
demanding tasks (e.g., working memory) (Kitzbichler et al., 2011). Our
findings suggest that this disruption to the brain structural network
following TBI persists beyond the acute stage of recovery, and may
contribute to the deficits in working memory and complex cognitive
processes present following TBI (Babikian et al., 2011). To our knowl-
edge, only one other group has reported regional network metrics
across the whole brain, showing lower local efficiency predominantly in

frontal and occipital regions, similar to our results comparing nodal
efficiency (Caeyenberghs et al., 2012). Yuan and colleagues analyzed
only a subset of brain regions but found lower degree (number of
connections) in several frontal and occipital regions, which is analogous
to the differences we found in regional strength (Yuan et al., 2015).

4.1. Effects of trauma on brain connectivity

While other studies of TI have not investigated structural brain
network differences between participants with brain and bodily injury
in relation to healthy controls, several studies have reported the effect
of traumatic exposures (related to bodily threat from natural disasters
or from maltreatment) on network metrics. Suo and colleagues ex-
amined children exposed to a natural disaster who developed PTSD in
relation to trauma-exposed children who did not (Suo et al., 2017).
Graph theory analysis of DTI data revealed that the PTSD group had
lower global efficiency and increased path length compared to controls,
indicating reduced network integration. Moreover, in children with
previous exposure to maltreatment, vertex strength was significantly

Table 2
Multi-threshold permutation correction results for weighted nodal efficiency.
Rows represent brain regions, and columns represent group comparisons. A

significant result for the group comparison and region is represented by a”+”,
while lack of significant is represented by a”–”.

Region Control > EI Control > TBI EI > TBI

L R L R L R

Frontal
Frontal pole + − + + − +
Lat. orbitofrontal + + + + + −
Med. orbitofrontal − − − + − +
Paracentral − − + − − −
Pars opercularis − − + − − −
Pars orbitalis − − + + − −
Pars triangularis − − − + − −

Rostral middle frontal gyrus − − + + − +
Sup. frontal gyrus − − + + − −

Parietal
Postcentral − − + − − −
Precuneus − − + + − −
Sup. parietal lobule + + + + − −

Temporal
Bank of the sup. Temp.
sulc.

− − − + − +

Entorhinal − − − − + −
Fusiform − + + + − −
Middle temp. Gyrus − − + + − −
Parahippocampal − + − + − −
Sup. temp. Gyrus − − + − − −
Temp. pole − − − − + −

Occipital
Cuneus − + + + − −
Lat. occipital gyrus + + + + − −
Lingual − − + + − −
Pericalcarine + − + + + +

Insula
Insula − − − − + −

Cingulate
Caudal ant. Cingulate − − + − + −
Isthmus cingulate − + + + − −
Post. cingulate − − + + − −
Rostral ant. Cingulate − − + + + −

SCGM
Amygdala − − − − + −
Caudate + + + − − −
Hippocampus − − + + − −
Nucleus accumbens − − + − + −
Pallidum − − − − + −
Putamen − − + − + −
Thalamus − − + − − −

Table 3
Multi-threshold permutation correction results for vertex strength.
Rows represent brain regions, and columns represent group comparisons. A

significant result for the group comparison and region is represented by a”+”,
while lack of significant is represented by a”–”.

Region Control > EI Control > TBI EI > TBI

L R L R L R

Frontal
Caudal middle frontal
gyrus

− + − + − −

Frontal pole + − + + + +
Lat. orbitofrontal + + + + + −
Med. orbitofrontal + + + + − −
Paracentral + + + − − −
Pars opercularis + + + + − −
Pars orbitalis + + + + + −
Pars triangularis − + + + − −
Precentral + + − + − −

Rostral middle frontal gyrus + − + + + +
Sup. frontal gyrus + + + + − −

Parietal
Inf. parietal lobule + − + − − −
Postcentral + + + + − −
Precuneus − + + + + +
Sup. parietal lobule + + + + − −

Temporal
Bank of the sup. temp. sulc. − − − − + +
Entorhinal + + − − − −
Fusiform − − − + − −
Middle temp. gyrus − + + + + +
Sup. temp. gyrus − − + + + −
Transverse temp. + + − − − −

Occipital
Cuneus − + + + + +
Lat. occipital gyrus + + + + + −
Pericalcarine + + + + + +

Insula
Insula − + − − + −

Cingulate
Caudal ant. cingulate − − + + + +
Isthmus cingulate + + + + − −
Post. cingulate + − + + + −
Rostral ant. cingulate − + + + + −

SCGM
Amygdala + − + − + +
Caudate + + + + − −
Hippocampus − + − + − −
Nucleus accumbens − − + − + −
Pallidum − + − − + +
Putamen − − − − + −
Thalamus + + + + + +
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lower throughout the frontal and temporal lobes compared to controls
(Puetz et al., 2017). The impact of childhood stress exposure on WM
appears to persist into adulthood, as well. In young adults with mod-
erate-to-high prior exposure to maltreatment, strength and global effi-
ciency were found to be lower compared to young adults with no-to-low
levels of exposure (Ohashi et al., 2017). Taken together, these studies
converge on the identification of concurrent increase in segregation and
reduction of integration of brain sub-networks in children exposed to a
wide range of traumatic stressors compared to healthy children without
trauma or injury. In combination with our findings, these results sug-
gest that traumatic stress exerts a significant impact on the structural
characteristics and connectivity of widespread sub-networks that
cannot be explained solely by direct trauma to the brain. It is possible
that the activation of HPA and/or noradrenergic stress systems

identified following TI (Ewing-Cobbs et al., 2017) contributes to the
alteration in brain network architecture following TI. When testing for
network differences associated with severity within the TBI group only,
our findings support the hypothesis that more severe TBI (as measured
by the lowest GCS score) leads to larger changes in the whole-brain
network.

4.2. Developmental impact of TBI

Normal human brain development is marked by changes in gray
matter volume and thickness and white matter connectivity which
proceeds along a posterior-to-anterior axis, such that frontal regions
and WM tracts continue to undergo changes through adolescence (Lebel
and Beaulieu, 2011; Sowell et al., 2004). At the global network level,
efficiency increases and modularity and characteristic path length de-
crease over time (Cao et al., 2014; Dennis et al., 2013; Hagmann et al.,
2010; Wierenga et al., 2016). At the regional level, connectivity
strength increases in frontal regions into late adolescence (S. T. Baker
et al., 2015). The network-based effects identified in the present study
tend to be aggregated in later-developing fronto-temporal regions,
consistent with research showing increased vulnerability to disruption
in brain regions undergoing rapid development (Babikian et al., 2015).
These results also resemble those of our prior study, based on a different
sample of children and adolescents with TI, which highlighted the
vulnerability of association pathways (particularly those in the left
hemisphere) that connect prefrontal regions with short- and long-range
fibers from other lobes (Ewing-Cobbs et al., 2016). The greater dis-
ruption of connectivity in the left than right hemisphere specifically
following TI may be related to the protracted development of left
hemisphere association pathways during childhood and adolescence
(Bonekamp et al., 2007; Simmonds et al., 2014; Wilde et al., 2010; Yu
et al., 2014). Additional work is needed to untangle the effects of injury
at different stages of chronological and pubertal development on re-
gional and global connectivity metrics.

4.3. Limitations

Our study has some limitations. The scanner was upgraded in the
middle of the study; we included a covariate in our statistical models to
account for potential differences due to this change. Additionally, this is
only a cross-sectional analysis and we cannot comment on develop-
mental changes in brain network metrics in children with TI. Our
sample was injured in motor vehicular incidents and received treatment
or hospitalization. Therefore, our findings may not generalize to chil-
dren with different types of injury mechanisms or those not seeking
treatment. Furthermore, subjects with large lesions were excluded from
analyses, which may underestimate the true effects of TBI on brain
network connectivity since those with the largest lesions may have
greater disruption of connectivity. We were conservative in our quality
assessment for inclusion in the study, leading to the exclusion of many
subjects due to movement-related artifact. A higher proportion of TBI
subjects was excluded for this reason; this reduction in overall sample
size reduces power to identify true group differences. Based on the
heterogeneity in TI patients, specifically the unequal distribution in
injury severity subgroups, a larger sample would provide greater power
to identify differences among these groups. It is possible that the find-
ings in some of the TI participants reflect preinjury differences in or-
ganization of brain networks rather than post-injury changes.

4.4. Conclusions

In summary, we found widespread differences in brain network
metrics consistent with lower integration and higher segregation in
children with TI compared to a control group. These findings parallel
the pattern of deficits in cognitive and behavioral outcomes (e.g.,
memory deficits, emotional regulation) due to both TBI and non-head

Table 4
Multi-threshold permutation correction results for average shortest path length.
Rows represent brain regions, and columns represent group comparisons. A

significant result for the group comparison and region is represented by a “+”,
while lack of significant is represented by a “–”.

Region Control > EI Control > TBI EI > TBI

L R L R L R

Frontal
Caudal middle frontal
gyrus

− − − + − −

Frontal pole − − + + − +
Lat. orbitofrontal + + + + + −
Med. orbitofrontal − − + + + +
Paracentral − − + − − −
Pars opercularis − − + + − −
Pars orbitalis − − + + + −
Pars triangularis − − − + − −
Precentral − − − + − −
Rostral middle frontal
gyrus

− − − + + +

Sup. frontal gyrus − − + + − +
Parietal
Inf. parietal lobule − − − + − −
Postcentral + − + + − −
Precuneus − − + + − −
Sup. parietal lobule + + − + − −
Supramarginal gyrus + − − − − −

Temporal
Bank of the sup. Temp.
sulc.

− − − + − +

Entorhinal + − + − + −
Fusiform + + + + − −
Middle temp. Gyrus − + + + − −
Parahippocampal − + − + − −
Sup. temp. Gyrus − + − − − −
Temp. pole + − + − − −
Transverse temp. + − − − − −

Occipital
Cuneus − + + + − −
Lat. occipital gyrus + + + + − −
Lingual − − + + − −
Pericalcarine + − + + + +

Insula
Insula − − + + − −

Cingulate
Caudal ant. Cingulate − − + − + +
Isthmus cingulate − + + + − −
Post. cingulate − − + + − −
Rostral ant. Cingulate − − + + + −

SCGM
Amygdala + − + − + −
Caudate + − + − − −
Hippocampus − − + + − −
Nucleus accumbens − − + − + +
Pallidum − − − − + −
Putamen − − + + + −
Thalamus + − + − − −
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injury reported in large, longitudinal studies of children with TI
(Babikian et al., 2011; Fay et al., 2009). The consistent deficits in
structural connectivity among and between fronto-limbic structures
may contribute to the cognitive and behavioral changes found fol-
lowing TI. Taken together, we show that TI results in a global disruption
of structural brain networks which is more extensive with more severe
injury. Future research in this cohort will investigate functional brain
network structure, will assess network changes over the course of
1 year, and will explore associations between changes in brain network
metrics and cognitive and behavioral outcomes. Of particular interest
will be possible divergence in network organization between children
with different types of injury and levels of injury severity, and whether

Fig. 2. Network-based statistic results testing for group differences.
There was a single connected component with significantly lower connectivity strength in the TBI group compared to the control group. There were no significant
differences between the control and EI or the EI and TBI groups.

Table 5
NBS: significant regions for Control > TBI.
Symbols in the table are the same as those in Table 2.

Region Control > TBI

L R

Frontal
Frontal pole − +
Lat. Orbitofrontal + +
Med. Orbitofrontal − +
Pars orbitalis + −
Precentral + −
Rostral middle frontal gyrus + −

Temporal
Fusiform + −
Inf. temp. Gyrus + −
Middle temp. Gyrus + −

Insula
Insula + −

Cingulate
Isthmus cingulate − +

SCGM
Amygdala + −
Caudate − +
Hippocampus − +
Nucleus accumbens + +
Pallidum + +
Putamen + +
Thalamus + −

Table 6
Multi-threshold permutation correction results testing for associations between
age at MRI and weighted nodal efficiency.
Symbols in the table are the same as those in Table 2.

Lobe Region Pos. effect of age

L R

Parietal Precuneus + –
Sup. parietal lobule + +

Temporal Fusiform + –
Inf. temp. gyrus + –
Middle temp. gyrus + +
Parahippocampal + +

Occipital Cuneus + +
Lat. occipital gyrus + –

SCGM Pallidum + +
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such changes can predict long-term neurobehavioral outcomes.
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L R
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