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Abstract: Micronutrients are ions and vitamins humbly required by the human body. They play
a main role in several physiological mechanisms and their imbalance is strongly associated with
potentially-fatal complications. Micronutrient imbalance is associated with many cardiovascular
diseases, such as arrythmias, heart failure, and ischemic heart disease. It has been also observed
in coronavirus disease 2019 (COVID-19), particularly in most severe patients. The relationship
between cardiovascular diseases and COVID-19 is mutual: the latter triggers cardiovascular disease
onset and worsening while patients with previous cardiovascular disease may develop a more
severe form of COVID-19. In addition to the well-known pathophysiological mechanisms binding
COVID-19 and cardiovascular diseases together, increasing importance is being given to the impact
of micronutrient alterations, often present during COVID-19 and able to affect the balance responsible
for a good functioning of the cardiovascular system. In particular, hypokalemia, hypomagnesemia,
hyponatremia, and hypocalcemia are strongly associated with worse outcome, while vitamin A
and D deficiency are associated with thromboembolic events in COVID-19. Thus, considering how
frequent the cardiovascular involvement is in patients with COVID-19, and how it majorly affects
their prognosis, this manuscript provides a comprehensive review on the role of micronutrient
imbalance in the interconnection between COVID-19 and cardiovascular diseases.
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1. Introduction

Diet and a proper lifestyle are known to be very effective weapons in cardiovascular
(CV) primary and secondary prevention, beyond the well-known role of pharmacological
treatment [1,2]. Electrolytes, vitamins and oligoelements are involved in several physio-
logical pathways and their imbalance has been associated with many CV diseases, such as
arrythmias, ischemic heart disease and heart failure (HF). Moreover, the management of
nutritional status, through the integration of micronutrients, is a main aspect to improve
the general prognosis of patients, to reduce the risk of CV sequelae, and to prevent side
effects caused by multidrug therapeutic approach. In this regard, the guidelines for the
diagnosis and treatment of acute and chronic HF [3] suggest the importance of a precise
control of micronutrient blood levels in HF patients. HF is known to be associated with
sodium and potassium disorders, which relate to worse prognosis and to the unleashing of
malignant arrhythmias [3].
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In addition, coronavirus disease 2019 (COVID-19) is associated with electrolyte imbal-
ance, due to the involvement of the angiotensin-converting enzyme 2 (ACE2) receptor, used
by the virus to infect cells. In fact, in the most severe patients affected by COVID-19, differ-
ent anomalies in fluid distribution and electrolytes concentration have been observed [4].

These subtle, but not indifferent, changes in micronutrients’ blood levels can weave a
strong link between CV diseases and COVID-19. Thus, in addition to the major pathophys-
iological mechanisms that bind these two diseases together, increasing importance is being
given to the impact of micronutrients alterations occurring during COVID-19 on the CV
system (Figure 1).
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Figure 1. Micronutrients imbalance may contribute to cardiovascular complications observed during
COVID-19. NO: nitric oxide; DNA: deoxyribonucleic acid; Mg2+: magnesium; K+: potassium; Zn2+:
zinc; Ca2+: calcium; Fe2+/3+: iron; Na2+: sodium.

Considering the frequency of CV involvement in COVID-19 patients and how it
affects prognosis, the importance of studying and understanding the mechanisms that can
self-amplify this relationship is substantial.

This review aims to shed light on the role of the imbalance of micronutrients in the
interplay among COVID-19 and CV diseases.

2. Coronavirus Disease 2019 and Cardiovascular System

The most common clinical presentation of COVID-19 is a respiratory infection with
interstitial pneumonia. Symptoms and signs frequently experienced include fever, dry
cough, fatigue, muscle aches, shortness of breath, headache, diarrhea, indigestion, as well
as fluid and electrolyte imbalances [4].

Cardiovascular diseases have high prevalence in patients with COVID-19. In particular,
arterial hypertension can be found in 56.6% of patients, diabetes mellitus in 33.8%, and acute
myocardial injury in 12% of hospitalized patients [5,6]. Patients with CV diseases are prone
to develop a more severe form of COVID-19 [5–7]. The main CV symptoms experienced by
COVID-19 patients are heart palpitations and chest tightness/pain, mostly experienced
as early manifestations of the infection [8], but also during long COVID-19 [9–12]. There
is strong evidence to support the interconnection among CV pathologies and COVID-19,
leading to high rates of CV morbidity and mortality. In this regard, different hypotheses
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have been advanced: (a) direct CV injury determined by the virus, (b) aggressive im-
mune response leading to a cytokine storm, (c) hypoxic injury due to severe pneumonia,
(d) psychological injury (depression, fear, stress, anxiety) with noradrenergic overactiva-
tion, (e) vascular thrombosis, and (f) cardiac damage induced by drugs administered for
COVID-19 [7,8,13,14]. Data show that COVID-19 patients, especially those ones affected by
pre-existent CV diseases, are prone to develop CV complications, including myocardial
injury, myocarditis, myocardial infarction, cardiac arrhythmias, cardiac arrest, venous
thromboembolic disease, HF, and Takotsubo cardiomyopathy [15–20].

The mechanism of acute myocardial damage is half immune and half ischemic. They
are connected to each other. Heart biopsy of COVID-19 patients showed degeneration
of myocardial cells, necrosis and presence of inflammatory infiltrates [8,21–24], showing
that myocardial injury is related to the inflammatory reaction against the virus. How-
ever, inflammation can also predispose to coronary atherosclerotic plaque rupture. Acute
myocardial infarction was reported to be one of the common cardiac complications in
COVID-19, together with arrythmias [8]. For instance, cardiac arrhythmias may result from
hypokalemia, which is in turn stimulated by the known interaction between COVID-19
and the renin-angiotensin-aldosterone system (RAAS) [25,26].

Moreover, venous thromboembolic disease is promoted by the inflammatory state, but
at the same time it predisposes to a hypercoagulability state [8,27–29].

As regards the relationship between HF and COVID-19, some hypotheses include
deterioration of a pre-existing cardiac dysfunction, but also a new-onset cardiomyopathy or
myocarditis, pulmonary hypertension, induced by lung involvement, infection, and acute
pulmonary embolism [8,24,30].

Another major aspect to be concerned about when considering the effects of COVID-19
on the CV system is connected to fever. We know that fever is often part of the clinical
presentation of symptomatic COVID-19 infections. Fever is known to relevantly affect the
CV system first by leading to hypotension, which is most likely due to a redistribution
of blood and to nitric oxide (NO)-induced vasodilation. Fever may also lead to several
electrocardiogram abnormalities, including conduction defects, ST and QT changes, T
wave abnormalities, and malignant arrhythmias. Moreover, it has also been associated to
cardiac dysfunction and pulmonary oedema. Additionally, inflammatory response affects
myocardium inducing cardiomyocytes damage [31]. Hyperthermia is also known to cause
a plethora of metabolic abnormalities, including hypoxia, respiratory alkalosis, metabolic
acidosis, and hypoglycemia. It can massively alter electrolytes homeostasis, leading to
wide electrolytes imbalance [32]. All these pathophysiological alterations are shared among
cardiovascular disease and COVID-19. In fact, the frequent myocardial involvement
occurring in COVID-19 is demonstrated by the increase in relevant cardiac biomarkers,
including creatine kinase isoenzyme-MB (CK-MB), N-terminal pro-brain natriuretic peptide
(NT-proBNP), and high-sensitivity Troponin I (hs-cTnI) and T (hs-cTnT) [24,33].

COVID-19 has definitely impacted on CV diseases. It has represented a challenge for
cardiologists worldwide and has forced the adoption of the maximal deployment of health
resources, not only in the acute hospital scenario, but also in the outpatient setting [34–37].

3. Coronavirus Disease 2019 and Cardiovascular Diseases: The Role of Ions

Ions play a pivotal role in the maintenance of homeostasis in the human body, carefully
regulated by their distribution in the intracellular and extracellular fluids. Sodium is the
main electrolyte in the extracellular space (normal serum range: 135–145 mmol/l). On the
other hand, potassium is mainly an intracellular ion (normal serum range: 3.6–5.5 mmol/l).
Calcium is mostly present in the extracellular fluid (normal serum range: 8.8–10.7 mg/dL),
whereas magnesium is mostly found in the intracellular compartment (normal serum
range: 1.46–2.68 mg/dL). As for iron, despite being an essential trace element, it may be
highly toxic in excess amounts, for which reason there are several mechanisms aimed
at keeping its cellular and whole-body concentrations at the optimal range (body iron
amounts range: 3–5 g). For what relates to zinc (normal serum range: 12–16 µM), it is
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mainly bound to albumin, α-macroglobulin, and transferrin, with only a sub-nanomolar
concentration of free. Derangements in ion levels are associated with CV diseases, spanning
from arrhythmias to atherosclerosis burden, from arterial blood pressure alterations to
coagulation cascade imbalance. Interestingly, electrolyte disturbances have been reported
in a substantial number of COVID-19 patients, mainly in the most severe patients, showing
a significant impact on their prognosis.

3.1. Sodium

Sodium (Na+) is an essential cation that plays a major role in the regulation of blood
volume, blood pressure, osmotic and acid-base equilibrium. Dysnatremia is the most
common electrolyte disorder, with a prevalence between 15% and 20% in the hospital
setting [38]. Furthermore, it is an independent risk factor for mortality, in hospitalized
patients [39]. These data are also confirmed in COVID-19 patients, in which low Na+ levels
are associated with an increased risk of encephalopathy and treatment with mechanical
ventilation [40]. The most common cause of hyponatremia is the inappropriate antidiuretic
hormone secretion syndrome (SIADH), which accounts for up to 40–50% of cases [41],
particularly in patients with atypical viral pneumonia, such as COVID-19 [42]. Interestingly,
desmopressin, the synthetic form of the antidiuretic hormone, also has a role in the release
of coagulation factor VIII and von Willebrand factor by platelets. For this reason, it is
used as a procoagulant treatment, for example, in von Willebrand’s disease. Therefore, the
increased release of antidiuretic hormone, also called arginine vasopressin, in patients with
SIADH-related hyponatremia may be one of the causes leading to the procoagulant state
observed in COVID-19 [43].

Moreover, it has been proven that pro-inflammatory cytokines, such as Interleukin 1β
(IL-1β) and 6 (IL-6), known to be the key components of the cytokine storm associated with
COVID-19, can stimulate hypothalamic vasopressin secretion [44], leading to hyponatremia.
This seems to suggest that low levels of Na+ may be associated with a stronger inflammatory
condition. In fact, in a small retrospective study, it was shown that IL-6 levels were inversely
proportional to serum Na+, with the lowest natremia in patients exhibiting the highest IL-6
levels [45].

However, even though hypernatremia is less common [46], this condition is a negative
prognostic marker in critically-ill patients in intensive care unit (ICU) [47]. It has been
shown that especially hospital-acquired hypernatremia is a predictor of mortality [48].
Hypernatremia reflects a deficit in total body fluids and, therefore, it suggests that volume
depletion is a possible pathophysiological mechanism associated with poor outcomes.

The issue of fluid balance is crucial both in patients with COVID-19, who often present
dehydration, and in HF, where patients frequently have fluid excess in the third space
and are excessively dehydrated from the use of diuretics. Even if rehydration and volume
repletion could be a reasonable therapeutic approach, conservative fluid regimens often
need to be applied as a component of lung-protective strategies. This is also true in HF
patients, where intravenous rehydration therapy must be administered more cautiously to
avoid patient’s fluid overload.

In conclusion, natremia appears to deserve a strict control in both COVID-19 and
CV patients, especially in those undergoing ion-depleting treatments, such as proton-
pump inhibitors, diuretics, angiotensin-converting enzyme inhibitors (ACEi), angiotensin
II receptor blockers (ARBs), and non-steroidal anti-inflammatory drugs [49].

3.2. Magnesium

Magnesium (Mg++) is the fourth most abundant electrolyte in human cells, and it is
mainly concentrated in the mitochondria. It is essential for basic biochemical reactions,
participating in a cluster of physiological functions, such as cell cycle, muscle contraction,
vasomotor tone [50], energy metabolism, and protein and nucleic acid synthesis [51]. Mg++
has anti-inflammation [52] and antioxidant potential [53]. It may induce vasodilation [54],
neuroprotection [55] and immunomodulation [56].
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Mg++ importance in CV physiology is well-known. It has been demonstrated that
its deficiency is associated with an increased incidence of CV diseases [57], in particu-
lar arrhythmias, hypertension and atherosclerosis [58]. In fact, its supplementation can
lower blood pressure [59], due to Mg++ having a similar property as the one of calcium-
channel blockers, making it a physiological calcium antagonist [60]. It also participates in
activation of K+ channels, promoting the cellular outflow of calcium (Ca++) ions and it
inhibits cellular Ca++ influx and release from the sarcoplasmic reticulum. The result is
membrane hyperpolarization and vasodilation. Moreover, it promotes increase in serum
nitric oxide (NO) levels, playing an important role in physiological endothelial function
and vascular smooth muscle cells relaxation [61,62]. Alterations of Mg++ blood levels as
hypomagnesaemia have been found in patients hospitalized with COVID-19, appearing
to be significantly correlated to patient’s prognosis. In fact, hypomagnesaemia has been
associated with more severe cases of COVID-19 [63]. Alamdari et al. [64] demonstrated that
patients with hypomagnesemia at hospital admission were at higher risk of mortality due
to the COVID-19. These findings may be related to the high incidence of CV complications
in COVID-19 patients, in which serum Mg++ levels may play an important stabilizing
role. Furthermore, it has been demonstrated that Mg++ deficiency promotes endothelial
dysfunction, increasing the susceptibility of endothelial cells to oxidative damage [65,66].
Endothelial dysfunction has a main role in coronary microvascular dysfunction and HF
with preserved ejection fraction (HFpEF) [15,28,67–71].

Mg++ also has antithrombotic effects. In this regard, hypomagnesemia is associated
with increased thrombotic risk and slowed fibrinolysis [72,73]. It reduces platelet aggrega-
tion, and it increases blood-clotting times in vivo [74]. Moreover, with its important role
in membrane stabilization, Mg++ may help to prevent and treat arrhythmias, commonly
observed in COVID-19 patients, and associated with negative prognosis [75].

Mg++ has also indirect benefits on the CV system, through its effect on the respiratory
system. As a Ca++ antagonist, it inhibits bronchial smooth muscle contraction, promoting
bronchodilation [76,77]. Moreover, through its anti-inflammatory and antioxidant power,
it contrasts lung inflammation by inhibiting cytokines, such as IL-6, nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) pathway, and Ca++ channels [78].

3.3. Potassium

Potassium (K+) is the most represented cation in the human body, with a 98% intracel-
lular location, and only the remaining 2% in the extracellular space [79]. The intracellular
K+ is critical for cell volume regulation, protein synthesis and transmembrane gradient
creation. K+ is also a key determinant of the membrane potential, being essential for ion
transportation across the membrane. Furthermore, it is involved in several physiological
mechanisms [80], such as vascular tone and systemic blood pressure regulation, gastroin-
testinal motility, acid–base homeostasis, glucose, and insulin metabolism [81,82]. Several
intra- and extra-renal mechanisms are involved in maintaining the K+ serum concentration
within a narrow physiological range between 3.5 and 5.0 mEq/L [83].

K+ balance disorders are common among hospitalized patients, with an incidence
of hypokalemia up to 21% compared to 2–3% of outpatients. Less common is hyper-
kalemia, which is detected in up to 3.3% of hospitalized patients, compared to 1% of outpa-
tients [84,85]. Several studies have found a high incidence of K+ imbalance in COVID-19
patients, which seems to be one of the most common electrolyte disorders [86–88], indepen-
dently affecting disease prognosis [89,90]. Tezcan et al. [91] reported high prevalence of
hypokalemia among COVID-19 patients. Chen et al. [89] reported that hypokalemia was
associated with disease severity. Furthermore, significantly lower levels of serum K+ in
confirmed cases of COVID-19 compared with non-infected patients have been reported [92].

A plausible mechanism linking COVID-19 to hypokalemia could be related to ACE2
receptor degradation, after the virus has entered in host cells [93]. The consequent down-
regulation of ACE2 leads to an increased activity of RAAS, with hypokalemia related to
potassium wasting through urine [94]. In addition, viral-mediated neurodegeneration
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and neuroinflammation may cause hypothalamic paraventricular nucleus and supraoptic
nucleus dysfunction and reduced antidiuretic hormone production, leading to urinary
potassium loss and hypokalemia [95]. Hypokalemic patients affected by COVID-19 have
longer hospitalization and ICU permanence. Moreover, hypokalemia is prevalent in pa-
tients with COVID-19 pneumonia, and it represents an independent predictor of invasive
mechanical ventilation [96]. Liu et al. found out that severe and moderate hypokalemia
were associated with ICU admission [90].

Regarding hyperkalemia, it seems to be more related to kidney injury, which is not
rare in hospitalized COVID-19 patients [97]. Huang et al. [98] found higher K+ levels in
ICU patients than in patients not admitted to the ICU, showing that also elevated serum
K+ is associated with the severity of illness. All these observations may be related to
potentially life-threatening complications, such as cardiac dysrhythmias, paralysis, and
rhabdomyolysis [99,100].

Coromilas et al. [101] conducted a retrospective analysis, collecting data of COVID-19
patients, and found out that almost 18% had new-onset arrhythmia, 43% of patients
who developed arrhythmias were mechanically ventilated, and only 51% survived to
hospital discharge. Elias et al. [102] reported arrhythmias’ prognostic value as regards early
deterioration in patients with COVID-19 and the association with significant morbidity
and mortality.

Hence, the investigation of the modifications of K+ serum level, its consequences on
COVID-19 patients and the continuous CV monitoring in those patients is crucial [103].

3.4. Calcium

Ca++ plays an important role in several systemic functions. It’s involved in coagulation
and platelet adhesion, myocardial contractility, and relaxation. Proteins involved in the
coagulation system, such as C and S protein, as well as clotting factors II, VII, IX, and X,
need calcium for their activation. Several studies demonstrated that there was a very high
prevalence of hypocalcemia in patients affected by COVID-19 with a negative prognostic
value [104,105].

Di Filippo et al. [106] investigated if hypocalcemia was a COVID-19 specific parameter,
finding out that COVID-19 patients had lower calcium levels compared to patients without
COVID-19, with a doubled rate of hypocalcemia. Other studies showed a lower Ca++ level
in COVID-19 patients compared to the negative control group [107,108].

The mechanism through which COVID-19 is associated with serum Ca++ imbalance
is still unknown. A potential factor may be gastrointestinal loss due to diarrhea and
vomit [109]. Malnutrition and hypovitaminosis-D could reduce the absorption of calcium
too. It can be also hypothesized that high viral load may cause Ca++ depletion because
calcium ions are involved in viral life processes, such as regulating virus cell-entry, gene
expression, and virion formation [110].

Ca++ plays an important role in maintaining heart and coagulation function [111–113].
Dysfunction of coagulation/fibrinolysis system can cause diffuse intravascular coagulation,
which is a decisive factor in the death of COVID-19 patients and often related to the
inflammatory cascade in which Ca++ levels can be involved [114–116].

It has been demonstrated that the level of coagulation factors like D-dimer and pro-
thrombin is higher in hypocalcemic compared to normocalcemic COVID-19 patients and
that there is a negative correlation between serum calcium and D-dimer levels [117,118].

Qi et al. [119] compared two groups of COVID-19 patients, one made up of patients
with mild manifestations and the other made up of severe cases. They demonstrated that
severe patients with a worse inflammation status related to a higher level of procalcitonin
showed lower levels of Ca++. The severe cases showed higher levels of D-dimer and
fibrin degradation product that could be related to a more severe coagulation dysfunction
and consequently to a higher risk for thrombotic complications. Furthermore, severe
patients showed a worse inflammation status related to a higher level of procalcitonin
and calcitonin, which may explain why the Ca++ serum concentration was significantly
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reduced. In conclusion, decreased Ca++ levels and coagulation dysfunction in COVID-19
patients were related to each other and with the inflammatory status [119].

Due to its relationship with the inflammatory response and severity of COVID-19
manifestations, hypocalcemia has been related to a higher mortality. Several study cohorts
demonstrated the relation between lower Ca++ levels at hospital admission and higher risk
of in-hospital and 28-day mortality [91,120,121]. Limiting severe acute hypocalcemia could
protect from CV and neurological complications that may be fatal. For this reason, a good
supplementation of calcium and albumin, but also of Vitamin D, may reduce multiorgan
injury [122].

3.5. Iron

Iron is a key element in major human biochemical processes, such as deoxyribonucleic
acid (DNA) replication, cellular respiration, and immune defense. Iron can donate or accept
electrons because it can shift in two different oxidative forms: divalent (Fe++) or trivalent
(Fe+++). However, its blood level needs to be tightly controlled as a low iron level as well
as a high blood level can be very dangerous [123].

Iron is generally not an easily-accessible element in the human body. It is mostly
stored safely inside the erythrocytes. A low percentage of extracellular iron travels bound
to transferrin or to other molecules. Iron is a growth factor and an energetic source, also
for pathogens. Many microbes use hemolysis as a damage mechanism to afflict the host
and to recover iron sources. The consequent massive release of free iron into the circulation
can also cause oxidative damage and immunity inhibition [124,125]. For self-protection
during inflammation, macrophages and neutrophils are induced by cytokines to produce
hepcidin, responsible for circulating iron levels reduction [126,127]. This is in line with
many COVID-19 studies [122–124]. In fact, patients admitted to hospital for COVID-19 had
a lower level of hemoglobin than other patients [128,129].

Fan et al. [130] compared laboratory data between patients with COVID-19 admitted
to ICU and not, finding a significantly lower hemoglobin value in the first group.

In the meta-analysis of Taneri et al. [128], a significant lower hemoglobin value was
found in more severe COVID-19 group. Moreover, this difference was greater in patients
with systemic arterial hypertension or severe form of infection. In fact, during chronic and
prolonged infections, a vicious circle is thus created: the organism tries to defend itself by
decreasing the iron levels, but the resulting anemia can aggravate the infection itself, as
well as its comorbidities and complications. For this reason, iron therapy during infectious
diseases is much debated. In this context, the reduction of iron intake by uptaking chelating
agents as adjuvant COVID-19 therapy has been suggested, considering that severe acute
respiratory syndrome coronavirus 2 (SARS-CoV2), like other viruses, requires iron to carry
out replicative cycles [131,132]. In fact, hereditary diseases with iron storage dramatically
increase susceptibility to severe infections. In this regard, several studies have shown that
iron deficiency is crucial in depressing the immune response [131,133], even more impactful
in special populations. In children, for example, anemia is significantly associated with
repeated infections of the respiratory and gastroenteric tract [131,134].

Furthermore, HF patients may benefit from iron supplementation [3,131,135]. Iron
deficiency and anemia are frequent comorbidities in CV diseases. In HF they represent
an independent condition predisposing to CV and overall mortality, rehospitalization,
quality of life and symptoms worsening [3,136–138]. In HF patients, iron deficiency affects
about 50% of the population with a prevalence of 80%, in patients with acute HF [139–143].
Several mechanisms are associated with iron deficiency in both heart failure with reduced
ejection fraction (HFrEF) and HFpEF, such as reduced absorption, loss and hyperactivation
of systemic inflammatory response [144,145]. The importance of iron supplementation with
ferric carboxymaltose in HF patients has been demonstrated [146,147]. Beyond HF, the
impact of iron deficiency and the effects of iron supplementation have been evaluated in
other CV diseases, which have been often described as COVID-19-related CV complications.
As regards, the Effect of Iron Repletion in Atrial Fibrillation study (IRON-AF) will evaluate
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the role of ferric carboximaltose supplementation in patients with atrial fibrillation and
iron deficiency [148]. Iron deficiency has been also described by Vinke et al. in patients
with pulmonary arterial hypertension and chronic thromboembolic pulmonary hyper-
tension [149]. Moreover, in the setting of atherosclerosis and coronary syndromes, iron
may have a pivotal role. It is involved in oxidative stress, low-density lipoprotein (LDL)
oxidation and inflammation [150]. Meng et al. [151] reported that reduced circulating iron
values were a predictor of coronary atherosclerosis.

3.6. Zinc

Zinc (Zn++) is a vital mineral involved in many physiological processes in the human
body. First, it contributes to cellular immunity against bacteria and viruses by activating
NF-kB, regulating inflammatory cytokine release [152]. Second, it plays a role in the syn-
thesis of NO and in the suppression of reactive oxygen species (ROS), during inflammatory
processes [153]. As a result, Zn++ deficiency is associated with oxidative stress [154]. NO
signaling promotes vasodilation, increased blood flow, and a reduction in plaque develop-
ment and progression [155,156]. When this pathway is disrupted, together with abnormal
ROS and NF-kB signaling, the groundwork for atherosclerosis is laid [157]. Thus, it is
hypothesized that Zn++ may minimize atherosclerotic disease by increasing NO produc-
tion and NF-kB signaling, as well as by reducing oxidative stress induced by endothelial
dysfunction [158].

Zn++ has also been demonstrated to exert an inotropic impact on the heart, inhibiting
cardiomyocyte systolic activity and increasing relaxation function by lowering intracellular
Ca++ levels [159].

Due to Zn++ related antiviral and pro-cardiogenic qualities, it may have a pivotal role
in COVID-19 patients, particularly those with CV complications [158]. A critical factor sup-
porting this hypothesis is the fact that the SARS-CoV-2 receptor, ACE2, is a Zn++-regulated
metalloprotein [158]. ACE2 works by converting angiotensin II to angiotensin (1–7), causing
vasodilation [158]. ACE2 is an important player in the RAAS because it inhibits the actions
of Angiotensin II [160]. The lowering ACE2 expression, often observed in COVID-19 pa-
tients, has a negative impact on a variety of diseases, such as arterial hypertension, diabetes
mellitus, and CV diseases [161,162]. Extra Zn++ supplementation may help to activate or
upregulate functional ACE2 expression, restoring the functional balance of ACE2 [158].

Another mechanism by which Zn++ may be beneficial is by inhibiting SARS-CoV-2 replica-
tion through the inhibition of elongation and template binding of SARS-CoV RNA-dependent
RNA polymerase [163]. Zn++ is also essential for autophagy, which is especially important
during viral infections [158]. According to a prospective research, Zn++ deficiency was
associated with more serious complications and an increased length of hospital stay and
death, in COVID-19 patients [164].

A summary of ion imbalance effects on CV diseases and COVID-19 is represented
in Table 1.

Table 1. A summary of the most important ions imbalance during COVID-19 and their effects on
CV system.

Ion Relationship among CV Diseases and Ions Relationship among
COVID-19 and Ions Reference

Sodium (Na+)

1. Sodium imbalance is the most common
electrolyte disorder

2. Sodium imbalance affects blood volume,
blood pressure, osmotic and acid-base
equilibrium regulation

1. Dysnatremia is an independent
risk factor for mortality in
hospitalized patients, including
COVID-19 patients

2. Hyponatremia is associated
with increased risk of
encephalopathy and mechanical
ventilation necessity

[38,40]
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Table 1. Cont.

Ion Relationship among CV Diseases and Ions Relationship among
COVID-19 and Ions Reference

Magnesium (Mg++)
1. Magnesium deficiency is associated with

increased incidence of arrhythmias,
arterial hypertension and atherosclerosis

1. Hypomagnesaemia has been
associated with more severe
COVID-19 cases

[63,64]

Potassium (K+)

1. Alterations in potassium levels
predispose to cardiac arrhythmias

2. Potassium imbalance leads to
derangements in vascular tone and
systemic blood pressure regulation

1. High incidence of potassium
imbalance has been found in
COVID-19 patients

2. Hypokalemia is the most
common disorder, and it is
associated with
worse prognosis

3. Hyperkalemia occurs less
frequently than hypokalemia

[84,89]

Calcium (Ca++)

1. Hypocalcemia is associated with
derangements in coagulation and
platelet adhesion

2. Hypocalcemia affects myocardial
contractility and relaxation

1. COVID-19 patients have lower
calcium levels compared to
patients without COVID-19

[106,114,115]

Iron (Fe++/Fe+++)

1. Iron deficiency and anemia are frequent
comorbidities in CV diseases

2. In HF anemia and iron deficiency
represent an independent condition
predisposing to CV and overall mortality,
rehospitalization and quality of life and
symptoms worsening

1. Significantly lower levels of
hemoglobin have been found in
COVID-19 patients admitted to
ICU compared to those who
were not admitted to ICU

2. Iron deficiency is crucial in
depressing immune response

[128–131,133]

Zinc (Zn++)

1. Zinc deficiency causes oxidative stress,
laying the groundwork
for atherosclerosis.

2. Zinc deficiency can reduce
cardiac inotropism.

1. Zinc supplementation can
promote the restoration of
ACE2 expression in
COVID-19 patients.

[158,159]

COVID-19: coronavirus disease 2019; CV: cardiovascular; ICU: intensive care unit; HF: heart failure; ACE2:
angiotensin-converting enzyme 2.

4. Coronavirus Disease 2019 and Cardiovascular Diseases: The Role of Vitamins

Both lipo-soluble and hydro-soluble vitamins are intimately involved in the regulation
of different metabolic pathways, concerning energy production, cellular homeo-stasis
and clearing of catabolites. Consequently, deficiency in some vitamins is associated with
CV diseases, whereas supplementation in these vitamins has been proven beneficial in
preventing different kinds of CV alterations. The same is true for COVID-19, where it has
been seen that lower levels of some vitamins were linked to worse outcomes.

4.1. Vitamin A

Vitamin A is a fat-soluble vitamin with a broad range of immunological effects. Its
deficiency is associated with recurrent infections [165]. The protective role of vitamin A
supplementation against various infections has been demonstrated [165]. In this regard,
significantly lower vitamin A serum levels in patients with severe COVID-19 symptoms
have been observed [166]. Most likely, this is due to the inflammation itself rather than a
direct effect of vitamin A deficiency during the illness, suggesting that supplementation
may be needed to restore the normal status [167]. A positive association between plasma
retinol and dyslipidemia has been pointed out [168], as well as a significant reduction of
overall CV and respiratory-disease-related mortality in male patients with higher levels of
vitamin A [169].
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4.2. Vitamin B

The vitamin B complex is made by eight different water-soluble constituents that
humans must absorb from the diet. Deficiency of B12 and B9 is mostly known as it results in
megaloblastic anemia. However, a significant role of vitamin B, particularly B6, B9 and B12,
in the immune response has been demonstrated too [170]. In particular, it has been shown
that vitamin B12 could suppress viral replication in the host cells [171]. Dos Santos et al.
hypothesized a therapeutic role of vitamin B12 because it could reduce severe CV sequelae
of COVID-19, through the reduction of oxidative stress, anti-inflammatory and analgesic
effect [172]. It is well known that vitamin B6, B9 and B12 also contribute to the reduction of
blood homocysteine concentrations, which are related to an increased risk of coronary artery
disease and stroke. [173,174]. Similarly, deficiency in B1 has been associated with a higher
prevalence of CV risk factors as dyslipidemia, obesity and diabetes [175]. Interestingly,
B9 supplementation has been shown to improve the endothelial dysfunction by increasing
endothelial nitric oxide production and by scavenging superoxide radicals [176], which
suggests a possible beneficial role in COVID-19 patients, where endothelial dysfunction
is known to be one of the leading causes of mortality. However, despite this theoretical
evidence, vitamin B group supplementation has no significant effect on major adverse
CV events, overall mortality, cardiac death, myocardial infarction, and stroke [177], while
B12 supplementation was shown to decrease the severity of COVID-19 symptoms [178].

4.3. Vitamin C

Vitamin C is known for its antioxidant effects and its role in immunomodulation. Due
to its ability to readily donate electrons, it protects LDL from oxidation. Different studies
have shown its role in reducing harmful oxidants in the stomach and promoting iron
absorption [179], as well as protecting cells during exposure to toxins and pollutants [180].

As for its immunomodulation effect, its action on lymphocytes is not completely
clear, but it has been proven that vitamin C regulates genes responsible for B and T cell
generation, differentiation, and proliferation. Moreover, amongst its pleiotropic effects, it
has been reported to have an antithrombotic function by inhibiting platelet expression of
CD40 ligand [181,182] and another important role as co-factor to produce catecholamines,
vasopressin, norepinephrine, and cortisol, in the human body [183,184]. This last ev-
idence provides the rationale for evaluating intravenous vitamin C administration in
septic shock to achieve a sparing effect on vasopressor requirements [177]. Early trials
have indicated some potentially beneficial effects of intravenous vitamin C also in severe
COVID-19 patients [185,186]. The upcoming findings from the larger randomized con-
trol trials currently underway, such as the Lessening Organ Dysfunction with Vitamin
C-COVID (LOVIT-COVID) trial, should provide more definitive evidence (NCT04401150).

4.4. Vitamin D

Vitamin D plays a central role in the absorption of Ca++, Mg ++, and phosphate, as
well as in the bone metabolism. Strong evidence suggests a critical role for vitamin D
in the modulation of the immune function [187]. Furthermore, vitamin D deficiency has
been reported in several chronic conditions associated with increased inflammation and
deregulation of the immune system, such as diabetes mellitus, asthma, and rheumatoid
arthritis [187]. Similarly, an association between vitamin D deficiency and inflammation
was shown in patients with COVID-19. In a prospective study by Jain et al. [188], serum
25(OH)D concentrations were significantly lower in patients requiring ICU admission than
in asymptomatic patients with COVID-19. Moreover, epidemiological data indicate that
vitamin D deficiency in humans is associated with arterial stiffness, arterial hypertension,
left ventricular hypertrophy, and endothelial dysfunction, implying that vitamin D might
also have a protective role in CV diseases, and that it may lower the risk for HF [189].

It is well known that diabetes mellitus is associated with an increased risk for severe
COVID-19, as hyperglycemia might modulate immune and inflammatory response leading
to possible lethal outcomes [190]. Vitamin D insufficiency plays a negative role in this



Nutrients 2022, 14, 3439 11 of 21

dysregulation, leading to impaired glucose homeostasis. In fact, Vitamin D is essential
for pancreatic β-cell functioning and insulin sensitivity. It plays a role in controlling gene
transcription and cell signaling, alleviating the onset of insulin resistance, especially in
adipose tissue [191].

For what concerns the CV system, data from several experimental studies support the
anti-fibrotic and anti-hypertrophic role of Vitamin D, suggesting that it has a beneficial role
against cardiac dysfunction, hypertrophy, and fibrosis [192,193].

Vitamin D is also involved in the regulation of the RAAS even though the mechanism
is not completely understood [194]. It has been reported that vitamin D3 supplementa-
tion reduces blood pressure in patients with essential arterial hypertension [195,196] and
1,25(OH)2D3 treatment reduces blood pressure, plasma renin activity, and angiotensin
II levels, in patients affected by hyperparathyroidism [197,198]. Moreover, it has been
shown that Vitamin D is also involved in the regulation of thrombotic pathways, and its
deficiency is associated with an increase of thrombotic episodes probably because it allows
the production of certain neuroprotective growth factors and inhibition of ROS [199,200].
This finding is of crucial importance when looking at COVID-19, since vascular thrombosis
is one of the most serious complications often leading to death.

4.5. Vitamin E

Vitamin E is a fat-soluble vitamin, primarily known for its role as an antioxidant. It
appears to prevent the polyunsaturated fatty acids (PUFAs) in the cell-membrane from
oxidation, regulate the production of ROS and reactive nitrogen species, and modulate cell
signaling. Immune cells are particularly sensitive to oxidative damage due to their high
metabolic activity and PUFAs contents [201]. Therefore, vitamin E plays an important role
in fostering the immune system. Vitamin E has also been shown to have suppressor effects
on prostaglandin E2 (PGE2) synthesis, which is an important T cell-suppressing mediator.

Furthermore, it is well known that one of the key complications of the respiratory
distress syndrome associated with severe COVID-19 is acute cardiac injury [202], which is
associated with oxidative stress, characterized by enhanced nicotinamide adenine dinu-
cleotide phosphate oxidase2 (NOX2) activity, activation of platelets phospholipase A, and
excess of PGE2 [203].

Moreover, other effects of Vitamin E on CV diseases have been investigated in basic
science trials, showing a preventive role of α-tocopherol, the biologically most active form
of vitamin E, in CV diseases [204–206]. These beneficial effects include inhibition of cell
proliferation and LDL oxidation by modulating protein kinase C (PKC) activity [204], pro-
tection against atherosclerotic lesion development and aorta damage [205], and a reduction
of apoptotic activity in cardiomyocytes [206].

Thus, because of its proven antioxidant effects and its theoretical beneficial effects
against plaque formation, an anti-oxidative therapy with Vitamin E could be proposed to
reduce the burden of cardiac complications caused by COVID-19 [207].

4.6. Vitamin K

Vitamin K is a fat-soluble vitamin necessary for the synthesis and activation of both
procoagulant or anticoagulant factors. Most importantly, protein S, a vitamin K-dependent
glycoprotein, not only has a major role in the anti-coagulation pathway, but also prevents
the production of inflammatory cytokines associated with the cytokine storm observed in
acute lung, liver and heart injury seen in COVID-19 patients [208]. Low protein S levels,
often due to pneumonia-induced vitamin K depletion, were correlated lately with higher
thrombogenicity, clinical severity, and fatal outcome in COVID-19 patients, independently
of age or inflammatory biomarkers [209]. Furthermore, ample evidence has shown that
vitamin K exerts a potent calcification-inhibitory function by allowing carboxylation of
Matrix Gla Protein [210].

A summary regarding the relationship among vitamins, CV diseases, and COVID-19
is reported in Table 2.
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Table 2. A summary of the most important vitamins imbalance during COVID-19 and their effects
on CV system.

Vitamin Relationship among CV Diseases
and Vitamins

Relationship among COVID-19
and Vitamins Reference

Vitamin A
1. Improvement of dyslipidemia.
2. Reduction of overall mortality in

CV diseases

1. Low vitamin A serum levels
are associated with COVID-19
symptoms severity

[166,169]

Vitamin B

1. Reduction in homocysteine responsible
for increased risk of coronary artery
disease and stroke (B6, B9, B12).

2. Protection against metabolic
syndrome (B1).

3. Antioxidant effects and improvement of
endothelial function (B9).

1. Suppression of viral
replication in host cells (B12)

2. Vitamin B12 therapy could
reduce severe damages
induced by COVID-19 and
related symptoms.

[171,172,176,178]

Vitamin C
1. Antioxidant effect, contrasting ROS

and inflammation

1. Immunomodulant activity on
T and B cells

2. Antithrombotic activity
through platelet expression of
CD40 ligand.

[181,182,186]

Vitamin D
1. Anti-fibrotic and anti-hypertrophic role.
2. Regulation of RAAS.

1. Vitamin D deficiency is
associated with an increase of
thrombotic episodes.

[191–196,199]

Vitamin E

1. Antioxidant effect.
2. Inhibition of LDL oxidation.
3. Reduction of cardiomyocytes

apoptotic activity.

1. Suppression of PGE2
synthesis, an important T
cell-suppressing mediator.

[199,201,203,204]

Vitamin K 1. Inhibition of cardiovascular calcification
2. Anti-coagulation role

1. Activation of Protein S and
inhibition of cytokine storm. [208–210]

COVID-19: coronavirus disease 2019; CV: cardiovascular; ROS; reactive oxygen species; RAAS: renin-angiotensin-
aldosterone system; PGE2: prostaglandin E2; LDL: low density lipoprotein.

5. Conclusions

Although the human body needs very small quantities of micronutrients, their impor-
tance for human physiology is relevant [211]. The deficiency of electrolytes and vitamins is
widespread in hospitalized patients, and it is strongly related to potential life-threatening
conditions. Adequate nutrition and supplementation are pivotal to reduce the risks associ-
ated with micronutrients imbalance [211].

Micronutrient imbalance has been extensively observed in patients with CV disease
and COVID-19, significantly worsening their prognosis. The causal relationship between
COVID-19 and cardiovascular diseases is mutual. In fact, COVID-19 has been shown to
affect the CV system extensively and, at the same time, patients affected by a CV disease are
more prone to develop a severe infection form. Apart from the already well-known patho-
physiological mechanisms promoting CV diseases in the setting of COVID-19 infection,
derangements in the concentration of several important micronutrients, such as ions and
vitamins, may have a non-negligible role in the pathophysiological continuum between
these two entities. In particular, hypokalemia is a very common electrolytes imbalance
in COVID-19, and it is associated with cardiac arrythmias [84,89]. Hyponatremia is an
independent risk factor for mortality in COVID-19 patients, related to worse patient’s prog-
nosis affecting blood volume regulation, osmotic equilibrium, and arterial pressure [38,40].
Hypomagnesemia at hospital admission has been associated with a higher risk of mortality
and arrythmias in COVID-19 [63,64]. Vitamin D deficiency has been associated with throm-
boembolic events [199,200], endothelial dysfunction, left ventricular hypertrophy [189],
and it is more frequent in patients admitted to ICU. Vitamin A deficiency is associated
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with COVID-19 symptoms severity and lipid metabolism imbalance [166,169], while vita-
min E and C are closely related to good functioning of the immune system [177,201] and
cardioprotection [181,182,204–206].
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