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ABSTRACT

By putting heterologous genomic regulatory sys-
tems into contact, chromosome addition lines de-
rived from interspecific or intergeneric crosses al-
low the investigation of transcriptional regulation in
new genomic environments. Here, we report the tran-
scriptional and epigenetic adaptation of stably in-
herited alien maize chromosomes in two oat-maize
addition (OMA) lines. We found that the majority
of maize genes displayed maize-specific transcrip-
tion in the oat genomic environment. Nevertheless, a
quarter of the expressed genes encoded by the two
maize chromosomes were differentially expressed
genes (DEGs). Notably, highly conserved orthologs
were more severely differentially expressed in OMAs
than less conserved orthologs. Additionally, syn-
tenic genes and highly abundant genes were over-
represented among DEGs. Gene suppression was
more common than activation among the DEGs;
however, the genes in the former maize pericen-
tromere, which expanded to become the new cen-
tromere in OMAs, were activated. Histone modifica-
tions (H3K4me3, H3K9ac and H3K27me3) were con-
sistent with these transcriptome results. We expect
that cis regulation is responsible for unchanged ex-
pression in OMA versus maize; and trans regulation
is the predominant mechanism behind DEGs. The

genome interaction identified here reveals the im-
portant consequences of interspecific/intergeneric
crosses and potential mechanisms of plant evolution
when genomic environments interact.

INTRODUCTION

Polyploidy arises from either unreduced gametes (result-
ing in autopolyploids) or interspecific crosses (resulting in
allopolyploids), allowing it to be amongst the most piv-
otal forces in species evolution (1,2). Compared with ani-
mals, plants, especially flowering plants (angiosperms), are
highly tolerant of interspecific crosses. Thus, plants are ex-
cellent models to investigate the interaction of formerly sep-
arate genomic environments during interspecific hybridiza-
tion (3). Plant interspecific crosses may overcome fertiliza-
tion barriers, resulting in allopolyploids or haploids (1,4).
In allopolyploids, the genomes from both parental gametes
are merged, whereas in haploids one parental genome is
eliminated after fertilization (5,6). Some rare hybridization
events can result in chromosome addition lines, which are
in-between allopolyploids and haploids in genome interac-
tion. Chromosome addition lines are usually rescued and
maintained deliberately after interspecific crosses; they con-
tain a complete set of uniparental chromosomes with one or
more pairs of stably inherited chromosomes from the alien
parent (7-12).

In interspecific hybrids, such as allopolyploids and
chromosome addition lines, the transcriptional regula-
tory mechanisms from two genomic environments inter-
act, leading to widespread gene expression changes. The
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transcriptional changes observed in interspecific hybrids
are likely caused by two types of regulatory mechanisms:
cis-regulatory elements and trans-regulatory factors. The
cis-regulatory elements include gene expression enhancers
and promoter sequences that influence gene expression
and mRNA stability of downstream genes (13-15). Trans-
regulatory factors, such as transcription factors (TFs), ei-
ther act independently or coordinate with cis elements
throughout the hybrid genome (14-17). Previous studies
on gene transcription in interspecies hybrids from fruit
flies, yeast, tomato and Arabidopsis have shown cis- and/or
trans-dependent transcriptional regulation of parental or-
thologs (14-16,18). In addition, comparison of cis- ver-
sus trans-regulatory effects has revealed that cis-regulatory
factors predominate the observed transcriptional diver-
gence of parental orthologs (14). Trans-regulatory fac-
tors are commonly associated with cis regulation, when
they are involved in selfing sibling and environmental re-
sponses (15,16). Compared with allopolyploids where the
two parental genomes interact, chromosome addition lines
facilitate precise regulation studies because only a small
subset of the donor genome (one or just a few chromo-
somes) interacts with the receptor genome, reducing the
complexity of possible genomic interactions. Chromosome
addition lines have been developed from several animal
and plant species (7-10,12,19,20). However, the regulatory
mechanism underlying the widespread gene transcription
of the alien chromosome(s) is still unclear. As far as we
know, only two previous reports investigated chromosome-
wide gene expression in chromosome addition lines (8,21).
Using an Affymetrix Barleyl GeneChip, Cho et al. char-
acterized barley-specific gene transcription in wheat-barley
chromosome addition lines; however, because of the limited
accuracy of chip technology, quantification of the gene tran-
scription was difficult (21). Wilson et al. took advantage
of an animal chromosome addition line, a mouse hepato-
cyte strain introgressed by human chromosome 21, to com-
pare TF binding sites, chromatin modification, and gene ex-
pression between mice and human (8). They found that the
majority of orthologous pairs were transcriptionally and
epigenetically inherited from their respective parents, indi-
cating that a regulatory DNA sequence, rather than any
other species-specific trans factor, may determine the inter-
specific divergence in gene expression (8). Recent advances
in next generation sequencing for profiling gene regulation
may provide a more precise understanding of expression
regulation mechanisms compared to previous work with
microarrays.

Rines and Phillips have developed a series of oat-maize
addition (OMA) lines by a sexual cross between oat (Avena
sativa L., 2n = 6x = 42) and maize (Zea mays L., 2n =
20), resulting in the addition of individual maize chromo-
somes to the complete oat genome (11,19,20). The allo-
hexaploid oat genome originated itself from a hybridiza-
tion between an diploid ‘D genome’ and a tetraploid ‘AC
genome’ (22-24). OMA lines set up an interesting situa-
tion as four diverged genomic regions are present, hence
the additional orthologous maize genes will exist in four
copies (A, C, D and maize) versus three copies in oat (A,
C and D). This artificial ‘quadruple hybrid’ may mimic nat-
ural interspecific hybridization, providing an ideal model to
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investigate the mechanisms underlying alien chromosome
survival and genomic adaptation in the recipient genomic
environment. We therefore conducted RNA-seq (RNA se-
quencing) and examined three histone modifications us-
ing chromatin immunoprecipitation sequencing (ChIP-seq)
in the OMA lines containing maize chromosome 6 (Chr6)
or chromosome 9 (Chr9). The reads that were uniquely
mapped to the maize genome but not to the oat tran-
scriptome were used to profile the maize gene expression
in native and recipient genomic environments. We found
that many alien maize genes showed similar expression lev-
els in oat genomic environment compared to the maize
parental genomic environment. However, 26-28% of the
alien maize genes were differentially expressed in the OMA
lines, indicating that cis effects may dominate the regula-
tion of alien maize gene expression. Notably, we observed a
negative correlation between coding sequence conservation
and expression level. Syntenic genes were over-represented
amongst differentially expressed genes (DEGs) but non-
syntenic genes were not. In contrast to the chromosome-
wide suppression of alien maize DEGs, several genes in
the newly expanded centromere of the OMA lines were ac-
tivated. These results suggest that centromeric transcrip-
tional activation may contribute to stabilizing the cen-
tromeres in interspecific/intergeneric hybrids. Furthermore,
our histone modification analysis in the OMA lines sup-
port the transcriptional profiling results, implying that cis
and frans mechanisms may synergistically regulate alien
gene transcription and facilitate alien gene survival in an
interspecific/intergeneric genome.

MATERIALS AND METHODS
Plant materials

The oat cultivar Starter and all the oat-maize addition
lines, including the two OMA lines with B73 as the maize
donor (OMAG6.33 and OMA9.41) (20) and the two OMA
lines with Seneca60 as the maize donor (OMAd6.1 and
OMAJd9.1) (19) were kindly provided by Drs Howard W.
Rines and Ronald L. Phillips (University of Minnesota,
USA). All seeds were germinated and grown in a growth
chamber at 28°C for 16 h of light and at 20°C for 8 h of
darkness.

GISH and FISH

Genomic in situ hybridization (GISH) was conducted
as previously described with minor modifications (295).
Maize genomic DNA was labeled with digoxigenin—11-
dUTP or biotin—11-dUTP (Roche) via nick translation.
The digoxigenin- and biotin-labeled probes were incubated
with anti-digoxigenin antibody conjugated with rhodamine
(Roche) and anti-avidin antibody conjugated with fluo-
rescein isothiocyanate (Vector Laboratories), respectively.
Chromosomes were counterstained with 4’, 6-diamidino-
2-phenylindole (DAPI) in an anti-fade solution. Fluores-
cence in situ hybridization (FISH) analyses on root tip chro-
mosomes were performed according to procedures as pre-
viously described (26,27). Slides were also counterstained
with 4, 6-diamino-phenylindole (Vector Laboratories). An
epifluorescence microscope (Olympus BX61) attached to a
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CCD camera (QImaging; RETGA-SRV FAST 1394) was
used to capture FISH/GISH images. Image-Pro Plus 6.0
software (Media Cybernetics) was used to analyze and ad-
just all digital images.

RNA extraction and RNA-seq

Total RNA from leaves was isolated from maize, oat and
OMA lines at 14 and 40 days after planting (DAP). Leaves
from at least 6 individual plants were pooled together as
one biological replicate and then grinded in liquid nitrogen.
Three biological replicates of ~100 mg tissue powder were
used to extract and purify RNA through RNAprep pure
(for plant) Kit (Tiangen, Beijing, China; #DP432) accord-
ing to the instruction manual. The construction of an RNA-
seq library was performed according to the standard man-
ufacturer’s protocol in the Illumina TruSeq RNA Sample
Preparation Kit v2 (cat#RS-122-2001); this generated 100
base pair-end reads on the Illumina HiSeq2000 platform.

ChIP and ChIP-seq

ChIP was performed as previously described by Du et al.
(28). Histone modification antibodies against H3 trimethyl-
K4 (ChIP grade, ab8580; Abcam [Hong Kong] Ltd.), acetyl-
K9 (ChIP grade, ab10812; Abcam [Hong Kong] Ltd.) and
trimethyl-K27 (ChIP grade, Upstate Biotechnology [Mil-
lipore 07-449, Temecula]) were used for this ChIP ex-
periment. Nuclei were isolated from ~10 g of fresh leaf
tissue and digested with micrococcal nuclease (Sigma-
Aldrich). Quantitative ChIP-PCR was performed to deter-
mine the relative enrichment of modified histone-associated
sequences in the bound fraction over the mock control. We
used actin gene as a positive control for H3K4me3 and
H3K09ac to normalize the enrichment of each negative am-
plicon when using the primers, Os5S-F/R and Quinta-LTR-
3F /R, respectively. The actin gene was a negative control
for H3K27me3. The primers, B6-7F /R and B9-9F /R, were
used as positive controls for ChIP-qPCR (Supplementary
Table S1). Both ChIP DNA and mock DNA were used for
the preparation of a high-throughput sequencing library, in-
cluding end repair, adaptor ligation, size selection and poly-
merase chain reaction (PCR) amplification, followed by Il-
lumina Hiseq2000 sequencing (Berry Genomics Co., Ltd).

Quantitative RT-PCR

Quantitative RT-PCR was performed as described previ-
ously (29). Three biological replicates and three technical
replicates were performed for each genotype. Oat and maize
actin homolog genes were used as internal references to nor-
malize expression data by using a pair of primers with iden-
tical sequence matches from both species (Forward: CCAC
GTACAACTCCATCAT, Reverse: CCGATCCAGACA
CTGTACTTCC). For all other gene primers, only maize-
specific primers were selected for gqRT-PCR (Supplemen-
tary Table S1). Relative expression levels were calculated as
2-AAC and the standard deviation was calculated among
three biological replicates.

Estimate on the relative transcriptome size (RTS)

For isolation of the total nucleic acids (TNA), maize B73
or OMA leaf blade was harvested at 14 DAP and ground
to fine powder in liquid nitrogen. A total of 100 mg tis-
sue powder was mixed vigorously in 500 wl extraction
buffer (250 mM Tris HCI, pH8.5; 375 mM NacCl; 25 mM
ethylenediaminetetraacetic acid (EDTA); 1% sodium dode-
cyl sulphate; 1% 2-mercaptoethanol). The resulting tissue
homogenate was centrifuged at 12 000 rpm for 10 min to
pellet insoluble debris, and the supernatant was transferred
to another tube. In the supernatant, 0.3 ml Phenol B and
0.3 ml chloroform were added, and the solution was mixed
thoroughly by vortex. The mixture was kept on ice for 15
min and then centrifuged at 12 000 rpm for 15 min. One
volume of ice cold isopropanol was added to the super-
natant and the solution was mixed well, then centrifuged at
max speed for 15 minu. The DNA/RNA pellet was washed
with 70% ethanol by three times, and then re-suspended in
RNase-free H20/0.1% EDTA, pH = 8.0. A total of 4 pg
TNA were used for reverse transcription following the in-
struction of M-MLYV First Strand Kit (Invitrogene, Cat no.
(C28025-032). cDNA specific primers were designed as at
least one primer of each pair included exon junctions. Ge-
nomic DNA-specific primers were designed based on the in-
tergenic region. All the primer sequences are listed in the
Supplementary Table S1. The estimate of RTS was calcu-
lated as described by Coate and Doyle (30).

RNA-seq data analysis

RNA-seq was performed for B73, Seneca60 maize lines,
OMAG6.33, OMA9.41, OMAd6.1, OMAAdI.1 lines and oat
Starter as parallel tests. For the maize lines, the pair-end
reads were mapped to the reference genome of maize B73
version 3 using a TopHat tool with default parameters (31);
The duplicated reads mapped to more than one location
in the genome were filtered, and only the uniquely mapped
tags were retained. For the additional lines, we constructed
a new assembly as a reference, which consisted of oat tran-
scriptome assembled by Trinity (32) and B73 single chromo-
some 6 or chromosome 9 genome sequence. Only the reads
uniquely mapped on Chr6 or Chr9 were selected and then
normalized with the reference for B73 Chr6 or Chr9. Frag-
ments per kilobase million (FPKM) value by Cufflinks tool
was used to measure differences in gene expression levels
between B73 and additional lines (33). FPKM value for the
OMA samples was then re-normalized and re-calculated
by multiply the RTS of OMA relative to maize in order to
counteract the transcriptome size bias. DEGs were identi-
fied by the cutoff with absolute value of log, fold change >
0.8 and a P-value < 0.05. A GO analysis for the functional
categorization of DEGs was performed using AgriGO (34),
with maize genes from Chr6 or Chr9 as reference back-
ground instead of whole genome genes. Sequence similar-
ities were analyzed with BLAST (35), using maize genes
against the assembled oat transcriptome as well as public
expressed sequence tag (EST) sequences from NCBI. The
oat transcript assigned with the highest bit score of each
maize gene was defined as the closest corresponding or-
tholog.



Figure 1. Cytological characterization of OMA6 and OMAY. (A) The two
copies of maize Chr6 in OMAG6 were detected by FISH and GISH using
45S rDNA (green) and maize genomic DNA (red) as probes, respectively.
(B) GISH signals (red) in an OMAJY root tip cell after using maize genomic
DNA as the probe represent the maize chromosome pairs. Bars = 10 pm.

ChIP-seq data analysis

Single-end ChIP-seq and input reads were mapped to the
reference accordingly same as that in the RNA-seq anal-
ysis using Bowtie2 (36), allowing one base mismatch with
default parameters, and only uniquely mapped reads were
used for further analysis. The MACS (37) program was used
to identify peaks and convert the data to bigwig/wig format
with default parameters. The data was all normalized based
on their sequencing depth before following analysis. The vi-
sualization of the ChIP-seq tags over selected genomic re-
gions were created by Integrative Genomics Viewer (38).
To compare the modification level in maize and OMA for
all genes, we calculated the average ChIP-seq enrichment
across 3 kb upstream and downstream of the TSS by CEAS
(39). A heatmap plot of z-score was created to illustrate
the average histone modification markers in the gene pro-
moters. Boxplots used to compare the histone modification
level for up- and downregulated genes were performed by R
package. The statistical significance between the OMA and
B73 was calculated using a Wilcoxon signed-rank test.

RESULTS

Maize chromosome transmission is stable in OMA6 and
OMA9

OMA lines, OMAG6.33 and OMA9.41 contain introgressed
maize B73 chromosomes within the Starter oat genomic
background (20). To confirm the genomic stability of
OMAG6.33 and OMA9.41 (which are simplified as OMAG6
and OMADY, respectively, in the remaining text), we used
GISH and FISH to analyze the cytogenetic characteristics
of the OMA lines. After one generation of seed bulking,
all of the randomly selected progeny (at least 10 individu-
als descended from both OMAG6 and OMAY) showed a dis-
omic addition of maize chromosomes in OMA6 and OMA9
(2n = 42 + 2). Figure 1 shows that probes specific maize
genomic sequences identified a pair of maize Chr6 in the
OMAG (Figure 1A) and Chr9 in the OMA9 (Figure 1B) by
GISH. Maize 458 ribosomal DNA (rDNA) is located on
maize Chr6. Thus, FISH revealed two 45S rDNA signals
on the short arm of the maize chromosome in the OMAG6
and six 45S rDNA loci in the remaining hexaploid oat chro-
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mosomes, as expected (Figure 1A). These results are consis-
tent with previous studies, which identified maize chromo-
some transmission by molecular marker-based genotyping
of OMA lines (20), suggesting the stable inheritance of alien
genomic material in the OMA lines used in this study.

Transcriptional response of maize genes to oat genomic envi-
ronment

To investigate transcriptional regulation, we examined
whole leaf blades of seedling at 14 days after planting (DAP)
from maize B73, OMA6, OMAY and oat Starter by RNA-
seq. In total, 71.0 M, 56.2 M 59.1 M and 99.5 M high qual-
ity 100 bp paired-end reads were generated from the B73,
OMAG6, OMAY and oat Starter, respectively (Supplemen-
tary Table S2). Three biological replicates were used for the
B73, OMAG6 and OMADY and four for the oat Starter. Reads
from B73 were mapped to the maize B73 genome by us-
ing TopHat (31). To accurately align the OMA reads, we
had to distinguish oat reads from maize transcripts. Be-
cause an assembled oat genome is unavailable, we used the
Trinity software to de novo assemble an oat transcriptome
from our four biological replicates of Starter RNA-seq (32).
The assembled oat transcriptome contained 14 068 tran-
script contigs with an average transcript length of 1184 bp
and an N50 value of 1452 bp (Supplementary Table S3).
The OMA6 and OMADO9 reads were then mapped to the as-
sembled oat transcriptome and the maize Chr6 or Chr9 se-
quence, with a strict alignment requirement of only one base
mismatch. The reads that mapped uniquely to the maize
chromosomes, but not to the oat transcriptome, were used
for further analysis. This strategy substantially reduces the
chance of oat transcripts being mapped mistakenly to the
maize chromosomes. To evaluate the accuracy of this map-
ping strategy, we counted the number of reads aligned to
both the maize chromosomes and the oat transcriptome: (i)
for the three replicates of OMAG, the proportions of such
reads were only 0.063, 0.066 and 0.055%; for the three repli-
cates of OMADY, the proportions were only 0.029, 0.025 and
0.028%, indicating that very few maize reads were elimi-
nated mistakenly because of multiple alignments; (i1) for the
three replicates of maize B73, only 0.07, 0.068 and 0.069%
of the mapped reads were aligned to the oat transcriptome
(Supplementary Table S4). Thus, our mapping strategy may
efficiently differentiate maize from oat transcripts, and al-
lowed further analysis of gene expression specifically origi-
nating from the alien maize chromosomes. In total, maize-
specific reads comprised 12.3% of reads pairs in OMAG6 and
8.8% in OMAY (Supplementary Table S2). Therefore, ap-
proximately one tenth of each OMA transcriptome orig-
inated from a maize chromosome, similar to the endoge-
nous maize chromosome’s contribution to the native maize
transcriptome. After alignment, the maize Chr6- and Chr9-
specific reads from B73 and the corresponding OMA lines
were extracted and then normalized to the Chr6 and Chr9
references, respectively, and the FPKM was determined. We
thus generated a chromosome-wide transcript profile for the
B73 maize, OMAG6 and OMAY. Compared with B73 gene
expression, we identified 595 DEGs (236 upregulated and
359 downregulated genes) and 502 DEGs (232 upregulated
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and 270 downregulated genes) in the OMA6 and OMAJ9,
respectively (Supplementary Table S5).

Transcriptome analysis after adjusting transcriptome size

An assumption for RNA-seq analysis is that the com-
pared transcriptomes should have equal size (called ‘tran-
scriptome normalization’). In this study, we noticed pos-
sible differences in transcriptome size between maize and
the OMAs. To address this concern, we used a previously
described strategy to calculate relative transcriptome size
(RTS) (30). Briefly, total RNA and gDNA (TNA) were co-
extracted from the same tissue used in our RNA-seq and re-
verse transcribed. Then maize cDNA- and gDNA-specific
primers of randomly selected genes (Supplementary Ta-
ble S1) were used in quantitative RT-PCR to quantify the
gene expression based on a genome normalization. Because
maize chromosome pairs in our OMA materials are stable
in both individuals and generations, estimation of relative
gene expression based on genome normalization should be
more accurate than that based on transcriptome normal-
ization (the RNA-seq analysis). We found that relative gene
expression per genome from the qRT-PCR analysis corre-
lated substantially with the gene expression profile from the
RNA-seq analysis (Pearson correlation R> =0.93 in OMAG6
and R?> = 0.97 in OMADY) (Figure 2A and B). Through a
previously proposed approach (30), we divided the value
of relative expression per genome from the qRT-PCR as-
say by the relative expression per transcriptome from the
RNA-Seq dataset to calculate the RTS of maize chromo-
some in the OMAs relative to that in B73. The RTS was
1.033 and 1.179 in the OMA6 and OMADJY, respectively (Fig-
ure 2C). These results suggest that maize chromosomes ex-
hibit a stable relative transcriptome in OMA lines, although
the genome size is quite different between maize and oat.
These findings indicate that the oat genome may not signif-
icantly affect alien maize transcriptome size.

To minimize potential bias due to transcriptome size dif-
ference, we re-normalized and re-calculated FPKM for the
OMA RNA-seq datasets, which was the original FPKM
multiplied by the RTS of the OMA lines (1.033 for OMAG6
and 1.179 for OMADY). After these adjustments, the DEG
list of OMAG6 remained unchanged compared with the re-
sults from the analysis without the transcriptome size ad-
justment, whereas for the OMA9, the number of downreg-
ulated genes was reduced by five and the upregulated genes
remained unchanged compared with the original analysis
(Figure 3A and B, Table 1 and Supplementary Table S6).
Four genes in the OMAG and three genes in the OMA9
were revived (extremely upregulated, FPKM = 0 in the B73
but FPKM > 5 in the OMASs); 157 genes in the OMAG6 and
80 genes in the OMAY were silenced (extremely downregu-
lated, FPKM > 5 in the B73 but FPKM = 0 in the OMAs),
accounting for ~40% of the downregulated genes in both
OMA lines (Table 1 and Supplementary Table S6). In addi-
tion, the downregulated genes in general showed a higher
fold changes than the upregulated genes (Figure 3C and
D), indicating that transcriptional inactivation on the alien
maize chromosome appear to be predominant. In summary,
the total numbers of DEGs were 595 and 497 in the OMAG6
and OMADO9, respectively, which, surprisingly, represented

only 28.12 and 25.97% of the expressed genes on their re-
spective chromosomes (Table 1). Therefore, the majority
of the chromatin on the alien maize chromosome main-
tained inherent transcriptional activity. We also investigated
the distribution of DEGs on the corresponding chromo-
some. Both the density and fold change of the DEGs var-
ied greatly, and no obvious enrichment of the DEGs on
the alien maize chromosomes was detected (Supplementary
Figure S1A and B).

To confirm the DEG patterns in the alien chromosomes,
we conducted RNA-seq analyses using another OMAG6 and
OMADO lines (designated as OMAd6.1 and OMAd9.1 to
differentiate from the B73-OMA lines), in which Seneca60
maize was used as the maize donor (11) and Seneca60 maize
RNA-seq data were used as the control (Supplementary Ta-
ble S2). Similar to the OMA6 and OMAY, we used whole
blades of leaves at 14 DAP from OMAd6.1 and Seneca60
for RNA-seq, and we also performed RNA-seq on the 40
DAP tissues from OMAGJ lines and Seneca60. At 14 DAP
stage, compared with the gene expression in Seneca60, 839
genes (395 upregulated and 444 downregulated genes) were
identified as DEGs in the OMAd6.1 and 695 (353 upregu-
lated and 342 downregulated genes) DEGs were identified
in the OMAJd9.1. At 40 DAP stages, 789 genes (399 upreg-
ulated and 390 downregulated genes) and 754 genes (381
upregulated and 373 downregulated genes) were identified
as DEGs in OMAd6.1 and OMAGJ9.1, respectively (Figure
4A and B; Supplementary Table S7). In addition, 72 and
93 genes were silenced (FPKM > 5 in Seneca60 whereas
FPKM = 0 in OMAd6.1) in the OMAJd6.1 at 14 and 40
DAP, respectively, while 59 and 111 genes were silenced
in the OMAJ9.1 at the two stages, respectively. Few genes
exhibited de-repression (FPKM = 0 in Seneca60 whereas
FPKM > 5 in OMAds), 31 and 45 genes in the OMAJ6.1
at 14 and 40 DAP, respectively, and 38 and 44 genes in the
OMAGd9.1 at the two stages, respectively (Supplementary
Table S7). These results further suggest predominant sup-
pression of genes from the alien maize chromosomes. No-
tably, the gene expression pattern of the B73-OMAs cor-
related highly with that of the Seneca60-OMAds at both
DAP stages (Figure 4C and D; Supplementary Figure S2A
and B). Over 67% of the DEGs in the B73-OMAs over-
lapped with the DEGs in the Seneca60-OMAds at 14 and
40 DAP (Figure 4C and D; Supplementary Figure S2C).
We also noticed that the DEG expression patterns showed
a higher correlation between developmental stages (OMAd
lines at 14 DAP versus 40 DAP) than between different
donor maize chromosome (OMA lines versus OMAJ lines;
Supplementary Figure S2A and B). These results indicate
an inherent mechanism underlying gene expression regula-
tion in the alien maize chromosome, that may not be signif-
icantly influenced by the donor maize genomic background
and even more slightly by developmental stage. Neverthe-
less, it is notable that profound sequence diversity exists in
different maize lines (40,41). Thus, mapping Seneca60 reads
to the B73 genome will cause bias inevitably. In addition,
Seneca60 is a hybrid stock and not an inbred, which could
compromise the robustness of the conclusions on gene ex-
pression. For those reasons, we only focused on the B73-
OMA dataset in the following analyses.
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Figure 2. Comparison of the expression value estimated by RNA-seq versus qRT-PCR. (A and B) Fold change of randomly selected maize genes shows high
correlation between RNA-seq and qRT-PCR for both OMAG6 (A) and OMAS9 (B). Results based on RNA-seq estimate transcript level per transcriptome,
while qRT-PCR value estimate transcript per genome (see ‘Materials and Methods’ section). The value of R? was calculated as Pearson correlation. (C)
Average estimate of transcriptome size of the maize chromosomes in OMA relative to the transcriptomes of the corresponding chromosomes in maize.
The error bars stand for the standard deviation, n = 12 for OMAG6 and n = 14 for OMADO9.

Table 1. Overview of DEGs

Total Expressed Extremely Extremely
genes genes! Non-DEGs DEGs Upregulated upregulated? Downregulated ~ downregulated?
OMAG versus 3290 2116 1521 (71.88%) 595 (28.12%) 236 (11.15%) 4 (0.19%) 359 (16.97%) 157 (7.42%)
B73
OMADY versus 3006 1914 1417 (74.03%) 497 (25.97%) 232 (12.12%) 3 (0.16%) 265 (13.85%) 80 (4.18%)
B73

TExpressed genes represent the genes with FPKM > 1 in either maize or OMA.

2Extremely upregulated genes represent the genes showing FPKM = 0 in B73 and FPKM > 5 in OMA lines.

3Extremely downregulated genes represent the genes showing FPKM > 5 in B73 and FPKM = 0 in OMA lines. Values in parentheses represent the
corresponding percentage of the genes relative to the expressed gene on the chromosome. DEG: Differentially expressed gene.

Functional analysis of the DEGs ways and the gene ontology of ribosome structure (Supple-
mentary Figure S3), indicating that the additional maize
and/or oat chromosomes may prefer maize components for
gene translation through an unknown mechanism.

OMAs are good models to investigate C3/C4 photosyn-
thesis because the individual C4 chromosome is included
in the C3 genetic background. The gene expression lev-

To investigate the regulatory mechanisms underlying the
gene expression in alien maize chromosomes, we analyzed
the expected function of the DEGs. No significant func-
tional enrichment was detected in the downregulated genes
in both OMA6 and OMAY9. The upregulated genes from
both OMAs showed enrichment in translation-related path-
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els of the two key C4 enzymes in the OMAs, pyruvate or-
thophosphate dikinase (PPDK) on maize Chr6 and phos-
phoenolpyruvate carboxylase (PEPC) on Chr9, were not
significantly changed compared with those in the maize B73
(Table 2). These data are consistent with the results of previ-
ous studies investigating the RNA and protein expression of
the two genes in OMAs (42,43). However, the expression of
other C4-related genes was changed in the oat genomic envi-
ronment. For example, dicarboxylate/tricarboxylate carri-
ers (DTCs) and mesophyll envelope protein 3 (MEP3) were
induced significantly in the OMAs, while NADP-dependent

malic enzyme 2 (NADP-ME2), ribulose-phosphate 3-
epimerase (RPE), fructose 1, 6-bisphosphatase (FBP) and
transketolase (TKL) were all suppressed in the OMAs (Ta-
ble 2). The mosaic expression pattern of the C4 genes may
not support C4 photosynthesis in an oat background, and a
previous report has also shown that individual maize chro-
mosome had limited impact on C3 photosynthesis in OMA
lines (43), suggesting that engineering C4 photosynthesis
into C3 plants by interspecific hybridization may be chal-
lenging, since a high number of C4 related genes all through
the genome need to be transferred and expressed.
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Table 2. Gene expression profiles of essential enzymes involved in the C3/C4 photosynthesis pathway

RPKM RPKM log; fold
Gene ID Chr Gene name B73 OMA change Significant
GRMZM2G042146 6 C4.BS.Dicarboxylate/tricarboxylate Carrier (DTC) 81.6226 330.889 2.01931 yes
GRMZM2G051630 6 C4.BS.Dicarboxylate/tricarboxylate Carrier (DTC) 114.177 668.431 2.54951 yes
GRMZM2G178960 9 C4.BS.Ribulose-phosphate 3-epimerase (RPE) 68.8523 0.509308 —7.07882 yes
GRMZM2G034061 9 C4.ME.Sugar Transporter 135.722 6.55578 —4.37174 yes
GRMZM2G095287 9 C4.BS.Fructose 1,6-bisphosphatase (FBP) 294.421 45.6077 —2.69053 yes
GRMZM2G033208 9 C4.BS. Transketolase (TKL) 2506.97 659.44 —1.92663 yes
GRMZM2G122479 6 NADP-dependent malic enzyme2 (NADP-ME2) 139.482 40.698 —1.77705 yes
GRMZM2G083841 9 C4.ME.Phosphoenopyruvate Carboxylase(PEPC) 14530.2 6304.05 —1.2047 no
GRMZM2G306345 6 C4.ME.Pyruvate Orthophosphodikinase (PPDK) 45916.8 43263.5 —0.08587 no
GRMZM2G089136 6 C4.ME.Phosphoglycerate Kinase (PGK) 4541.57 5980.62 0.39710 no
GRMZM2G305851 6 C4.ME.Envelope Protein (MEP3) 136.964 380.601 1.47449 yes

TFs control transcriptional dynamics and play critical
roles in almost all biological processes (44). Of the 213 TFs
in OMAG6, 34 (16.0%) were downregulated and 11 (5.2%)
were upregulated; of the 172 TFsin OMADY, 18 (10.5%) were
downregulated and 17 (9.9%) were upregulated (Supple-
mentary Table S8). The low percentage of differentially ex-
pressed TFs (DETFs), indicates that TFs in OMA lines are
not more likely to undergo differential expression than any
other gene category. In the OMAG, the number of down-
regulated TFs was substantially higher than that of the up-
regulated TFs, further suggesting that alien maize genes
are predominantly suppressed in oat genomic environment.
Of the 21 TF families containing DETFs in the OMAG6
and OMAD9, only three (MY B-related, NAC and Co-Like)
showed consistent changes in the OMAG6 and OMAJY; five
TF families (HB-other, ERF, WRKY, bHLH and GRAS)

including DETFs changed in an opposite direction in the
OMAG6 and OMAOY (Supplementary Figure S4), indicating
that TF functional changes may not contribute uniformly
to the transcriptional response of alien maize chromosome
to the oat genomic environment in OMA:.

DEGs show high sequence similarity in the orthologous
maize—oat gene pairs

In addition to cellular regulatory mechanisms, such as TFs
and epigenetic modifications, genetic sequence characteris-
tics can also regulate transcription (8). We examined the as-
sociation between genetic sequence characteristics and gene
expression level in the OMA lines. To avoid potential bias
from pseudogenes or tissue-specific silenced genes, we ex-
cluded maize non-expressed genes (FPKM < 1 in both the
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maize B73 and the OMA lines) in the following analyses.
Expressed alien maize genes (FPKM > 1 in either the B73
or the OMA lines) without significantly changed expression
levels were defined as non-DEGs. We aligned the coding se-
quences of all maize expressed genes on the two maize chro-
mosomes to the oat reference database, which included the
oat transcriptome developed in our current study and the
publicly available expressed sequence tag (EST) sequences
retrieved from the NCBI database. For each maize gene
query, oat transcript contigs or EST hits with the highest bit
score generated by the Basic Local Alignment Search Tool
(BLAST) were identified as the oat corresponding ortholog.
Of the 2116 and 1914 expressed genes on the respective
maize Chr6 and Chr9, we identified 1168 and 1031 maize-
oat orthologous gene pairs, respectively. The two sets of or-
thologous pairs were then divided into five classes sorted
by the sequence similarity between the maize—oat ortholo-
gous pair. Each class contains the same number of orthol-
ogous pairs. Class 1 contains the orthologs with the high-
est maize—oat sequence similarity; Class 5 has the ortholo-
gous pairs with the lowest sequence similarity. The propor-
tions of DEGs and non-DEGs in each class varied greatly.
Notably, the proportions of the upregulated and downreg-
ulated genes in the orthologous gene pairs dropped with re-
duced sequence similarity between the pairs, whereas the
proportions of non-DEGs increased as the with reduced
similarity in both OMA lines (Figure 5A and B), indicat-
ing that a higher sequence similarity between the maize—oat
orthologous pair may correlate with a stronger tendency to
be differentially expressed.

We also analyzed the differential expression of the or-
thologous transcripts in oat by comparing the OMA lines
and the oat Starter at 14 DAP using the same strategy as
in the analysis of maize DEGs. At the cutoff of P < 0.05,
15 pairs of the orthologs in the OMAG6 and 16 pairs in
the OMA9 were differentially expressed for both the maize
genes and the oat transcripts. Intriguingly, the fold change
of oat transcripts showed a significant negative correlation
with that of the maize orthologs (Figure 5C), indicating a
potential dosage compensation between maize and oat or-
thologs with high sequence similarity.

Syntenic genes were over-represented among DEGs

During the history of evolution, flowering plants experi-
enced multiple whole genome duplications, and thus under-
went several rounds of genome fractionation (45-47). Based
on synteny with the sorghum genome, genes from the maize
genome have been categorized as non-syntenic or syntenic
genes (47,48). About 44.50% (1464/3290) of the genes on
maize Chr6 can be considered as syntenic genes and the re-
maining 55.50% are non-syntenic genes. To eliminate the ef-
fect from the pseudogenes, we only took the expressed genes
(FPKM > 5 in either maize or OMAs) in the following
analysis. Among the maize expressed genes in the OMAG6,
56.20% of non-DEGs are syntenic genes; 64.22% (149/232)
of the upregulated genes and 57.38% (206/359) of the down-
regulated genes are syntenic genes (binomial test, P < 0.04,
Supplementary Figure S5). Similarly, syntenic genes were
also over-represented among OMA9 DEGs (binomial test,
P < 0.02; Supplementary Figure S5). However, no over-

represented pattern was observed in any type of subgenome
(subgenome maizel and maize2, with or without paralogs;
data not shown) (47). Although we were unable to directly
evaluate syntenic gene distribution in oat and maize because
of lacking an oat genome sequence, our results showing an
over-representation of syntenic genes in the OMA DEGs,
implying that syntenic orthologs from the alien maize chro-
mosomes may be more susceptible to transcriptional ad-
justment when the maize chromosome is introduced into a
closely related grass genome.

Chromosome-wide profile of histone modifications on the
maize addition chromosome

To investigate the dynamic chromatin changes on the maize
chromosomes, we conducted ChIP-seq assay in the OMAG,
OMAD9, and maize B73. Antibodies to detect the three chro-
matin modifications: H3K4me3, H3K9ac (H3K4me3 and
H3K9ac are recognized as positive regulators of gene ex-
pression) and H3K27me3 (a negative regulator of gene ex-
pression) were used in the ChIP-seq assay (49). In total,
1076 M high quality reads were generated (Supplementary
Table S9). According to the stringent mapping strategy in
our RNA-seq data analysis as described above, all ChIP-
seq reads of the B73 and OMA lines were screened for
unique reads that were exclusively mapped to the B73 chro-
mosomes. The Chr6- or Chr9-specific reads were then nor-
malized (Supplementary Table S9). We examined the extent
of modification at the genic region around the transcript
start site (T'SS) of the Filtered Gene Set on Chr6 and Chr9.
Consistent with the previous characterization of the three
modifications in maize (49), H3K4me3 and H3K9ac was
detected in genic regions and enriched around the TSSs of
genes in the B73, whereas H3K27me3 was enriched broadly
across the gene body (Figure 6). These chromatin modi-
fication patterns within in the genic region of the OMAs
generally resembled those in the B73 (Figure 6). In both
OMAG6 and OMADY, average H3K9ac levels in the Chr6 and
Chr9 were reduced compared with those in the B73 (Fig-
ure 6). In contrast, H3K27me3 and H3K4me3 levels were
higher in both OMA lines than in the B73 (Figure 6). These
data suggest that potential gene activation from the elevated
H3K4me3 may be counteracted by the inhibitory effects of
reduced H3K9ac and increased H3K27me3, resulting in the
observation that a majority of the maize genes in OMA lines
maintain normal expression levels.

We next performed a cluster analysis on the three mod-
ifications on Chr6 and Chr9. We divided genes from each
chromosome into an active group, including genes en-
riched for H3K4me3 and H3K9ac but lacking H3K27me3,
and an inactive group, including genes with a low abun-
dance of H3K4me3 and H3K9ac but a high abundance of
H3K27me3. For both Chr6 and Chr9 in B73, the active
group contained approximately equal numbers of genes as
the inactive group. In contrast, in the OMAG6 and OMA9
DEGs, the active group was markedly over-represented
(Figure 7A-D). Consistent with our findings by RNA-seq,
the DEGs showed substantially higher FPKM values than
the non-DEGs in the B73 leaves (Figure 7 E and F), sug-
gesting that the originally active genes located in open chro-
matin appear to be more differentially expressed in OMAs.
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Figure 5. Sequence similarity of maize—oat orthologous pairs shows a positive correlation with the proportion of DEGs. (A and B) The relative proportion
of up- and downregulated genes and non-DEGs show a consistent pattern in (A) OMAG6 and (B) OMAY. All expressed genes on the corresponding
chromosomes were equally divided into five classes sorted by sequence similarity of maize—oat orthologs. Class 1 contains the orthologs with the highest
similarity while Class 5 represents the lowest similarity. The sequence similarity was calculated by bit score analysis using BLAST for the maize genes
against the assembled oat transcriptome as well as publicly EST sequences. The oat transcript assigned the highest bit score of each maize gene was defined

as the closest corresponding ortholog. (C) The fold change of oat transcripts showed a negative correlation with that of maize orthologs.
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To further investigate the effects of the chromatin modi-
fications on gene expression in OMAs, we compared the ex-
tent of histone modification on the DEGs in the B73 versus
the OMAs. The OMA6 and OMAY presented similar pat-
terns of all three profiled modifications. Specifically, the up-
regulated genes showed considerably more H3K4me3 mod-
ification in the OMASs than in the B73, whereas showed no
evident change in the H3K9ac modification in the OMAs
and B73 (Figure 8), indicating that H3K4me3 may be as-
sociated with gene upregulation but H3K9ac may not. The
DEGs mainly comprised highly expressed genes (Figure 7 E
and F). Similar to our findings, previous studies also showed
that in highly abundant transcripts, H3K4me3 may be bet-
ter correlated to gene expression than H3K9ac (49,50). The
downregulated genes had substantially lower H3K9ac lev-
els in the OMAs than in the B73, and showed slightly lower
H3K4me3 levels in the OMAG6 and unchanged H3K4me3
levels in the OMA9 compared with those in the B73 (Fig-
ure 8). These results indicate that transcriptional upregula-
tion may be associated with increased H3K4me3 while tran-
scriptional downregulation may be accompanied with re-
duced H3K9ac modification in OMA lines. Notably, both
up- and downregulated DEGs showed higher H3K27me3
levels in the OMA lines than in the B73 (Figure 8), indi-
cating that this modification may contribute to inactiva-
tion of the alien maize chromosome in the oat genetic en-
vironment. There are likely many other histone modifica-
tions that could contribute to the regulation of the alien
maize chromosome. Neither maize Chr6 nor Chr9 encode
their own maize histone modification machinery in OMA:s.
Hence, oat epigenetic machinery is responsible for the cor-
responding alien maize chromosome histone modifications.

The expanded centromere regions were epigenetically and
transcriptionally activated in OMA

Centromere chromatin is assembled by a discontinuous sub-
domain that is occupied by the centromeric H3 (CENH3)
variant. The intervals between the discontinuous sub-
domain are filled by the canonical H3, which is com-
monly modified by H3K9ac, H3K4me3, H3K36me3, and
et cetera, and the centromere interval is typically associated
with infrequent zones of transcriptional activation (51,52).
The maize CenH3 gene (GRMZM2G158526) on Chr6 was
significantly downregulated in the OMAG6 (with FPKM =
9.07425 in the maize B73 in contrast to FPKM = 1.87628 in
the OMAG) and showed elevated H3K27me3 (Supplemen-
tary Figure S6). The suppression of the maize CenH3 gene
in the oat genomic environment is consistent with previous
findings also showing silenced alien CenH3 in distant hy-
bridization (53,54).

Centromere chromatin is interspersed with partially ac-
tive subdomains, while the pericentromeric region usually
comprises condensed heterochromatin and inactive genes
(55). A recent study analyzed maize addition chromo-
somes by CENH3-ChIP-seq and found that the centromere
was expanded in the OMA, consequently causing the cen-
tromere to acquire a new flanking border, which was orig-
inally part of the pericentromere (56). To investigate the
effects of centromere expansion on maize gene expres-
sion in OMA, we analyzed gene activity in the newly ex-
panded centromere. These regions were previously defined
as 47.7-50.1 Mb and 53.1-55.1 Mb on Chr6 and Chr9,
respectively, based on the CENH3-ChIP-seq assay (Fig-
ure 9A and B) (56). Overall, 20 and 19 annotated genes
were found in the new centromere of OMA6 and OMADJ9,
respectively, of which, 10 genes in OMAG6 and 12 genes
in OMA9 were silenced (FPKM = 0) in both B73 and
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the OMA line. These results indicate that the newly ex-
panded centromeres may be similar to the normal cen-
tromere or percentromere in terms of low transcriptional
activity. Of the 17 expressed genes (10 from the OMAG6 and
7 from the OMADY) from the expanded centromere, four
were upregulated significantly (FPKM increased from 0 to
96.89 for AC187279.3_FG004, from 5.23 to 23.91 for GR-
MZM2G154422 in OMAG6; and FPKM increased from 2.09
t0 39.35 for GRMZM2G162675, and from 0.61 to 34.51 for
GRMZM2G097983 in OMAY); none was downregulated
significantly in either OMAG6 or OMAY9 (Supplementary Ta-
ble S10). In addition, when only considering fold change of
the FPKM values, six genes were upregulated by more than
2-fold and two genes were downregulated by more than 2-

fold in the OMAG. In the OMADJ9, five genes were upregu-
lated by at least 2-fold and no genes were downregulated
by more than 2-fold (Figure 9A and B). We used maize-
specific primers in qRT-PCR to validate the results from
the RNA-seq assay and found substantial upregulation of
gene transcription (Supplementary Figure S7). In contrast,
we detected transcriptional repression in the 3-Mb pericen-
tromere region adjacent to the newly expanded centromere
border, showing three up- and nine downregulated genes in
the OMAG and six up- and nine downregulated genes in
the OMAY9 (Figure 9A and B; Supplementary Table S10).
These data indicate that expanded centromere chromatin
may activate the gene transcription that was suppressed by
the original pericentromere (56,57).
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which was significantly induced in OMA9.



The majority of the genes from the expanded centromere
are in a CENH3-depleted subdomain, which is occupied by
canonical H3 (56), and the canonical H3 can be modified
so to regulate transcriptional activation. Concurrent with
the transcriptional activation in the expanded centromere of
the OMAG6 and OMADY, epigenetic modifications were also
observed in the upregulated genes (Figure 9C and D; Sup-
plementary Figure S8A). For example, AC187279.3_FG004
from Chr6 and GRMZMS5G802679 from Chr9 were iden-
tified as significantly upregulated genes in the newly ex-
panded centromere; both showed increased H3K4me3 and
H3K9ac around the TSS and reduced H3K27me3 (Figure
9E and Supplementary Figure S8B). These finding suggest
an association between chromatin modification and gene
expression in the newly established centromere and support
the hypothesis of antagonistic interaction between gene ex-
pression and CENH3 occupation (56).

DISCUSSION

Substantial recapitulations of maize transcription in oat
genome

Compared with animals, plants are highly tolerant of inter-
species hybridization (3). Most reported plant interspecies
hybrids have a polyploid parent, implying that abundant
paralogous gene pairs in polyploid genomes may com-
pensate for alien chromosome-mediated genomic imbal-
ance during interspecies hybridization (3,19). Maize is of-
ten crossed with related grass species to produce haploids.
OMA lines stably inherit one complete paternal maize
chromosome after nine of the 10 maize chromosomes
are eliminated randomly (Figure 1, (19)). In this artificial
germplasm, a pair of diploid chromosomes (maize) has
been introduced to an allohexaploid genome (oat). Thus
OMA lines ideal models to investigate the mechanism un-
derlying both chromosome survival and adaptation in the
recipient genomic environment. In this study, we used high-
throughput RNA-seq to analyze the gene transcription of
maize addition chromosomes in OMA lines, accounting for
transcriptome size differences between the donor maize and
the OMA in our analyses. In contrast to the expectation that
most genes on the alien chromosome should be silenced in a
heterologous genomic environment, we actually found that
more than 70% of the genes from the alien maize chromo-
somes maintained the original expression or transcription
pattern under the oat genomic environment (Table 1 and
Figure 3A and B). These results are similar to the findings
from a previous study, which used microarrays to discover
that the gene expression pattern of the human chromo-
some 21 in aneuploid mouse hepatocytes carrying the hu-
man chromosome is largely indistinguishable from that in
human hepatocytes (8). Similarly, in plants, gene expression
of alien chromosomes has also been detected in OMA lines
and wheat-barley addition lines (21,42,58). The preserved
gene transcription of the alien addition chromosomes in
a heterologous genomic environment in both animals and
plants indicates that host transcriptional machinery may be
sufficient for alien chromosomes.

Similar to the mutants with lesions resembling diseases,
both B73- and Seneca 60-OMAG6 lines also develop necrotic
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leaf blades, and B73- and Seneca 60-OMAO9 lines show er-
ratic and premature plant senescence (19,20). These pheno-
types may be explained by two mechanisms: (i) some ec-
topic expression of phenotype-related maize genes may oc-
cur under the oat genomic environment; (ii) the interac-
tion between oat and maize transcriptome could change
the expression of phenotype-related endogenous oat genes.
The second mechanism appears more probable because
gain-of-function phenomena are usually rare and we did
not identify any apparent gain-of-function expression of
phenotype-related genes in our transcriptome analysis. Al-
though an oat genome sequence is currently unavailable, ad-
ditional studies of the effects of alien maize chromosomes
on oat transcriptome in OMA lines could shed light on the
underlying mechanism of the OMA phenotypes.

Our results showed that the proportion of DEGs in the
total genes on Chr6 was similar to that of DEGs in the
total genes of Chr9, as were the proportions of up- and
downregulated genes. These findings suggest that different
alien maize chromosomes may exhibit similar transcrip-
tional responses to the oat genomic environment. Further-
more, we detected more downregulated than upregulated
genes in both OMA6 and OMA9 (Figure 3) and elevated
H3K27me3 and reduced H3K9ac on both Chr6 and Chr9
(Figure 6). Nine of the 10 maize chromosomes were ran-
domly eliminated and only one maize chromosome sur-
vived in OMAs (19), and although the surviving maize chro-
mosome was not eliminated, the alien maize chromosome
in OMAs appears to be somewhat transcriptionally sup-
pressed.

Correlation between conserved coding sequence and non-
conserved expression

Similar to the transcriptome of human chromosome in
the mouse-human chromosome addition line, the majority
(>70%) of the genes on Chr6 and Chr9 inherited their orig-
inal transcription patterns in the OMA6 and OMA9. Be-
cause cis-regulatory elements have been considered as the
predominant mechanism underlying gene expression in in-
terspecies hybrids and introgressions (15,16,18), we specu-
lated that the maize genes maintaining the original tran-
scription in OMA lines (introgression expression) may be
predominantly regulated by a local cis element in the alien
maize chromosome. Unfortunately, a complete oat genome
sequence is unavailable, and we therefore were unable to
compare the promoter sequence of the orthologous pairs
of oat versus maize. The promoter sequences may contain
cis-regulatory elements, such as enhancers and TF binding
sites. These elements may contribute to the transcriptional
regulation of the imported genes.

In contrast to the maize genome, the added chromo-
some in OMA exposes the same cis-regulatory regions un-
der different trans effects, namely those trans factors from
the oat genome. So we propose trans regulation by endoge-
nous oat factors, which could recognize and interact with
the corresponding cis element on the maize chromosome, is
the main mechanism responsible for DEGs. In support of
this hypothesis, we found a correlation between conserved
coding sequences and differential expression; namely, con-
served orthologous pairs tend to be more differentially ex-
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pressed than non-conserved ones in the OMA lines (Figure
5). DEGs were also over-represented among syntenic genes
but underrepresented among non-syntenic genes (Supple-
mentary Figure S5). The conserved and/or syntenic orthol-
ogous pairs of maize and oat may also link with even more
conserved upstream and downstream sequences around the
gene coding region, which usually contain cis-regulatory el-
ements. Because almost all the zrans factors in OMA lines
were from the majority oat genome, highly conserved maize
TF binding and chromatin modifications sites within and
nearby the alien maize genes would resemble the oat or-
thologs and therefore be regulated by the host oat regula-
tory machinery. We observed that originally active genes
located in open chromatin in maize are more likely to be
differentially expressed in OMAs, which is consistent with
the idea that open chromatin creates an accessible bind-
ing region for the oat trans factors. In addition, our ChIP-
seq assay revealed that upregulated genes gained H3K4me3,
and downregulated genes gained H3K27me3 and depleted
H3K9ac (Figure 8), supporting the hypothesis that chro-
matin modifications may be part of the trans-regulatory
mechanism from oat. Taken together, the oat frans factors
may ultimately lead to the maize gene differential transcrip-
tion in OMAs.

Additional contributors may be involved in the interac-
tion between orthologous maize and oat genes. Compared
with distant orthologous pairs, highly closely related orthol-
ogous protein pairs, which have highly conserved transcript
sequences, may show greater dosage effects (59-63). Our
data showed a negative correlation between the fold change
in gene expression of maize orthologs and the fold change
in oat orthologs (Figure 5), indicating mutual compensation
between maize and oat orthologous transcripts.

Transcriptional and epigenetic activation in the expanded
centromere

The CENH3 binding regions of maize chromosomes were
expanded in OMA lines, forming new centromere regions in
the original pericentromeres (56). In the current study, we
compared the new centromeric transcription of the OMA
lines versus the original maize centromeric transcription
and found strong gene activation in the new centromere.
Furthermore, the upregulated genes in this region were ac-
companied by elevated levels of the euchromatin markers,
H3K4me3 and H3K9ac (Figure 8 and Supplementary Fig-
ure S8), reflecting a similar correlation between gene expres-
sion and chromatin modification as in endogenous maize
euchromatin. The increases in H3K4me3 and H3K9ac in
centromeric genes has also been observed in rice (52). In
contrast, both H3K4me3 and H3K9ac were depleted from
the centromeric interspersed H3 in humans and Drosophila
melanogaster (64), implying different epigenetic regulation
of the centromeric transcription in plants and animals. The
animal core centromere contains satellite DNA whereas
plant centromere contains a number of genes interspersed
in the CENH3-depleted subdomains (65). Besides histone
modifications, DNA methylation could be another impor-
tant contributing factors to be involved in the centromeric
expression. Nevertheless, the cause-effect relationship be-

tween epigenetic modification and centromeric transcrip-
tion in animals and plants needs to be further investigated.

In contrast to the gene activation by the expanded
CENH23, no gene activation was observed in the surround-
ing pericentromeres. Centromeric transcription may be im-
portant for centromere stability (66). Thus, gene activation
in the centromere and the inactivation in the pericentromere
may contribute to the identification of the core centromere
boundary, which ensures an appropriate mitotic and mei-
otic division in interspecific hybrid or polyploid.
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