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ABSTRACT

Purpose: We investigated the prognostic role of KRAS mRNA expression in breast cancer 
using The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer 
International Consortium (METABRIC) databases.
Methods: Clinical and biological data of 1,093 breast cancers from TCGA database and 1,904 
breast cancers from METABRIC database were analyzed. Overall survival (OS) and breast 
cancer-specific survival (BCSS) were determined.
Results: The group with high KRAS mRNA expression showed worse survival than the 
group with low KRAS mRNA expression regarding both OS (p = 0.012 in TCGA, p < 0.001 
in METABRIC) and BCSS (p = 0.001 in METABRIC). According to multivariate analysis, the 
level of KRAS mRNA expression was an independent prognostic factor in both TCGA (hazard 
ratio [HR], 1.570; 95% confidence interval [CI], 1.026–2.403; p = 0.038) and METABRIC (HR, 
1.254; 95% CI, 1.087–1.446; p = 0.002) databases. The prognostic impact of mRNA expression 
was effective only for luminal A subtype (p < 0.001 in METABRIC). Positive correlation was 
observed between mRNA expression and copy number alteration (CNA) (r = 0.577, p < 0.001 
in TCGA; ρ = 0.343, p < 0.001 in METABRIC). Methylation showed negative correlations with 
both mRNA expression and CNA (r = −0.272, p < 0.001 in TCGA). The expression of mRNA 
had little association with the mutation status in breast cancers, having a mutation frequency 
of approximately 0.6%.
Conclusion: KRAS mRNA expression was significantly associated with breast cancer 
prognosis. It was found to be an independent prognostic factor for breast cancer. Prognostic 
role of KRAS mRNA expression was effective only in luminal A subtype. Further studies 
are needed to validate the prognostic role of KRAS mRNA expression in breast cancer, thus 
paving a way for clinical application of KRAS in practice.
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INTRODUCTION

In humans, KRAS proto-oncogene is located at 12p12.1 and consists of 6 exons. It encodes 
guanosine triphosphatase (GTPase) KRAS isoform, which is a 21-kDa protein with 188 or 
189 amino acids. KRAS protein is a member of the RAS superfamily of small GTPases [1]. A 
single amino acid substitution in KRAS is responsible for an activating mutation. It is known 
to be associated with human malignancies such as pancreas ductal carcinoma [2], colorectal 
carcinoma [3], lung adenocarcinoma [4], and various other human malignancies [5,6].

Little is known about the role of KRAS in breast cancer. Some of the previous studies have 
reported the potential role of KRAS mutation in endocrine resistance of luminal breast 
cancer [7,8]. Genome-wide screening results showing an association between KRAS status 
and breast cancer have been reported [9-11]. Other studies have shown the association of 
KRAS 3′ untranslated region (UTR) variants with increased risk of breast cancer [12-14]. The 
prognostic role of KRAS in breast cancer and the role of KRAS mRNA expression status per se 
in human malignancy remain unclear. Although many previous studies have determined the 
impact of the activating mutation of KRAS on human malignancies, little is known about the 
significance of other molecular statuses such as copy number alteration (CNA), methylation, 
mRNA expression, and protein expression. Therefore, the following 2 well-organized public 
databases were utilized for this study. The Cancer Genome Atlas (TCGA) Research Network 
has profiled a large number of human tumors including breast cancer to discover molecular 
aberrations at the DNA, RNA, protein, and epigenetic levels [15]. Regarding breast cancer, 
TCGA Research Network has previously reported the comprehensive molecular portraits of 
invasive ductal and invasive lobular carcinomas [9,10]. The Molecular Taxonomy of Breast 
Cancer International Consortium (METABRIC) has released genomic and transcriptomic 
architecture of 2,000 breast cancers [16,17]. METABRIC database is believed to provide 
landscapes for understanding how somatic CNA affects gene expression and reveal novel 
subgroups that could be the target for future investigation in breast cancer.

The objective of this study was to investigate the prognostic role of KRAS mRNA expression in 
breast cancer using TCGA and METABRIC databases. Molecular regulation of KRAS was also 
investigated, including mRNA expression, methylation, CNA, and mutation.

METHODS

Data acquisition
TCGA and METABRIC databases were acquired from the following websites: TCGA (https://
cancergenome.nih.gov/), Synapse (https://www.synapse.org/), and cBioPortal (http://www.
cbioportal.org/). Currently, cBioPortal contains datasets of 233 cancer genomics studies 
including 14 breast cancer studies. TCGA dataset on breast invasive carcinoma (TCGA, 
Provisional) and METABRIC dataset on breast cancer (METABRIC, Nature 2012) were 
utilized for this study (access date: July 11, 2018). The Institutional Review Board of Seoul 
Metropolitan Government-Seoul National University Boramae Medical Center approved this 
study (approval number: 17-2018-23). The informed consent of this study was waived.

Clinicopathologic parameters
Patient age was defined as the age at the time of initial diagnosis of primary breast cancer. 
TNM categories and anatomic stage groups were described according to the breast cancer 
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staging system of the American Joint Committee on Cancer. The status of estrogen receptor 
or progesterone receptor was described based on the result of immunohistochemical test 
for each receptor. Hormone receptor (HRc) status was defined according to the statuses 
of estrogen and progesterone receptors. Human epidermal growth factor receptor 2 
(HER2) status was defined according to the results of immunohistochemical test and in situ 
hybridization assay. Regarding TCGA dataset, the breast cancer subtypes were classified 
according to the statuses of HRc and HER2. Regarding METABRIC dataset, the breast cancer 
subtypes were described according to the PAM50 classification.

Biological parameters
RNA sequencing (RNA seq) data were obtained from two different datasets: RNA seq 
median value by Illumina RNA seq version 2 RSEM and RNA seq z-score. RNA microarray 
(RNA mic) data were provided as median values of raw data by Agilent microarray analysis. 
Methylation data were provided as beta values of raw data. CNA linear (CNA_lin) data were 
provided as relative linear values for each gene by Affymetrix SNP 6. CNA non-linear (CNA 
non) data were provided as non-linear values by Genomic Identification of Significant Targets 
in Cancer (GISTIC) 2.0 with values of −2, −1, 0, 1, and 2, which represented homozygous 
deletion, hemizygous deletion, neutral or no change, gain, and high-level amplification, 
respectively. Mutation data were generated by whole exome sequencing and provided in a 
mutation annotation format. Biological data types and sample numbers utilized in this study 
are described in Supplementary Table 1. Biological parameters were classified into low or 
high based on the mean value of each parameter. RNA seq z-scores were classified into down-
regulation, normal-regulation, and up-regulation with cut-off values of −2 and +2, respectively.

Statistical analyses
Two-sample t-test was used to determine the difference in expression levels of biological 
parameters while Pearson's χ2 test was used to determine the difference in clinicopathologic 
characteristics between groups. Pearson correlation coefficient (r) was used to evaluate the 
bivariate correlation between biological parameters and continuous variables. Spearman 
correlation coefficient (ρ) was used for biological parameters with ordinal variables. Survival 
analyses were carried out regarding overall survival (OS) and breast cancer-specific survival 
(BCSS). Kaplan-Meier estimation was used to analyze survival rates while log-rank test was 
used to determine the significance of differences between 2 survival curves. Cox-proportional 
hazards model was used for univariable and multivariable analyses. Hazard ratio (HR) 
was calculated using 95% confidence interval (CI). All statistical analyses were conducted 
using IBM SPSS Statistics version 20.0 (IBM Inc., Armonk, USA) and R software version 
3.3.2 (R Foundation for Statistical Computing, Vienna, Austria). Statistical significance was 
considered when p-value was less than 0.05.

RESULTS

Clinicopathologic characteristics of study subjects according to expression 
level of KRAS mRNA
Total number of study subjects was 1,093 from the TCGA dataset and 1,904 from the 
METABRIC dataset. The mean follow-up period regarding OS was 40.9 ± 39.2 months (range, 
0–283 months) from the TCGA dataset and 125.0 ± 76.3 months (range, 0–355 months) 
from the METABRIC dataset. The mean follow-up period regarding BCSS was 98.2 ± 60.4 
months (range, 0–307 months) from the METABRIC dataset. Baseline clinicopathologic 
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characteristics of study subjects are summarized in Table 1. In TCGA dataset, there was no 
significant difference in clinicopathologic factors except M category. In METABRIC dataset, 
proportions of subjects with positive estrogen receptor or positive progesterone receptor 
were higher in the group with low KRAS expression compared to those in the group with high 
KRAS expression while the group with high KRAS expression group showed higher proportion 
of subjects with positive HER2. Luminal A subtype was more prevalent in the group with low 
KRAS expression.

Survival analyses according to expression level of KRAS mRNA
In TCGA dataset, the group with high KRAS mRNA expression showed worse OS compared 
to that shown by the group with low KRAS mRNA expression (p = 0.012, Figure 1A, cut-off 
value of RNA seq median value = 1,356.9). The group with up-regulated expression of KRAS 
mRNA also showed lower OS rate compared to that shown by the group with normal-
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Table 1. Clinicopathologic characteristics according to expression level of KRAS mRNA in TCGA and METABRIC databases
Group TCGA (RNA seq, median value) METABRIC (RNA mic, median value)

Subgroup Low High Sum p* Subgroup Low High Sum p*
All 657 (60.1) 436 (39.9) 1,093 (100.0) 1,026 (53.9) 878 (46.1) 1,904 (100.0)
Age (yr) ≤ 50 198 (30.1) 131 (30.0) 329 (30.1) 0.717 ≤ 50 236 (23.0) 199 (22.7) 435 (22.8) 0.861

> 50 458 (69.7) 305 (70.0) 763 (69.8) > 50 790 (77.0) 679 (77.3) 1,469 (77.2)
Unknown 1 (0.2) 0 (0.0) 1 (0.1) Unknown 0 (0.0) 0 (0.0) 0 (0.0)

T category 1 172 (26.2) 107 (24.5) 279 (25.5) 0.198 ≤ 2 cm 459 (44.7) 362 (41.2) 821 (43.1) 0.172
2 379 (57.7) 254 (58.3) 633 (57.9) > 2 cm 553 (53.9) 508 (57.9) 1,061 (55.7)
3 87 (13.2) 51 (11.7) 138 (12.6) Unknown 14 (1.4) 8 (0.9) 22 (1.2)
4 17 (2.6) 23 (5.3) 40 (3.7)

Unknown 2 (0.3) 1 (0.2) 3 (0.3)
N category 0 317 (48.2) 198 (45.4) 515 (47.1) 0.791 0 537 (52.3) 446 (50.8) 983 (51.6) 0.714

1 215 (32.7) 146 (33.5) 361 (33.0) 1 321 (31.3) 282 (32.1) 603 (31.7)
2 67 (10.2) 53 (12.2) 120 (11.0) 2 113 (11.0) 107 (12.2) 220 (11.6)
3 45 (6.8) 32 (7.3) 77 (7.0) 3 46 (4.5) 39 (4.4) 85 (4.5)

Unknown 13 (2.0) 7 (1.6) 20 (1.8) Unknown 9 (0.9) 4 (0.5) 13 (0.7)
M category 0 529 (80.5) 380 (87.2) 909 (83.2) 0.005 0 764 (74.5) 630 (71.8) 1,394 (73.2) 0.086

1 12 (1.8) 10 (2.3) 22 (2.0) 1 2 (0.2) 7 (0.8) 9 (0.5)
Unknown 116 (17.7) 46 (10.6) 162 (14.8) Unknown 260 (25.3) 241 (27.4) 501 (26.3)

Anatomic stage group 1 113 (17.2) 68 (15.6) 181 (16.6) 0.569 1 264 (25.7) 211 (24.0) 475 (24.9) 0.203
2 380 (57.8) 242 (55.5) 622 (56.9) 2 440 (42.9) 360 (41.0) 800 (42.0)
3 144 (21.9) 107 (24.5) 251 (23.0) 3 58 (5.7) 57 (6.5) 115 (6.0)
4 12 (1.8) 10 (2.3) 22 (2.0) 4 2 (0.2) 7 (0.8) 9 (0.5)

Unknown 8 (1.2) 9 (2.1) 17 (1.6) Unknown 262 (25.5) 243 (27.7) 505 (26.5)
Estrogen receptor Negative 136 (20.7) 101 (23.2) 237 (21.7) 0.371 Negative 205 (20.0) 240 (27.3) 445 (23.4) < 0.001

Positive 494 (75.2) 312 (71.6) 806 (73.7) Positive 821 (80.0) 638 (72.7) 1,459 (76.6)
Unknown 27 (4.1) 23 (5.3) 50 (4.6) Unknown 0 (0.0) 0 (0.0) 0 (0.0)

Progesterone receptor Negative 207 (31.5) 135 (31.0) 342 (31.3) 0.289 Negative 452 (44.1) 443 (50.5) 895 (47.0) 0.005
Positive 422 (64.2) 276 (63.3) 698 (63.9) Positive 574 (55.9) 435 (49.5) 1,009 (53.0)

Unknown 28 (4.3) 25 (5.7) 53 (4.8) Unknown 0 (0.0) 0 (0.0) 0 (0.0)
HER2 Negative 465 (70.8) 311 (71.3) 776 (71.0) 0.289 Negative 926 (90.3) 742 (84.5) 1,668 (87.6) < 0.001

Positive 98 (14.9) 75 (17.2) 173 (15.8) Positive 100 (9.7) 136 (15.5) 236 (12.4)
Unknown 94 (14.3) 50 (11.5) 144 (13.2) Unknown 0 (0.0) 0 (0.0) 0 (0.0)

Subtype HRc+HER2− 375 (57.1) 237 (54.4) 612 (56.0) 0.387 Luminal A 397 (38.7) 282 (32.1) 679 (35.7) < 0.001
HRc+HER2+ 77 (11.7) 59 (13.5) 136 (12.4) Luminal B 204 (19.9) 257 (29.3) 461 (24.2)
HRc−HER2+ 21 (3.2) 15 (3.4) 36 (3.3) HER2 106 (10.3) 114 (13.0) 220 (11.6)
HRc−HER2− 89 (13.5) 73 (16.7) 162 (14.8) Basal 93 (9.1) 106 (12.1) 199 (10.5)

Unknown 95 (14.5) 52 (11.9) 147 (13.4) Others and 
unknown

226 (22.0) 119 (13.6) 345 (18.1)

Values are presented as number of patients (%).
TCGA = The Cancer Genome Atlas; METABRIC = Molecular Taxonomy of Breast Cancer International Consortium; HER2, human epidermal growth factor receptor 
2; HRc, hormone receptor, RNA mic, RNA microarray; RNA seq, RNA sequencing.
*χ2 test was used.
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regulated KRAS expression (p < 0.001, Figure 1B). In METABRIC dataset, the group with high 
KRAS mRNA expression showed worse survival rate than the group with low KRAS mRNA 
expression regarding OS (p < 0.001, Figure 1C) and BCSS (p = 0.001, Figure 1D). Similarly, 
the third and fourth quartiles (Q3 and Q4), according to the expression level of KRAS mRNA 
using RNA mic data, showed worse survival rates than the first or second quartiles (Q1 or Q2) 
regarding both OS and BCSS (Supplementary Figure 1). In METABRIC dataset, the group 
with high KRAS mRNA expression showed lower OS rate for luminal A subtype (p < 0.001, 
Figure 2A), but not for other subtypes (Figures 2B-D). Detailed survival rates are shown in 
Supplementary Tables 2 and 3. In TCGA dataset, the expression of KRAS mRNA was lower 
in luminal A subtype compared to that in any other subtypes (all p < 0.001, Supplementary 
Figure 2). There were no significant differences in clinicopathologic factors according to 
mRNA expression level for luminal A subtype (Supplementary Table 4).
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Figure 1. Survival curves according to the expression level of KRAS mRNA using TCGA and METABRIC databases. OS curves according to RNA seq median value 
(A) and RNA seq z-score (B) in TCGA database. OS curves (C) and BCSS curves (D) according to RNA mic in METABRIC database. 
OS = overall survival; TCGA = The Cancer Genome Atlas; METABRIC = Molecular Taxonomy of Breast Cancer International Consortium; RNA seq = RNA 
sequencing; BCSS = breast cancer-specific survival; RNA mic = RNA microarray.
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Univariable and multivariable analyses
Expression level of KRAS mRNA was a significant factor in univariable analysis of both 
TCGA (HR, 1.501; 95% CI, 1.091–2.067; p = 0.013) and METABRIC (HR, 1.238; 95% CI, 
1.100–1.394; p < 0.001) datasets. It was also an independent significant prognostic factor 
for breast cancer according to multivariable analysis of both TCGA (HR, 1.570; 95% CI, 
1.026–2.403; p = 0.038) and METABRIC (HR, 1.254; 95% CI, 1.087–1.446; p = 0.002) datasets 
after adjusting for age, T category, N category, M category, estrogen receptor, progesterone 
receptor, and HER2 (Table 2).

Correlation analyses among mRNA expression, CNA, and methylation of KRAS 
In TCGA dataset, the mRNA expression was higher when the value of CNA non increased 
(Figure 3A). The expression of mRNA was positively correlated with the value of CNA_lin (r = 
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0.577, p < 0.001, Figure 3B). In METABRIC dataset also, the mRNA expression was higher 
when the value of CNA non increased (Figure 3C). The expression of mRNA was positively 
correlated with CNA non (ρ = 0.343, p < 0.001, Figure 3D). In TCGA dataset, the mRNA 
expression was negatively correlated with methylation (r = 0.272, p < 0.001, Figure 4). Positive 
correlation was observed between mRNA expression and CNA_lin. Methylation showed 
negative correlation with both mRNA expression and CNA_lin (Supplementary Table 5).

Analyses of KRAS mutation
In TCGA dataset, 6 (0.61%) out of 977 samples showed KRAS mutations. All the 6 were missense 
mutations. In METABRIC dataset, 12 (0.64%) out of 1,871 samples showed KRAS mutations, all 
of which were missense mutations. Details are described in Supplementary Table 6.
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Table 2. Univariable and multivariable analyses regarding OS using TCGA and METABRIC databases
Characteristics TCGA Characteristics METABRIC

Univariable analysis Multivariable analysis* Univariable analysis Multivariable analysis*
HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p

KRAS (RNA seq, median) KRAS (RNA mic, median)
Low Reference Reference Low Reference Reference
High 1.501 (1.091–2.067) 0.013 1.570 (1.026–2.403) 0.038 High 1.238 (1.100–1.394) < 0.001 1.254 (1.087–1.446) 0.002

Age (yr) Age (yr)
≤ 50 Reference Reference ≤ 50 Reference Reference
> 50 1.540 (1.080–2.197) 0.017 1.861 (1.146–3.022) 0.012 > 50 1.762 (1.501–2.069) < 0.001 1.750 (1.445–2.119) < 0.001

T category < 0.001 0.007 Tumor size
T1 Reference Reference ≤ 2 cm Reference Reference
T2 1.292 (0.859–1.943) 0.219 0.918 (0.533–1.580) 0.757 > 2 cm 1.756 (1.552–1.987) < 0.001 1.515 (1.302–1.763) < 0.001
T3 1.579 (0.938–2.661) 0.086 1.391 (0.656–2.950) 0.390
T4 3.979 (2.145–7.383) < 0.001 3.906 (1.535–9.940) 0.004

N category < 0.001 0.003 N category < 0.001 < 0.001
N0 Reference Reference N0 Reference Reference
N1 1.852 (1.253–2.737) 0.002 1.505 (0.879–2.577) 0.136 N1 1.363 (1.190–1.561) < 0.001 1.298 (1.101–1.530) 0.002
N2 2.741 (1.640–4.583) < 0.001 3.093 (1.624–5.894) 0.001 N2 2.226 (1.862–2.663) < 0.001 2.072 (1.669–2.572) < 0.001
N3 4.103 (2.268–7.423) < 0.001 3.189 (1.393–7.301) 0.006 N3 4.380 (3.397–5.649) < 0.001 3.554 (2.552–4.950) < 0.001

M category M category
M0 Reference Reference M0 Reference Reference
M1 4.889 (2.918–8.191) < 0.001 2.829 (1.245–6.426) 0.013 M1 3.753 (1.867–7.545) < 0.001 1.456 (0.702–3.023) 0.313

Anatomic stage group < 0.001 Anatomic stage group < 0.001
Stage I Reference Stage I Reference
Stage II 1.600 (0.926–2.765) 0.092 Stage II 1.791 (1.524–2.105) < 0.001
Stage III 3.004 (1.693–5.329) < 0.001 Stage III 3.323 (2.584–4.274) < 0.001
Stage IV 8.622 (4.3251–7.186) < 0.001 Stage IV 5.914 (2.9131–2.009) < 0.001

Estrogen receptor Estrogen receptor
Negative Reference Reference Negative Reference Reference
Positive 0.718 (0.498–1.035) 0.076 0.410 (0.202–0.832) 0.014 Positive 0.849 (0.737–0.978) 0.023 0.899 (0.733–1.102) 0.306

Progesterone receptor Progesterone receptor
Negative Reference Reference Negative Reference Reference
Positive 0.737 (0.526–1.032) 0.076 0.935 (0.493–1.774) 0.837 Positive 0.788 (0.700–0.887) < 0.001 0.944 (0.799–1.115) 0.497

HER2 HER2
Negative Reference Reference Negative Reference Reference
Positive 1.122 (0.681–1.850) 0.651 1.063 (0.595–1.898) 0.836 Positive 1.450 (1.218–1.725) < 0.001 1.287 (1.033–1.604) 0.025

Subtype 0.042 Subtype < 0.001
HR+HER2− Reference Luminal A Reference
HR+HER2+ 1.244 (0.691–2.239) 0.468 Luminal B 1.508 (1.294–1.757) < 0.001
HR−HER2+ 1.488 (0.538–4.117) 0.444 HER2 1.706 (1.412–2.062) < 0.001
HR−HER2− 1.961 (1.234–3.118) 0.004 Basal 1.349 (1.090–1.668) < 0.001

OS = overall survival; TCGA = The Cancer Genome Atlas; METABRIC = Molecular Taxonomy of Breast Cancer International Consortium; HR = hazard ratio; CI = confidence 
interval; HER2, human epidermal growth factor receptor 2; HRc, hormone receptor; RNA mic, RNA microarray; RNA seq, RNA sequencing.
*KRAS expression was adjusted for 7 factors including age, T category, N category, M category, estrogen receptor, progesterone receptor, and HER2.
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DISCUSSION

In 1964, Jennifer Harvey reported that a preparation of murine leukemia virus, later unveiled 
to carry Hras oncogene, caused sarcoma in newborn mice. It was the first report in the history 
of RAS research [18,19]. In 1970, Werner Kirsten reported the existence of Kirsten murine 
sarcoma virus, later shown to carry Kras oncogene, by serial passage of murine leukemia 
viruses in Wister-Furth rats [20]. In 1982, human nucleotide sequences of HRAS and KRAS 
oncogenes from T24 and EJ bladder carcinoma cell lines were finally reported [21,22]. 
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Figure 3. Boxplots and scatter plots for correlation between mRNA expression and CNA of KRAS. Boxplots depicting the correlation between RNA seq and 
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Currently, three RAS members (HRAS, KRAS, and NRAS) are clinically the most notable 
founding members of the RAS subfamily. The RAS superfamily comprises over 150 members 
[23]. The most characterized RAS signaling pathway is the RAS-RAF-MEK-ERK cascade, 
which is also known as MAPK/ERK pathway. RAS can also activate several other effector 
pathways, including PI3K, RalGEF-Ral, and PLCε pathways [1]. Recent studies have reported 
that there are almost 140 genes whose intragenic mutations can contribute to human cancers 
[24]. More than 500 human cancer genes have been identified [6]. RAS genes are still the 
most frequently mutated oncogenes in human cancers followed by TP53, BRAF, and PIK3CA. 
KRAS mutation is dominant among all RAS subfamily members [6].

The results of this study revealed that breast cancer patients with high KRAS mRNA 
expression were significantly associated with worse survival regarding both OS and BCSS. 
The expression level of KRAS mRNA was a significant prognostic factor in breast cancer 
regarding OS according to both univariable and multivariable analyses. These findings 
were cross-validated by analyzing two different and independent datasets from TCGA and 
METABRIC databases. In METABRIC dataset, the group with high KRAS mRNA expression 
showed higher proportions of negative estrogen receptor, negative progesterone receptor, 
and positive HER2. As a result, the group with high KRAS mRNA expression showed lower 
proportion of luminal A subtype but higher proportions of other subtypes. The expression 
level of KRAS mRNA was a significant prognostic factor by univariable analysis. It remained 
an independent significant factor after adjusting for main clinicopathologic factors including 
estrogen receptor, progesterone receptor, HER2, and subtype. This is the first study to 
reveal the association between mRNA expression of KRAS and breast cancer prognosis. Few 
studies have reported the prognostic role of mRNA or protein expression of KRAS in human 
malignancies. A previous study has investigated the prognostic role of KRAS expression using 
RNA seq data of 1,017 patients with non-small cell lung cancer enrolled in TCGA program 
[25]. It reported that KRAS mRNA expression per se was not significantly correlated with OS. 
However, mRNA expression of surrogate signature genes for KRAS deletion was significantly 
associated with OS (high vs. low expression: HR, 2.3; 95% CI, 1.8–2.9) [25].
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In this study, the prognostic impact of KRAS mRNA expression was effective only for luminal 
A subtype. Since there were no significant differences in clinicopathologic features between 
the two subgroups of luminal A according to mRNA expression level, the difference in 
KRAS mRNA expression level could be a crucial factor to differentiate the two. KRAS mRNA 
expression was significantly lower in luminal A compared to that in other subtypes. This 
could partly explain the favorable prognosis of luminal A subtype among all breast cancer 
subtypes. Although little is known about the prognostic role of KRAS mRNA expression in 
subtypes of breast cancer, some studies have reported the association of KRAS with endocrine 
resistance in luminal breast cancer subtype [9]. One study has shown that endocrine-resistant 
advanced breast tumors harbor oncogenic mutations in the MAPK signaling pathway 
including KRAS. These mutations are typically not detected in pre-treatment of primary 
tumors [8]. A genome-wide functional screening study has reported a gene set including 
KRAS whose silencing can cause sensitivity to endocrine therapy in breast cancer [11]. 
Another study has analyzed three independent gene expression datasets from GEO database 
and reported that RAS pathway activation is strongly associated with poor survival of patients 
having luminal breast cancers [26]. Further studies are needed to validate the prognostic role 
of KRAS in each breast cancer subtype. Some studies have reported the association between 
KRAS and breast cancer subtypes. One study has demonstrated that KRAS has a crucial role 
in the maintenance of mesenchymal phenotypes and metastatic ability of basal-type breast 
cancer by molecular experiments using breast cancer cell lines [27]. TCGA Research Network 
has reported that many components of the PI3K and RAS-RAF-MEK pathways are amplified, 
but not typically mutated, in basal-like breast cancer subtypes, including PIK3CA (49%), KRAS 
(32%), BRAF (30%), and EGFR (23%) [9].

In the present study, mRNA expression was positively correlated with CNA status but 
negatively correlated with methylation status. The positive correlation between mRNA 
expression and CNA was cross-validated using TCGA and METABRIC datasets while the 
negative correlation between mRNA expression and methylation was only proved in the 
TCGA dataset due to the lack of methylation data in METABRIC dataset. Little is known 
about the molecular regulation of KRAS at DNA, RNA, and protein levels, and others in 
breast cancer. TCGA Research Network has reported the landscape of genetic alterations 
in 10 canonical oncogenic signaling pathways including the RTK-RAS pathway using 
mutations, CNA, mRNA expression, gene fusions, and DNA methylation from 9,125 human 
malignancies profiled by TCGA. KRAS was the most frequently altered gene (9%), followed 
by BRAF (7%) and EGFR (4%) across all human cancers. KRAS alterations were the most 
commonly observed alterations in pancreatic carcinoma (72%), genomically stable colorectal 
cancer (69%), and lung adenocarcinoma (33%) [28].

Breast invasive carcinoma has been reported to have a rare frequency of KRAS mutation 
(0.7%), although it is the most common one in pancreatic ductal adenocarcinoma (97.7%) 
followed by colorectal adenocarcinoma (44.7%) and lung adenocarcinoma (30.9%) [6]. 
This study showed similar KRAS mutation frequencies (0.61% and 0.64% in TCGA and 
METABRIC datasets, respectively). Other studies have also reported rare frequencies of KRAS 
mutation in invasive breast cancers [5,29]. A previous study has shown that frequencies 
of KRAS mutations as: G12 (83%), G13 (14%), Q61 (2%), and others (1%) [6,30]. In the 
present study, G12 mutation accounted for 83.3% (5 out of 6 in a TCGA dataset and 10 out 
of 12 in a METABRIC dataset), similar to the previous report. Some previous studies have 
shown that rs61764370, an inherited variant residing in a KRAS 3' UTR microRNA binding 
site, is associated with increased risk of ovarian cancer and breast cancer and increased 
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risk of reduced survival [12,13]. Ovarian Cancer Association Consortium, Breast Cancer 
Association Consortium, and Consortium of Modifiers of BRCA1 and BRCA2 have revealed 
that rs61764370 is not associated with risk of ovarian or breast cancer or clinical outcome for 
patients with these cancers by analyzing data of 140,012 women enrolled in these consortia 
[14]. In the present study, KRAS mutation seemed to have little association with mRNA 
expression having a mutation frequency of approximately 0.6%.

This study has some limitations. First, we could not analyze the role of KRAS protein 
expression because of insufficient information in TCGA and METABRIC databases. The 
TCGA dataset has information on protein expression for only 74 subjects (6.8%) while the 
METABRIC dataset has no information regarding protein expression. Second, although 
this study revealed the prognostic role of the level of KRAS mRNA expression in breast 
cancer, the roles of other related genes were not analyzed. Third, we could not analyze the 
recurrence or metastasis pattern according to the level of KRAS mRNA expression due to lack 
of information. Further studies are needed to elucidate associations between KRAS mRNA 
expression and breast cancer prognosis.

In conclusion, high level of KRAS mRNA expression was associated with worse prognosis 
compared to low level of KRAS mRNA expression in breast cancer regarding both OS and 
BCSS. The expression level of KRAS mRNA was an independent significant prognostic factor 
in breast cancer regarding OS. These findings were cross-validated by analyzing two different 
and independent datasets from TCGA and METABRIC databases. The prognostic role of 
KRAS mRNA expression was effective only for luminal A subtype, which showed significantly 
lower level of mRNA expression compared to that in other subtypes. The expression level of 
mRNA was positively correlated with CNA status but negatively correlated with methylation 
status. The expression of mRNA had little association with mutation status in breast cancer 
having a mutation frequency of approximately 0.6%. Further studies are needed to validate 
the prognostic role of KRAS mRNA expression in breast cancer, thus paving a way for clinical 
application of KRAS in practice.
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