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Abstract

The concept of free energy has its origins in 19th century thermodynamics, but has recently

found its way into the behavioral and neural sciences, where it has been promoted for its

wide applicability and has even been suggested as a fundamental principle of understanding

intelligent behavior and brain function. We argue that there are essentially two different

notions of free energy in current models of intelligent agency, that can both be considered

as applications of Bayesian inference to the problem of action selection: one that appears

when trading off accuracy and uncertainty based on a general maximum entropy principle,

and one that formulates action selection in terms of minimizing an error measure that

quantifies deviations of beliefs and policies from given reference models. The first approach

provides a normative rule for action selection in the face of model uncertainty or when infor-

mation processing capabilities are limited. The second approach directly aims to formulate

the action selection problem as an inference problem in the context of Bayesian brain theo-

ries, also known as Active Inference in the literature. We elucidate the main ideas and dis-

cuss critical technical and conceptual issues revolving around these two notions of free

energy that both claim to apply at all levels of decision-making, from the high-level delibera-

tion of reasoning down to the low-level information processing of perception.

1 Introduction

There is a surprising line of thought connecting some of the greatest scientists of the last centu-

ries, including Immanuel Kant, Hermann von Helmholtz, Ludwig E. Boltzmann, and Claude

E. Shannon, whereby model-based processes of action, perception, and communication are

explained with concepts borrowed from statistical physics. Inspired by Kant’s Copernican rev-

olution and motivated from his own studies of the physiology of the sensory system, Helm-

holtz was one of the first proponents of the analysis-by-synthesis approach to perception [1],

whereby a perceiver is not simply conceptualized as some kind of tabula rasa recording raw

external stimuli, but rather relies on internal models of the world to match and anticipate sen-

sory inputs. The internal model paradigm is now ubiquitous in the cognitive and neural sci-

ences and has even led some researchers to propose a Bayesian brain hypothesis, whereby the

brain would essentially be a prediction and inference engine based on internal models [2–4].

Coincidentally, Helmholtz also invented the notion of the Helmholtz free energy that plays an
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important role in thermodynamics and statistical mechanics, even though he never made a

connection between the two concepts in his lifetime.

This connection was first made by Dayan, Hinton, Neal, and Zemel in their computational

model of perceptual processing as a statistical inference engine known as the Helmholtz machine
[5]. In this neural network architecture, there are feed-forward and feedback pathways, where

the bottom-up pathway translates inputs from the bottom layer into hidden causes at the upper

layer (the recognition model), and top-down activation translates simulated hidden causes into

simulated inputs (the generative model). When considering log-likelihood in this setup as

energy in analogy to statistical mechanics, learning becomes a relaxation process that can be

described by the minimization of variational free energy. While it should be emphasized that

variational free energy is not the same as Helmholtz free energy, the two free energy concepts

can be formally related. Importantly, variational free energy minimization is not only a hall-

mark of the Helmholtz machine, but of a more general family of inference algorithms, such as

the popular expectation-maximization (EM) algorithm [6, 7]. In fact, over the last two decades,

variational Bayesian methods have become one of the foremost approximation schemes for

tractable inference in the machine learning literature. Moreover, a plethora of machine learning

approaches use loss functions that have the shape of a free energy when optimizing performance

under entropy regularization in order to boost generalization of learning models [8, 9].

In the meanwhile, free energy concepts have also made their way into the behavioral sci-

ences. In the economic literature, for example, trade-offs between utility and entropic uncer-

tainty measures that take the form of free energies have been proposed to describe decision-

makers with stochastic choice behavior due to limited resources [10–14] or robust decision-

makers with limited precision in their models [15, 16]. The free energy trade-off between

entropy and reward can also be found in information-theoretic models of biological percep-

tion-action systems [17–19], some of which have been subjected to experimental testing [20–

25]. Finally, in the neuroscience literature the notion of free energy has risen to recent fame as

the central puzzle piece in the Free Energy Principle [26] that has been used to explain a cornu-

copia of experimental findings including neural prediction error signals [27], synaptic plastic-

ity rules [28], neural effects of biased competition and attention [29, 30], visual exploration in

humans [31], and more—see the references in [32]. Over time, the Free Energy Principle has

grown out of an application of the free energy concept used in the Helmholtz machine, to

interpret cortical responses in the context of predictive coding [33], and has gradually devel-

oped into a general principle for intelligent agency, also known as Active Inference [32, 34, 35].

Consequences and implications of the Free Energy Principle are discussed in neighbouring

fields like psychiatry [36, 37] and the philosophy of mind [38, 39].

Given that the notion of free energy has become such a pervasive concept that cuts through

multiple disciplines, the main rationale for this discussion paper is to trace back and to clarify

different notions of free energy, to see how they are related and what role they play in explain-

ing behavior and neural activity. As the notion of free energy mainly appears in the context of

statistical models of cognition, the language of probabilistic models constitutes a common

framework in the following discussion. Section 2 therefore starts with preliminary remarks on

probabilistic modelling. Section 3 introduces two notions of free energy that are subsequently

expounded in Section 4 and Section 5, where they are applied to models of intelligent agency.

Section 6 concludes the paper.

2 Probabilistic models and perception-action systems

Systems that show stochastic behavior, for example due to randomly behaving components or

because the observer ignores certain degrees of freedom, are modelled using probability
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distributions. This way, any behavioral, environmental, and hidden variables can be related by

their statistics, and dynamical changes can be modelled by changes in their distributions.

Consider, for example, the simple probabilistic model illustrated in Fig 1, consisting of the

(for simplicity, discrete) variables past and future soil quality S ≔ (S, S0), past and future crop
yields X ≔ (X, X0), and fertilization A. The graphical model shown in the figure corresponds to

the joint probability p0(X, S, A) given by the factorization

p0ðX0jS0Þ p0ðXjSÞ p0ðS0jS;AÞ p0ðSÞ p0ðAÞ ; ð1Þ

where p0(S) is the base probability of the past soil quality S, p0(X|S) is the probability of crop

yields X depending on the past soil quality S, and so forth. Given the joint distribution we can

now ask questions about each of the variables. For example, we could ask about the probability

distribution p(S|X = x) of soil quality S if we are told that the crop yields X are equal to a value

x. We can obtain the answer from the probabilistic model p0 by doing Bayesian inference,

yielding the Bayes’ posterior

pðSjXÞ ¼
pðS;XÞ
P

spðs;XÞ
¼

p0ðXjSÞp0ðSÞP
sp0ðXjsÞp0ðsÞ

; ð2Þ

where the dependencies on X0, S0, and A have been summed out to calculate the marginal p(S,

X). In general, Bayesian inference in a probabilistic model means to determine the probability

of some queried unobserved variables given the knowledge of some observed variables. This

can be viewed as transforming the prior probabilistic model p0 to a posterior model p, under

which the observed values have probability one, and unobserved variables have probabilities

given by the corresponding Bayes’ posteriors.

In principle, Bayesian inference requires only two different kinds of operations, namely

marginalization, i.e., summing out unobserved variables that have not been queried, such as

X0, S0 and A above, and conditionalization, i.e., renormalizing the joint distribution over

observed and queried variables—that may itself be the result from a previous marginalization

Fig 1. Graphical representation of an exemplary probabilistic model. The arrows (edges) indicate causal

relationships between the random variables (nodes). The full joint distribution p0 over all random variables is

sometimes also referred to as a generative model, because it contains the complete knowledge about the random

variables and their dependencies and therefore allows to generate simulated data. Such a model could for example be

used by a farmer to infer the soil quality S based on the crop yields X through Bayesian inference, which allows to

determine a priori unknown distributions such as p(S|X) from the generative model p0 via marginalization and

conditionalization.

https://doi.org/10.1371/journal.pcbi.1008420.g001
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such as p(S, X) above—to obtain the required conditional distribution over the queried vari-

ables. In practice, however, inference is a hard computational problem and many more effi-

cient inference methods are available that may provide approximate solutions to the exact

Bayes’ posteriors, including belief propagation [40], expectation propagation [41], variational

Bayesian inference [42], and Monte Carlo algorithms [43]. Also note that inference is trivial if

the sought-after conditional distribution of the queried variable is already given by one of the

conditional distributions that jointly specify the probabilistic model, e.g., p(X|S) = p0(X|S).

Probabilistic models can be used not only as external (observer) models, but also as internal
models that are employed by the agent itself, or by a designer of the agent, in order to deter-

mine a desired course of action. In this latter case, actions could either be thought of as deter-

ministic parameters of the probabilistic model that influence the future (influence diagrams) or

as random variables that are part of the probabilistic model themselves (prior models) [44].

Either way, internal models allow making predictions over future consequences in order to

find actions or distributions over actions that lead to desirable outcomes, for example actions

that produce high rewards in the future. In mechanistic or process model interpretations, some

of the specification procedures to find such actions are themselves meant to represent what the

agent is actually doing while reasoning, whereas as if interpretations simply use these methods

as tools to arrive at distributions that describe the agent’s behavior. Free energy is one of the

concepts that appears in both types of methods.

3 The two notions of free energy

Vaguely speaking, free energy can refer to any quantity that is of the form

free energy ¼ energy � const:� entropy; ð3Þ

where energy is an expected value of some quantitity of interest, entropy refers to a quantity

measuring disorder, uncertainty, or complexity, that must be specified in the given context,

and const. is a constant term that translates between units of entropy and energy, and is related

to the temperature in physically motivated free energy expressions. From relation (3), it is not

surprising that free energy sometimes appears enshrouded by mystery, as it relies on an under-

standing of entropy, and “nobody really knows what entropy is anyway”, as John Von Neu-

mann famously quipped [45].

Historically, the concept of free energy goes back to the roots of thermodynamics, where it

was introduced to measure the maximum amount of work that can be extracted from a ther-

modynamic system at a constant temperature and volume. If, for example, all the molecules in

a box move to the left, we can use this kinetic energy to drive a turbine. If, however, the same

kinetic energy is distributed as random molecular motion, it cannot be fully transformed into

work. Therefore, only part of the total energy E is usable, because the exact positions and

momenta of the molecules, the so-called microstates, are unknown. In this case, the maximum

usable part of the energy E is the Helmholtz free energy, defined as

F ¼ E � TS ; ð4Þ

where S is the thermodynamic entropy. In general, the transformation between two macro-

states with free energies F1 and F2 allows the extraction of work W� F2 − F1.

While the two notions of free energy that we discuss in the following are vaguely inspired

by the physical original, their motivations are rather distinct and the main reason they share

the nomenclature is due to their general form (3) resembling the Helmholtz free energy (4).
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3.1 Free energy from constraints

The first notion of free energy is closely tied to the principle of maximum entropy [46], which

virtually appears in all branches of science. From this vantage point, the physical free energy is

merely a special instance of a more general inference problem where we hold probabilistic

beliefs about unknown quantities (e.g., the exact energy values of the molecules in a gas) and

we can only make coarse measurements or observations (e.g., the temperature of the gas) that

we can use to update our beliefs about these hidden variables. The principle of maximum

entropy suggests that, among the beliefs that are compatible with the observation, we should

choose the most “unbiased” belief, in the sense that it corresponds to a maximum number of

possible assignments of the hidden variables.

3.1.1 Wallis’ motivation of the maximum entropy principle. Consider the random

experiment of distributing N elements randomly in n equally probable buckets with N� n,

where the resulting number of elements Ni in bucket i 2 {1, . . ., N} determines the probability

pðziÞ≔
Ni
N . In principle, this way we could generate any distribution p over a finite set O = {z1,

. . ., zn} that we like, however, a uniform distribution that reflects the equiprobable assignment

clearly is much more likely than a Dirac distribution where all the probability mass is concen-

trated in one bucket. Here, the reason is that there are many possible assignments of elements

among the buckets that generate the uniform distribution, whereas there is only one for a

Dirac distribution. In fact, the number of possibilities of how to distribute N elements among

n buckets with Ni elements in the ith bucket is

o≔
N!

N1! � � �Nn!
; ð5Þ

because N! is the number of possible permutations of all N elements, which overcounts by the

number of permutations of elements inside the same bucket and thus has to be divided by the

number of permutations Ni! for all i = 1, . . ., n. In the absence of any further measurement

constraints, the number of possibilities (5) is maximized by Ni = N/n for all i, and thus the typi-
cal distribution p� over O in this case is the uniform distribution, i.e., p�ðziÞ ¼

1

n for all i.
Consider now the problem of having to determine a typical distribution p� over O such

that the expected value Ep�½E�≕ hEip� of some quantity E equals a measured value ε. A simple

example would be the experiment of throwing N dice and taking E to be the number of dots,

i.e., Eðz1Þ ¼ 1; . . . ; Eðz6Þ ¼ 6, and trying to find the typical distribution p� over outcomes

z1, . . ., z6 under the constraint that the average number of dots is, say ε = 2. The solution to

this problem is analogous to the case of no constraints, but this time we only consider realiza-

tions that are compatible with the measurement constraint, that is we let (N1, . . ., Nn) belong

to the set of permissible occupation vectors

Gε ≔ fðN1; . . . ;NnÞ j hEip ¼ ε; pðxiÞ ¼
Ni
N 8ig :

A typical distribution p� for a constraint ε can then be determined by a candidate in

Γε with the maximum number ω of possibilities (5). By assumption, N is much larger

than n, so that we can get rid of the faculties by making use of Stirling’s approximation

lnN! ¼ N lnN � N þOð lnNÞ. In particular, when letting N, Ni!1 such that pðxiÞ ¼
Ni
N

remains finite, we obtain

1

N
logo ¼ �

Xn

i¼1

Ni

N
log

Ni

N
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼HðpÞ

þ O
logN
N

� �

� !
N!1HðpÞ :

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008420 December 3, 2020 5 / 32

https://doi.org/10.1371/journal.pcbi.1008420


where H(p) ≔ − ∑z2O p(z) log p(z) denotes the (Gibbs or Shannon) entropy of p. Thus, instead

of assessing typicality by maximizing (5) in Γε for large but fixed N, we can get rid of the N-

dependency by simply maximizing H,

p� ¼ argmax
p;hEip¼ε

HðpÞ :
ð6Þ

This constrained optimization problem is known as the principle of maximum entropy. The

motivation given here is essentially the Wallis derivation presented by Jaynes [47].

3.1.2 Free energy from constraints and the Boltzmann distribution. The constrained

optimization problem (6) can be translated into an unconstrained problem by introducing a

Lagrange multiplier β, known as the inverse temperature due to the analogy to thermodynam-

ics and the Helmholtz Free Energy (4), which has to be chosen post hoc such that the con-

straint is satisfied. This results in the minimization of the Lagrangian

FðpÞ≔ hEip � 1

b
HðpÞ; ð7Þ

which takes the form of a free energy (3). As we shall see later, F takes its minimum at the

Boltzmann distribution known from statistical mechanics, given by

p�ðzÞ≔
1

Z
e� bEðzÞ; ð8Þ

where Z ¼
P

z2Oe
� bEðzÞ denotes the normalization constant.

Note that, the argument in the previous section implicitly assumes a uniform reference dis-

tribution, because the buckets are assumed to be equiprobable. When replacing this assumption

by the assumption of a general distribution p0 overO, we obtain the principle of minimum rela-
tive entropy [48], where the so-called Kullback-Leibler (KL) divergence DKL(pkp0) = hlog(p/p0)ip

is minimized with respect to p subject to a constraint hEip ¼ ε. Analogous to the maximum

entropy principle, this translates to the unconstrained minimization of the Lagrangian

Fðp; p0Þ≔ hEip þ 1

b
DKLðpkp0Þ; ð9Þ

with solution given by p�ðzÞ ¼ 1

Z p0ðzÞ e� bEðzÞ.
3.1.3 The trade-off between energy and uncertainty. An important feature of the mini-

mization of the free energies (7) and (9) consists in the balancing of the two competing terms

of energy and entropy (cf. Fig 2). This trade-off between maximal uncertainty (uniform distri-

bution, or p0) on the one hand and minimal energy (e.g., a delta distribution) on the other

hand is the core of the maximum entropy principle. The inverse temperature β plays the role

of a trade-off parameter that controls how these two counteracting forces are weighted.

The maximum entropy principle goes back to the principle of insufficient reason [49–51],

which states that two events should be assigned the same probability if there is no reason to

think otherwise. It has been hailed as a principled method to determine prior distributions

and to incorporate novel information into existing probabilistic knowledge. In fact, Bayesian

inference can be cast in terms of relative entropy minimization with constraints given by the

available information [52]. Applications of this idea can also be found in the machine learning

literature, where subtracting (or adding) an entropy term from an expected value of a function

that must be optimized is known as entropy regularization and plays an important role in mod-

ern reinforcement learning algorithms [8, 9] to encourage exploration [53] as well as to penal-

ize overly deterministic policies resulting in biased reward estimates [54].

From now on, we refer to a free energy expression that is motivated from a trade-off

between an energy and an entropy term, such as (7) and (9), as free energy from constraints, in
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order to discriminate it from the notion of free energy introduced in the following section,

which—despite of its resemblance—has a different motivation.

3.2 Variational free energy

There is another, distinct appearance of the term “free energy” outside of physics, which is a

priori not motivated from a trade-off between an energy and entropy term, but from possible

efficiency gains when representing Bayes’ rule in terms of an optimization problem. This tech-

nique is mainly used in variational Bayesian inference [55], originally introduced by Hinton

and van Camp [42]. As before, for simplicity all random variables are discrete, but most

expressions can directly be translated to the continuous case by replacing probability distribu-

tions by probability densities and sums by the corresponding integrals.

3.2.1 Variational Bayesian inference. As we have seen in Section 2, Bayesian inference

consists in the calculation of a conditional probability distribution over unknown variables

given the values of known variables. In the most simple case of two variables, say X and Z, and

a probabilistic model of the form p0(X, Z) = p0(X|Z)p0(Z), Bayesian inference applies if X is

observed and Z is queried. Analogous to (2), the exact Bayes’ posterior p(Z|X = x) is defined by

the renormalization of p0(x, Z) in order to obtain a distribution over Z that respects the new

information X = x,

pðZjX ¼ xÞ ¼
p0ðx;ZÞ
ZðxÞ

¼
p0ðxjZÞ p0ðZÞ

ZðxÞ
; ð10Þ

with the normalization constant ZðxÞ ¼
P

zp0ðx; zÞ ¼ pðX ¼ xÞ.
In variational Bayesian inference, however, this Bayes’ posterior is not calculated directly

by renormalizing p0(x, Z) with respect to Z, but indirectly by approximating it by a distribution

q(Z) that is adjusted through the minimization of an error measure that quantifies the devia-

tion from the exact Bayes’ posterior. Importantly, the value of this error measure can be

determined without having to know the exact Bayes’ posterior. To see this, note that the KL

Fig 2. Minimizing the free energy from constraints (7) requires to trade off the competing terms of energy hEip
and entropy H(p), here shown exemplarily for the case of three elements. Assuming there exists a unique minimal

element z� ¼ argminzEðzÞ, then minimizing only hEip over all probability distributions p results in the (Dirac delta)

distribution δz� that assigns zero probability to all zi 6¼ z� and probability one to zi = z�, and therefore has zero entropy.

In contrast, minimizing only the term � 1

b
HðpÞ is equivalent to maximizing H(p) and therefore would result in the

uniform distribution that gives equal probability to all elements. The resulting Boltzmann distribution p� interpolates

between these two extreme solutions of minimal energy (β!1) and maximum entropy (β! 0).

https://doi.org/10.1371/journal.pcbi.1008420.g002
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divergence between q(Z) and p(Z|X = x) can be written as

�

log
qðZÞ

pðZjX ¼ xÞ

�

qðZÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼DKLðqðZÞkpðZjX¼xÞÞ

¼ logZðxÞ
|fflfflfflffl{zfflfflfflffl}
indep: of q

þ

�

log
qðZÞ

p0ðx;ZÞ

�

qðZÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

≕ FðqðZÞkp0ðx;ZÞÞ

; ð11Þ

i.e., it can be decomposed into the sum of a constant term and a term that does not depend on

the normalization ZðxÞ. In particular, a good approximation q(Z) of the exact Bayes’ posterior

(10) will effectively minimize this KL divergence, which—due to (11)—can be done by mini-

mizing F(q(Z)kp0(x, Z)). In particular, the optimium of this minimization is exactly achieved

at the Bayes’ posterior (10),

argmin
qðZÞ

�

log
qðZÞ

p0ðx;ZÞ

�

qðZÞ

¼ pðZjX ¼ xÞ; ð12Þ

which is known as the variational characterization of Bayes’ rule. This result is a special case of

(14) in the following section.

3.2.2 Variational free energy, an extension of relative entropy. Any non-negative func-

tion ϕ on a finite space O, can be normalized to obtain a probability distribution pϕ = ϕ/∑z ϕ(z)

on O that differs from ϕ only by a scaling constant. In cases when it is not beneficial to carry

out the sum ∑z ϕ(z) explicitly, such a normalization might be replaced by the minimization of

the variational free energy

F qk�ð Þ≔
�

log
qðZÞ
�ðZÞ

�

qðZÞ

; ð13Þ

with respect to the so-called trial distributions q, because we have

argmin
q

Fðqk�Þ ¼
�ðZÞ
P

z�ðzÞ
¼ p�ðZÞ : ð14Þ

Thus, instead of normalizing ϕ directly, one fits auxiliary distributions q to approximate the

shape of ϕ in the space of probability distributions (cf. Fig 3). If this optimization process has

no constraints, then the trial distributions are adjusted until pϕ is achieved. In the case of con-

straints, for instance if the trial distributions are parametrized by a non-exhaustive parametri-

zation (e.g., Gaussians), then the optimized trial distributions approximate pϕ as close as

possible within this parametrization. The minimal value of F(qkϕ) is

Fðp�k�Þ ¼ min
q

Fðqk�Þ ¼ � log
X

z

�ðzÞ : ð15Þ

In particular, this implies that −F(qkϕ)� log ∑z ϕ(z) for all q, so that varying −F(qkϕ) with

arbitrary trial distributions q always provides a lower bound to the unknown normalization

constant ∑z ϕ(z). In Bayesian inference this is the normalization constant in Bayes’ rule and

called the model evidence, which is why the negative variational free energy is also called evi-
dence lower bound (ELBO).

The proof of (14) and (15) directly follows from Jensen’s inequality and only relies on the

concavity of the logarithm. As we have seen in the previous section, in variational Bayesian

inference, the reference ϕ usually takes the form of a joint distribution evaluated at the

observed variables, e.g., ϕ(Z) = p0(x, Z) in which case (14) recovers (12). The variational free

energy (13) is a free energy in the sense of (3) since by the additivity of the logarithm under
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multiplication (log ab = log a + log b),

Fðqk�Þ ¼ h� log�iq � HðqÞ ð16Þ

with energy term h− log ϕiq and entropy term H(q). Note that, for the choice � ¼ e� bE , Eq (14)

becomes the Boltzmann distribution (8) and the variational free energy (16) formally corre-

sponds to the free energy from constraints (7).

Variational free energy can be regarded as an extension of relative entropy with the refer-

ence distribution being replaced by a non-normalized reference function, since in the case

when ϕ is already normalized, that is if ∑z ϕ(z) = 1, then the free energy (13) coincides with the

KL divergence DKL(qkϕ). In particular, while relative entropy is a measure for the dissimilarity

of two probability distributions, where the minimum is achieved if both distributions are

equal, variational free energy is a measure for the dissimilarity between a probability distribu-

tion q and a (generally non-normalized) function ϕ, where the minimum with respect to q is

achieved at pϕ. Accordingly, we can think of the variational free energy as a specific error mea-

sure between probability distributions and reference functions. In principle, one could design

many other error measures that have the same minimum. This means that, a statement in a

probabilistic setting that a distribution q� minimizes a variational free energy F(qkϕ) with

respect to a given reference ϕ, is analogous to a statement in a non-probabilistic setting that

some number x = x� minimizes the value of an error measure �(x, y) (e.g., the squared error

�(x, y) = (x − y)2) with respect to a given reference value y.

3.2.3 Approximate and iterative inference. Representing Bayes’ rule as an optimization

problem over auxiliary distributions q has two main applications that both can simplify the

inference process (cf. Fig 4). First, it allows to approximate exact Bayes’ posteriors by restrict-

ing the optimization space, for example using a non-exhaustive parametrization, e.g., an expo-

nential family. Second, it enables iterative inference algorithms consisting of multiple simpler

optimization steps, for example by optimizing with respect to each term in a factorized repre-

sentation of q separately. A popular choice is the mean-field approximation, which combines

both of these simplifications, as it assumes independence between hidden states, effectively

reducing the search space from joint distributions to factorized ones, and moreover it allows

Fig 3. The normalization of a functon ϕ to obtain a probability distribution pϕ is equivalent to fitting trial distributions q to the shape of ϕ by minimizing free

energy. In two dimensions, the normalization of a point ϕ = (ϕ1, ϕ2) corresponds to a (non-orthogonal) projection onto the plane of probability vectors (A). For

continuous domains, where probability distributions are represented by densities, normalization corresponds to a rescaling of ϕ such that the area below the graph

equals 1 (B). Instead, when minimizing variational free energy (red colour), the trial distributions q are varied until they fit to the shape of the unnormalized function

ϕ (perfectly at q = pϕ).

https://doi.org/10.1371/journal.pcbi.1008420.g003
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to optimize with respect to each factor alternatingly. Note, however, that mean-field approxi-

mations have limited use in sequential environments, where independence of subsequent

states cannot be assumed and therefore less restrictive assumptions must be used instead [56].

Many efficient iterative algorithms for exact and approximate inference can be viewed as

examples of variational free energy minimization, for example the EM algorithm [6, 57], belief

propagation [40, 58], and other message passing algorithms [41, 59–62]. While the (Bayesian)

EM algorithm [7] and Pearl’s belief propagation [58] both can be seen as minimizing the same

variational free energy, just with different assumptions on the approximate posteriors, in [61],

it is shown that also many other message passing algorithms such as [41, 59, 60] can be cast as

minimizing some type of free energy, the only difference being the choice of the divergence

measure as the entropy term. Simple versions of these algorithms have often existed before

their free energy formulations were available, but the variational representations usually

allowed for extensions and refinements—see [6, 7, 63, 64] in case of EM and [58, 62, 65, 66] in

case of message passing.

We are now turning to the question of how the two notions of free energy introduced in

this section are related to recent theories of intelligent agency.

4 Free energy from constraints in information processing

4.1 The basic idea

The concept of free energy from constraints as a trade-off between energy and uncertainty can

be used in models of perception-action systems, where entropy quantifies information pro-

cessing complexity required for decision-making (e.g., planning a path for fleeing a predator)

and energy corresponds to performance (e.g., distinguishing better and worse flight direc-

tions). The notion of decision in this context is very broad and can be applied to any internal

variable in the perception-action pipeline [67], that is not given directly by the environment.

Fig 4. In variational Bayesian inference, the operation of renormalizing the probabilistic model p0 evaluated at an observation X = x (Bayes’ rule), is replaced by

an optimization problem. In practice, this variational representation is often exploited to simplify a given inference problem, either by reducing the seach space of

distributions, for example through a restrictive parametrization resulting in approximate inference, or by splitting up the optimization into multiple partial

optimization steps that are potentially easier to solve than the original problem but might still converge to the exact solution. These two simplifications can also be

combined, for example in the case of mean-field assumptions where the space of distributions is reduced and an efficient iterative inference algorithm is obtained at

the same time.

https://doi.org/10.1371/journal.pcbi.1008420.g004
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In particular, it also subsumes perception itself, where the decision variables are given by the

hidden causes that are being inferred from observations.

In rational choice theory [68], a decision-maker selects decisions x� from a set of options O

such that a utility function U defined on O is maximized,

x� ¼ argmax
x2O

UðxÞ : ð17Þ

The utility values U(x) could either be objective, for example a monetary gain, or subjective

in which case they represent the decision-maker’s preferences. In general, the utility does not

have to be defined directly on O, but could be derived from utility values that are attached to

certain states, for example to the configurations of the playboard in a board game. In the case

of perception, utility values are usually given by (log-)likelihood functions, in which case utility

maximization without constraints corresponds to greedy inference such as maximum likeli-

hood estimation. Note that, for simplicity, in this section we consider one-step decision prob-

lems. Sequential tasks can either be seen as multiple one-step problems where the utility of a

given step might depend on the policy over future steps, or as path planning problems where

an action represents a full action path or policy [18, 69–71].

While ideal rational decision-makers are assumed to perfectly optimize a given utility func-

tion U, real behavior is often stochastic, meaning that multiple exposures to the same problem

lead to different decisions. Such non-deterministic behavior could be a consequence of model

uncertainty, as in Bayesian inference or various stochastic gambling schemes, or a conse-

quence of satisficing [72], where decision-makers do not choose the single best option, but sim-

ply one option that is good enough. Abstractly, this means that, the choice of a single decision

is replaced by the choice of a distribution over decisions. More generally, also considering

prior information that the decision-maker might have from previous experience, the process

of deliberation during decision-making might be expressed as the transformation of a prior p0

to a posterior distribution p.

When assuming that deliberation has a cost C(p, p0), then arriving at narrow posterior dis-

tributions should intuitively be more costly than choosing distributions that contain more

uncertainty (cf. Fig 5A). In other words, deliberation costs must be increasing with the amount

of uncertainty that is reduced by the transformation from p0 to p. Uncertainty reduction can

be understood as making the probabilities of options less equal to each other, rigorously

expressed by the mathematical concept of majorization [73]. This notion of uncertainty can

also be generalized to include prior information, so that the degree of uncertainty reduction

corresponds to more or less deviations from the prior [74].

Maximizing expected utility hUip with respect to p under restrictions on processing costs

C(p, p0) is a constrained optimization problem that can be interpreted as a particular model of

bounded rationality [72], explaining non-rational behavior of decision-makers that may be

unable to select the single best option by their limited information processing capability. Simi-

larly to the free energy trade-off between energy and entropy (cf. Fig 2), this results in a trade-

off between utility hUip and processing costs C(p, p0),

FbðpÞ≔ hUip � 1

b
Cðp; p0Þ: ð18Þ

Here, the trade-off parameter β is analogous to the inverse temperature in statistical mechanics

(cf. Eq (7)) and parametrizes the optimal trade-offs p�
b
¼ argmaxpFbðpÞ between utility and

cost, that define an efficiency frontier separating the space of perception-action systems into

bounded-optimal, non-optimal, and non-admissible systems (cf. Fig 5).
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When assuming that the total transformation cost is the same independent of whether a

decision problem is solved in one step or multiple sub-steps (additivity under coarse-graining)

the trade-off in (18) takes the general form (3) of a free energy in the sense of energy (utility)

minus entropy (cost), because then the cost function is uniquely given by the relative entropy

Cðp; p0Þ ¼ DKLðpkp0Þ: ð19Þ

Note that the additivity of (19) also implies a coarse-graining property of the free energy (18)

in the case when the decision is split into multiple steps, such that the utility of preceding deci-

sions is effectively given by the free energy of following decisions. Therefore, in this case, free

energy can be seen as a certainty-equivalent value of the subordinate decision problems, i.e.,

the amount of utility the agent would have to receive to be indifferent between this guaranteed

utility and the potential expected utility of the subsequent decision steps taking account the

associated information processing costs. The special case (19) has been studied extensively in

multiple contexts, including quantal response equilibria in the game-theoretic literature [10,

14], rational inattention and costly contemplation [11, 75], bounded rationality with KL costs

[12, 19], KL control [76, 77], entropy regularization [8, 9], robustness [15, 16], the emergence

of heuristics [78], thermodynamic models of computation [79], and the analysis of informa-

tion flow in perception-action systems [17, 18]. While (19) is often regarded as an abstract

measure of uncertainty reduction or a generic proxy for information processing costs, it can

also be viewed as a physical capacity constraint, where the information that is required to

achieve a certain expected utility is considered to be sent over a channel to the actuator [24,

80–83]. This view is also consistent with the maximum entropy principle, as (18) and (19)

favor distributions p that can be generated from p0 most easily in terms of statistics, and there-

fore with minimum communication complexity between p0 and p [84].

4.2 A simple example

Ingredients. Consider the probabilistic model shown in Fig 1 with the joint distribution p0(X,

S, A) that is specified by the factors in the decomposition (1). Here, S and X denote the current

Fig 5. A: Decision-making can be considered as a search process in the space of options O, where options are

progressively ruled out. Deliberation costs are defined to be monotone functions under such uncertainty reduction. B:

Exemplary efficiency curve resulting from the trade-off between utility and costs, that separates non-optimal from

non-admissible behavior. The points on the curve correspond to bounded-optimal agents that optimally trade off

utility against uncertainty, analogous to the rate-distortion curve in information theory.

https://doi.org/10.1371/journal.pcbi.1008420.g005
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environmental state and the corresponding observation, and A denotes the action that must be

determined in order to drive the system into a new state S0 with observation X0. The decision-

making problem is specified by assuming that we have given a utility function U over future

observations X0 which the decision-maker seeks to maximize by selecting an action A, while

only having access to the current observation X. This means that the decision-maker has con-

trol over the distribution p(A|X), which replaces the prior p0(A) in the factorization (1) of the

prior model p0(X, S, A) to determine the factorization of the posterior model p(X, S, A) in

terms of the fixed components in p0 (cf. Fig 6) as

pðX; S;AÞ ¼ p0ðX
0jS0Þ p0ðXjSÞ p0ðS

0jS;AÞ p0ðSÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p0ðX;SjAÞ

pðAjXÞ :
ð20Þ

Free energy from constraints. Further assuming that the decision-maker is subject to an

information processing constraint DKL(pkp0)� C0, for some non-negative bound C0, results

in the unconstrained optimization problem maxp F(p) with free energy given by (18), where

the trade-off parameter β is tuned to comply with the bound C0. Since the action distribution

p(A|X) is the only distribution in the posterior model (20) that changes during decision-mak-

ing, i.e., during the transformation from prior to posterior, the total free energy simplifies to

FðpÞ ¼ hUipðX;S;AÞ � 1

b
DKLðpðX; S;AÞkp0ðX; S;AÞÞ

¼ hVðX;AÞipðAjXÞpðXÞ � 1

b
hDKLðpðAjXÞkp0ðAÞÞipðXÞ

¼ hFAðpðAjXÞÞipðXÞ;

where we have written p0(x|s)p0(s) = p(s|x)p(x) using Bayes’ rule (2), and

VðX;AÞ≔
P

s;s0 ;x0pðsjXÞ p0ðs0js;AÞ p0ðx0js0ÞUðx0Þ ;

FAðpðAjXÞÞ≔ hVðX;AÞipðAjXÞ � 1

b
DKLðpðAjXÞkp0ðAÞÞ :

Note that, here the expectation with respect to p(X) does not affect the optimization with

respect to p(A|X) since it can be performed pointwise for each particular realization x of X. In

fact, we would have obtained the same result when conditioning on an arbitrary value X = x

Fig 6. Overview of how to apply utility maximization with information processing costs to the example from

Section 2.

https://doi.org/10.1371/journal.pcbi.1008420.g006

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008420 December 3, 2020 13 / 32

https://doi.org/10.1371/journal.pcbi.1008420.g006
https://doi.org/10.1371/journal.pcbi.1008420


from the outset. However, in general, optimal information processing strategies may depend

on the entire distribution p(X) and can therefore not be obtained from only considering single

observations x, for example when also optimizing with respect to the prior p0(A), see e.g., [85].

Free energy maximization. The optimal action distribution p�(A|X) maximizing FA is a

Boltzmann distribution (8) with “energy” V(X, A) and prior p0(A),

p�ðAjXÞ ¼
1

ZðXÞ
p0ðAÞ e

bVðX;AÞ ; ð21Þ

where ZðXÞ≔
P

ap0ðaÞebVðX;aÞ. Note that in order to evaluate the utility V, it is required to

determine the Bayes’ posterior p(S|X). This shows how in a utility-based approach, the need

to perform Bayesian inference results directly from the assumption about which variables are

observed and which are not.

4.3 Critical points

The main idea of free energy in the context of information processing with limited resources

is that any computation can be thought of abstractly as a transformation from a distribution

p0 of prior knowledge to a posterior distribution p that encapsulates an advanced state of

knowledge resulting from deliberation. The progress that is made through such a transforma-

tion is quantitatively captured by two measures: the expected utility hUip that quantifies the

quality of p and C(p, p0) that measures the cost of uncertainty reduction from p0 to p. Clearly,

the critical point of this framework is the choice of the cost function C. In particular, we could

ask whether there is some kind of universal cost function that is applicable to any perception-

action process or whether there are only problem-specific instantiations. Of course, having a

universal measure that allows applying the same concepts to extremely diverse systems is both

a boon and a bane, because the practical insights it may provide for any concrete instance

could be very limited. This is the root of a number of critical issues:

i. What is the cost C? An important restriction of all deliberation costs of the form C(p, p0) is

that they only depend on the initial and final distributions and ignore the process of how to

get from p0 to p. When varying a single resource (e.g., processing time) we can use C(p, p0)

as a process-independent proxy for the resource. However, if there are multiple resources

involved (e.g., processing time, memory, and power consumption), a single cost cannot tell

us how these resources are weighted optimally without making further process-dependent

assumptions. In general, the theory makes no suggestions whatsoever about mechanical

processes that could implement resource-optimal strategies, it only serves as a baseline for

comparison. Finally, simply requiring the measure to be monotonic in the uncertainty

reduction, does not uniquely determine the form of C, as there have been multiple proposals

of uncertainty measures in the literature (see e.g., [86]), where relative entropy is just one

possibility. However, relative entropy is distinguished from all other uncertainty measures

in its additivity property, that for example allows to express optimal probabilistic updates

from p0 to p in terms of additions or subtractions of utilities, such as log-likelihoods for evi-

dence accumulation in Bayesian inference.

ii. What is the utility? When systems are engineered, utilities are usually assumed to be given

such that desired behavior is specified by utility maximization. However, when we observe

perception-action systems, it is often not so clear what the utility should be, or in fact,

whether there even exists a utility that captures the observed behavior in terms of utility

maximization. This question of the identifiability of a utility function is studied extensively

in the economic sciences, where the basic idea is that systems reveal their preferences
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through their actual choices and that these preferences have to satisfy certain consistency

axioms in order to guarantee the existence of a utility function. In practice, to guarantee

unique identifiability these axioms are usually rather strong, for example ignoring the

effects of history and context when choosing between different items, or ignoring the possi-

bility that there might be multiple objectives. When not making these strong assumptions,

utility becomes a rather generic concept, like the concept of probability, and additional

assumptions like soft-maximization are necessary to translate from utilities to choice

probabilities.

iii. The problem of infinite regress. One of the main conceptual issues with the interpreta-

tion of C as a deliberation cost is that the original utility optimization problem is simply

replaced by another optimization problem that may even be more difficult to solve. This

novel optimization problem might again require resources to be solved and could therefore

be described by a higher-level deliberation cost, thus leading to an infinite regress. In fact,

any decision-making model that assumes that decision-makers reason about processing

resources are affected by this problem [87, 88]. A possible way out is to consider the utility-

information trade-off simply an as if description, since perception-action systems that are

subject to a utility-information trade-off do not necessarily have to reason or know about

their deliberation costs. It is straightforward, for example, to design processes that proba-

bilistically optimize a given utility with no explicit notion of free energy, but for an outside

observer the resulting choice distribution looks like an optimal free energy trade-off [89].

In summary, the free energy trade-off between utility and information primarily serves as a

normative model for optimal probability assignments in information-processing nodes or net-

works. Like other Bayesian approaches, it can also serve as a guide for constructing and inter-

preting systems, although it is in general not a mechanistic model of behavior. In that respect

it shares the fate of its cousins in thermodynamics and coding theory [90] in that they provide

theoretical bounds on optimality but devise no mechanism for processes to achieve these

bounds.

5 Variational free energy in Active Inference

5.1 The basic idea

Variational free energy is the main ingredient used in the Free Energy Principle for biological

systems in the neuroscience literature [26, 33, 35, 91], which has been considered as “arguably

the most ambitious theory of the brain available today” [92]. Since variational free energy in

itself is just a mathematical construct to measure the dissimilarity between distributions and

functions—see Section 3—, the biological content of the Free Energy Principle must come

from somewhere else. The basic biological phenomenon that the Free Energy Principle pur-

ports to explain is homeostasis, the ability to actively maintain certain relevant variables (e.g.,

blood sugar) within a preferred range. Usually, homeostasis is applied as an explanatory prin-

ciple in physiology whereby the actual value of a variable is compared to a target value and cor-

rections to deviation errors are made through a feedback loop. However, homeostasis has also

been proposed as an explanatory principle for complex behavior in the cybernetic literature

[93–96]—for example, maintaining blood sugar may entail complex feedback loops of learning

to hunt, to trade and to buy food. Crucially, being able to exploit the environment in order to

attain favorable sensory states, requires implicit or explicit knowledge of the environment that

could either be pre-programmed (e.g., insect locomotion) or learnt (e.g., playing the piano).

The Free Energy Principle was originally suggested as a theory of cortical responses [33] by

promoting the free energy formulation of predictive coding that was introduced by Dayan and
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Hinton with the Helmholtz machine [5]. It found its most recent incarnation in what is

known as Active Inference that attempts to extend variational Bayesian inference to the prob-

lem of action selection. Here, the target value of homeostasis is expressed through a probability

distribution pdes under which desired sensory states have a high probability. The required

knowledge about the environment is expressed through a generative model p0 that relates

observations, hidden causes, and actions. As the generative model allows to make predictions

about future states and observations, it enables to choose actions in such a way that the pre-

dicted consequences conform to the desired distribution. In Active Inference, this is achieved

by merging the generative and the desired distributions, p0 and pdes, into a single reference

function ϕ to which trial distributions q over the unknown variables are fitted by minimizing

the variational free energy F(qkϕ). This free energy minimization is analogous to variational

Bayesian inference, where the reference is always given by a joint distribution evaluated at

observed quantities (cf. Section 3.2.1). In the resulting homeostatic process, the trial distribu-

tions q play the role of internal variables that are manipulated in order to achieve desired sen-

sory consequences that are not directly controllable. Minimizing variational free energy by the

alternating variation of trial distributions over actions qActions and trial distributions over hid-

den states qStates,

min
qActions

Fðqk�Þ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Action

and min
qStates

Fðqk�Þ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Perception

;
ð22Þ

is then equated with processes of action and perception.

In a nutshell, the central tenet of the Free Energy Principle states that organisms maintain

homeostasis through minimization of variational free energy between a trial distribution q and

a reference function ϕ by acting and perceiving. Sometimes the even stronger statement is

made that minimizing variational free energy is mandatory for homeostatic systems [97, 98].

5.2 A simple example

Ingredients. Applying the Active Inference recipe (cf. Fig 7) to our running example from Fig

1 with current and future states S, S0, current and future observations X, X0, and action A, we

need a generative model p0, a desired distribution pdes, and trial distributions q. The generative

model p0(X, S, A) is specified by the factors in the decomposition (1), the desired distribution

pdes(X0) is a given fixed probability distribution over future sensory states X0, and the trial dis-

tributions q are probability distributions over all unknown variables, S, S0, X0, and A.

In most treatments of Active Inference in the literature, the trial distributions q are simpli-

fied, either by a full mean-field approximation over states and actions [34, 35], by a partial

mean-field approximation where the dependency on actions is kept but the states are treated

independently of each other [99, 100], or more recently [101, 102] by the so-called Bethe

approximation [58, 65], where subsequent states are allowed to interact. In the partial mean-

field assumption of [99], the trial distribution over X0 is fixed and given by p0(X0|S0), while for

A, S and S0 the trial distributions are variable but restricted to be of the mean-field form for S
and S0,

qðS;AÞ ¼ qðSÞ qðS0jAÞ qðAÞ; ð23Þ

i.e., the hidden states S and S0 are assumed to be independent given A. While mean-field

approximations can be good enough for simple perceptual inference, where a single hidden

cause might be responsible for a set of observations, they can be too strong simplifications for

sequential decision-making problems where the next state S0 depends on the previous state S.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008420 December 3, 2020 16 / 32

https://doi.org/10.1371/journal.pcbi.1008420


In fact, as can be seen for example in S2 Notebook, mean-field assumptions may fail to show

goal-directed behavior even for very simple tasks such as the navigation in a grid world. A less

restrictive assumption would be a Bethe approximation, a special case of Kikuchi’s cluster vari-

ation method [103], which allows S and S0 as well as S0 and X0 to be stochastically dependent—

cf. Section C in S1 Appendix, where we derive the update equations under the Bethe assump-

tion for the simple example of this section. In general, the Bethe approximation achieves exact

marginals in tree-like models, such as the models that are considered in the Active Inference

literature, because it results in update equations that are equivalent to Pearl’s belief propaga-

tion algorithm [40, 58].

Reference function. The reference ϕ is constructed by combining the two distributions pdes

and p0. To do so, there have been several proposals in the Active Inference literature, which

fall into one of two categories: Either a specific value function Q is defined (containing pdes),

which is multiplied to the generative model using a soft-max function [35, 99, 100],

�ðX0; S;AÞ≔ p0ðX ¼ x;X0; SjAÞ 1

Z p0ðAÞeQðAÞ ; ð24Þ

or the desired distribution is multiplied directly to the generative model [101],

�ðX0; S;AÞ ≔ pdesðX0Þ p0ðX ¼ x;X0; S;AÞ ð25Þ

While the reference function in (25) is already completely specified, we still need to know

how to determine the value function Q in the case of (24). For the partial mean-field assump-

tion (23) it is defined in the literature [99, 100] as

QðaÞ≔ hUðX0; S0ÞiqðX0 ;S0 jA¼ aÞ þ HðqðX0jA ¼ aÞÞ; ð26Þ

where U(x0, s0) ≔ log pdes(x0) + log p0(x0|s0) favors both desirable and plausible future

Fig 7. Overview of the Active Inference recipe, applied to our example from Fig 1.

https://doi.org/10.1371/journal.pcbi.1008420.g007
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observations x0. While here desirability and plausibility is built into the value function Q idio-

syncratically, in utility-based approaches (cf. Section 4.2) only desirability has to be put into

the design of the utility function, because there the likelihood p0(X0|S0) of future observations is

automatically taken into account by the expected utility V that is (soft-)maximized by (21).

Moreover, since Q can be rewritten as

QðaÞ ¼ � DKLðqðX0jAÞkpdesðX0ÞÞ � hHðp0ðX0jS0ÞÞiqðS0 jAÞ ;

the extra entropy term in (26) has the effect of actions leading to consequences that more or

less match the desired distribution, while also explicitly punishing actions that lead to a high

variability of observations (by requiring a low average entropy of p0(X0|S0)), rather than trying

to produce the single most desired outcome—see the discussion at the end of Section 5.3. Note

also that the value function Q depends (non-linearly) on the trial distribution q(S0|A), because

q(X0|A) = ∑s0 p0(X0|s0)q(s0|A) is itself a function of q(S0|A), which is problematic during free

energy minimization (see (ii) in Section 5.3).

Free energy minimization. Once the form of the trial distributions q—e.g., by a partial

mean-field assumption (23) or a Bethe approximation (see S1 Appendix)—and the reference ϕ
are defined, the variational free energy is simply determined by F(qkϕ). In the case of a mean-

field assumption, the resulting free energy minimization problem is solved approximately by

performing an alternating optimization scheme, in which the variational free energy is mini-

mized separately with respect to each of the variable factors in a factorization of q, for example

by alternating between minq(S) F, minq(S0|A) F, and minq(A) F in the case of the partial mean-

field assumption (23), where in each step the factors that are not optimized are kept fixed (cf.

Fig 7). In S1 Appendix we derive the update equations for the cases (24) and (25) under mean-

field and Bethe approximations for the one-step example discussed in this section. Mean-field

solutions for the general case of arbitrarily many timesteps together with their exact solutions

can be found in S1 Notebook, where we also highlight the theoretical differences between vari-

ous proposed formulations of Active Inference. The effect of some of these differences can be

seen in the grid world simulations in S2 Notebook.

5.3 Critical points

The main idea behind Active Inference is to express the problem of action selection in a similar

manner to the perceptual problem of Bayesian inference over hidden causes. In Bayesian infer-

ence, agents are equipped with likelihood models p0(X|Z) that determine the desirability of dif-

ferent hypotheses Z under known data X. In Active Inference, agents are equipped with a

given desired distribution pdes(X0) over future outcomes that ultimately determines the desir-

ability of actions A. An important difference that arises is that perceptual inference has to

condition on past observations X = x, whereas naive inference over actions would have to con-

dition on desired future outcomes X0 = x0.
For a single desired future observation x0, Bayesian inference could be applied in a straight-

forward way by simply conditioning the generative model p0 on X0 = x0. Similarly, one could

condition on a desired distribution pdes(X0) using Jeffrey’s conditioning rule [104], resulting

in p(A|pdes) = ∑x0 p(A|x0) pdes(x0), which could be implemented by first sampling a goal x0 �
pdes(X0) and then inferring p(A|x0) given the single desired observation x0. However, one of the

problems with such a naive approach is that the choice of a goal is solely determined by its

desirability, whereas its realizability for the decision-maker is not taken into account. This is

because by conditioning on pdes, the decision-maker effectively seeks to choose actions in

order to reproduce or match the desired distribution.
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To overcome this problem, Control as Inference or Planning as Inference approaches in the

machine learning literature [77, 105–108] do not directly condition on desired future observa-

tions but on future success by introducing an auxiliary binary random variable R such that

R = 1 encodes the occurence of desired outcomes. The auxiliary variable R comes with a proba-

bility distribution p0(R|X0, . . .) that determines how well the outcomes satisfy desirability crite-

ria of the decision-maker, usually defined in terms of the reward or utility attached to certain

outcomes—see the discussion in (iii) below. The extra variable gives the necessary flexibility to

infer successful actions by simply conditioning on R = 1. The advantage of such an approach

over direct Jeffrey conditionalization given a desired distribution over future observations

can be seen in the grid world simulations in S2 Notebook, especially the ability of choosing a

desired outcome that is not only desirable but also achievable—see also Fig 8.

Active Inference tries to overcome the same problem of reconciling realizability and desir-

ability, but without explicitly introducing extra random variables and without explicitly condi-

tioning on the future. Instead, the desired distribution is combined with the generative model

to form a new reference function ϕ such that the posteriors q� resulting from the minimization

Fig 8. Consequences of assuming a desired distribution pdes for action planning under purely inference-based methods, expected utility, and Active

Inference, in the case of a simple example with two actions, one with a deterministic outcome and one with random outcomes. As can be seen from the

displayed equations, conditioning on pdes (Jeffrey conditionalization) and conditioning on success (Control as Inference/direct Active Inference) only differ in

the order of normalizing and taking the expectation over X0. While conditioning on pdes requires to first sample a target outcome from pdes before an action

from p(A|x0) can be planned, conditioning on success directly weighs the desirability of an outcome pdes(x0) by its realizability p(x0|A). From this point of view,

the expected utility approach is very similar to Control as Inference (which can also be seen in the grid world environment S2 Notebook), since it also weighs the

utility of an outcome with its realizability before soft-maximizing. It only differs in how it treats the desired distribution as an exponentiated utility, moving the

utility values closer together so that option A = 1 is slightly preferred. The early version [34] of Active Inference is similar to Jeffrey conditioning, because

decision-makers are also assumed to match the desired distribution, by defining the value function Q as a KL divergence between the predicted and desired

distributions. In later versions of Q-value Active Inference [35, 99, 100], the value function Q is modified by an additional entropy term that explicitly punishes

observations with high variability. Consequently, even when the effect of the action on future observations is kept the same, i.e., the predictive distribution

p(X0|A) = ∑s0 p0(X0|s0)p0(s0|A) remains as depicted in the left-hand column, the preference over actions now changes completely depending on p0(X0|S0)—
whereas in the other approaches, only the predictive distribution p(X0|A) and pdes(X0) influence planning. While there might be circumstances where this extra

punishment of high outcome variability could be beneficial, it is questionable from a normative point of view why anything else other than the predicted

outcome probability p(X0|A) should be considered for planning. See S2 Appendix for details about the choices made in the example.

https://doi.org/10.1371/journal.pcbi.1008420.g008
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of the free energy F(qkϕ) contain a baked-in tendency to reach the desired future encoded by

ϕ. This approach is the root of a number of critical issues with current formulations of Active

Inference:

i. How to incorporate the desired distribution into the reference?

Instead of using Bayesian conditioning directly in order to condition the generative model

p0 on the desired future, in Active Inference it is required that the reference ϕ contains the

desired distribution in a way such that actions sampled from the resulting posterior model

are more likely if they lead to the desired future. As can be seen already for the one-step case

in (24) and (25), the method of how to incorporate the desired distribution into the refer-

ence function is not unique and does not follow from first principles. There have been

essentially two different proposals in the literature on Active Inference of how to combine

the two distributions pdes and p0 into ϕ (cf. Fig 7): Either a hand-crafted value function Q is

designed that specifically modifies the action probability of the generative model, or the

probability over futures X0 under the generative model p0 is modified by directly multiplying

pdes to the likelihood p0(X0|S0). We discuss both of these proposals in (ii) and (iii) below.

ii. Proposal 1: Q-value Active Inference [34, 35, 99, 100]

In the most popular formulation of Active Inference, the probability over actions in the ref-

erence ϕ is defined by 1

Z p0ðAÞeQðAÞ, where the value function Q (also called the “expected

free energy”) depends non-linearly on the trial distributions q, as can be seen exemplarily

in (26) for the one-step case under the partial mean-field assumption of [99, 100], where

q(S0|A) enters Q through q(X0|A) = ∑s0 p0(X0|s0)q(s0|A). Note that, because of this non-linear-

ity the alternating free energy minimization would have no closed-form solutions (cf.

S1 Appendix). This means that both the trial distributions q and the reference ϕ = ϕ(q)

will change when q is varied during the minimization of the total variational free energy

F(qkϕ(q)), as would be required when stipulating a single free energy functional for optimi-

zation. This highlights an important conceptual difference to variational Bayesian infer-

ence, where one assumes a fixed reference ϕ—resulting from the evaluation of a fixed
probabilistic model p0 at known variables (see Section 3.2.1)—to which distributions q are

fitted by minimizing F(qkϕ). In contrast, when changing the reference ϕ(q) during the opti-

mization process, it is no longer clear what is actually achieved by this minimization. As

demonstrated by S2 Notebook, this issue has immediate practical implications, as respect-

ing or ignoring the extra q dependency can result in very different behavior even in simple

grid world simulations.

In the Active Inference literature, however, the extra q-dependency of Q is largely ignored.

Instead of optimizing the full free energy F(qkϕ(q)) with respect to state and action distri-

butions, one alternatingly optimizes the free energy over states FA for each action A and

then the full free energy with respect to action distributions only, so that action and percep-

tion effectively optimize two different free energies. It is crucial to note, however, that

unlike in variational Bayesian inference with fixed reference, this separation does not follow

from the formalism of variational free energy, but is a design choice of the Active Inference

framework that imposes this separation by force (see S4 Appendix for more details). This

way, both separate optimizations can be considered as variational inference in each single

update, even though when alternating them the reference ϕ still changes across the com-

bined optimization process. This is in contrast to alternating optimization schemes in varia-

tional inference (e.g., in the Bayesian EM algorithm) where the reference ϕ does not change

between optimization steps. Thus, there are two choices: Either Q-value Active Inference is

regarded as some kind of approximation to variational inference under a single total free
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energy, or one has to give up the idea of a single free energy function that is optimized.

Either way, the combined process of action and perception does not correspond to a single

variational inference process.

Finally, another important practical issue with Q-value Active Inference models is that the

definition of Q relies on a mean-field approximation of the trial distributions q, under

which hidden states are assumed to be stochastically independent. This simplification is too

strong for sequential decision-making tasks, which renders the approach unfit for environ-

ments where the current state depends stochastically on previous states (see S2 Notebook

for a demonstration).

iii. Proposal 2: direct Active Inference [101]

When multiplying pdes to the generative model directly, as in (25), then the resulting refer-

ence ϕ is no longer given by a joint distribution of observations, states, and actions (since

in general ∑x0 pdes(x0)p0(x0|S0) 6¼ 1). Instead, this formulation of Active Inference turns out

to be a special case of previous Control as Inference approaches in the machine learning

literature [105, 107], where one conditions on an auxiliary success variable R. In particular,

for our running example from Fig 1 with a probabilistic model of the form (1), Control as

Inference defines

p0ðR ¼ 1jX0; S0;AÞ≔ erðX0;S0 ;AÞ ¼ 1 � p0ðR ¼ 0jX0; S0;AÞ ;

where r = r(X0, S0, A) denotes a general (negative) reward function determining desirability.

The full joint of the new set of variables is then given by

p0ðR;X; S;AÞ ¼ p0ðRjX0; S0;AÞ p0ðX; S;AÞ: ð27Þ

Control as Inference then conditions actions on both, the history and future success

(R = 1). For our one-step example, this results in the Bayes’ posterior

pðAjX ¼ x;R ¼ 1Þ ¼
1

Z

X

x0;s;s0
p0ðR ¼ 1jx0; s0;AÞ p0ðx; s;AÞ : ð28Þ

It is straightforward to identify pdes(X0) of Active Inference as a particular choice of a suc-

cess probability p0(R = 1|X0), or equivalently, log pdes(X0) as a reward function r = r(X0), so

that the joint distribution (27) reduces to the reference function ϕ in (25). Thus, the ver-

sion of Active Inference in [101] is simply a variational formulation of Control as Inference

that approximates exact posteriors of the form (28), like other previous variational Bayes’

approaches [107, 109, 110].

In summary, the assumption of a desired distribution pdes over future outcomes has led to

various attempts in the Active Inference literature of using probabilistic inference to determine

profitable actions. Either an action distribution 1

Z p0ðAÞeQðAÞ is built into the reference function,

which presupposes optimal behavior by designing a value function Q that leads to desired con-

sequences, or the outcome probability under the generative model p0 is modified directly by

multiplying pdes to p0. The latter case is the variational version of Control as Inference, well-

known in the machine learning literature [77, 105–110]. Considering the issues of Q-value

Active Inference discussed above, and the fact that Control as Inference does not rely on a

desired distribution over outcomes, we could ask whether formulating preferences by assum-

ing a desired distribution is well-advised. As can be seen from Fig 8, the difference between

purely inference-based methods, expected utility approaches, and Active Inference is mainly

in how they treat the desired distribution. Should pdes be matched or is it good enough if

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008420 December 3, 2020 21 / 32

https://doi.org/10.1371/journal.pcbi.1008420


actions are chosen that lead to a high desired outcome probability? While Control as Inference

and utility-based models essentially take the latter approach, Q-value Active Inference answers

this question by requiring that the desired distribution should be matched as long as the aver-

age entropy of p0(X0|S0) is small.

6 So what does free energy bring to the table?

6.1 A practical tool

It is unquestionable that the concept of free energy has seen many fruitful practical applica-

tions outside of physics in the statistical and machine learning literature. As has been discussed

in Section 3, these applications generally fall into one of two categories, the principle of maxi-

mum entropy, and a variational formulation of Bayesian inference. Here, the principle of max-

imum entropy is interpreted in a wider sense of optimizing a trade-off between uncertainty

(entropy) and the expected value of some quantity of interest (energy), which in practice often

appears in the form of regularized optimization problems (e.g., to prevent overfitting) or as a

general inference method allowing to determine unbiased priors and posteriors (cf. Section

3.1). In the variational formulation of Bayes’ rule, free energy plays the role of an error measure

that allows to do approximate inference by constraining the space of distributions over which

free energy is optimized, but can also inform the design of efficient iterative inference algo-

rithms that result from an alternating optimization scheme where in each step the full varia-

tional free energy is optimized only partially, such as the Bayesian EM algorithm, belief

propagation, and other message passing algorithms (cf. Section 3.2).

It is important to realize that, while the mathematical expressions of a free energy from con-

straints with “energy” E and trade-off parameter β and a variational free energy with reference

ϕ can formally be transformed into each other by � ¼ e� bE , the two kinds of free energy are

inherently distinct, both methodically and by their motivation. In the case of the free energy

from constraints, we are given a constraint on some quantity E and we are trying to fulfil this

constraint with minimum bias by selecting a distribution that trades off the two competing

terms E and entropy. This trade-off also gives the reason for the existence of the Lagrange mul-

tiplier β that has to be determined according to the constraint. In this sense the free energy

from constraints is just a special case of the far more general Lagrangian method when applied

to the optimization of expected values hEip under entropy constraints (or the other way

around). In contrast, variational free energy is simply a tool to represent the normalization of a

reference function ϕ in terms of an optimization problem, and therefore does a priori not

assume the existence of some quantity E that we may have observed in an experiment or that

has any other constraints attached, nor does one explicitly consider entropy to be constrained

or optimized. Therefore, even though starting from a (positive) reference function ϕ we can

always invent the existence of some quantity E and some multiplier β such that � ¼ e� bE , this

does not explain why these quantities should exist or why they should be mapped into each

other in that particular way. The Lagrangian method, on the other hand, explains why for a

given constraint on E we have a Lagrange multiplier β, how it is determined, and why the equi-

librium distribution has the form p� ¼ 1

Z e� bE .

6.2 Theories of intelligent agency

These practical use-cases of free energy formulations have also influenced models of intelligent

behavior. In the cognitive and behavioral sciences, intelligent agency has been modelled in a

number of different frameworks, including logic-based symbolic models, connectionist mod-

els, statistical decision-making models, and dynamical systems approaches. Even though
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statistical thinking in a broader sense can in principle be applied to any of the other frame-

works as well, statistical models of cognition in a more narrow sense have often focused on

Bayesian models, where agents are equipped with probabilistic models of their environment

allowing them to infer unknown variables in order to select actions that lead to desirable con-

sequences [14, 76, 111]. Naturally, the inference of unknown variables in such models can be

achieved by a plethora of methods including the two types of free energy approaches of maxi-

mum entropy and variational Bayes. However, both free energy formulations go one step fur-

ther in that they attempt to extend both principles from the case of inference to the case of

action selection: utility optimization with information constraints based on free energy from

constraints and Active Inference based on variational free energy.

While sharing similar mathematical concepts, both approaches differ in syntax and seman-

tics. An apparent apple of discord is the concept of utility [112]. Utility optimization with

information constraints requires the determination of a utility function, whereas Active Infer-

ence requires the determination of a reference function. In the economic literature, subjective

utility functions that quantify the preferences of decision-makers are typically restrictive in

order to ensure identifiability when certain consistency axioms are satisfied. In contrast, in

Active Inference the reference function involves determining a desired distribution given by

the preferred frequency of outcomes. However, these differences start to vanish when weaken-

ing the utility concept to something like log-probabilities, such that the utility framework

becomes more similar to the concept of probability that is able to explain arbitrary behavior.

Moreover, Active Inference has to solve the additional problem of marrying up the agent’s

probabilistic model with its desired distribution into a single reference function (cf. Section

5.3). The solution to this problem is not unique, in particular it lies outside the scope of varia-

tional Bayesian inference, but it is critical for the resulting behavior because it determines the

exact solutions that are approximated by free energy minimization. In fact, as can be seen in

simple simulations such as S2 Notebook, the various proposals for this merging that can be

found in the Active Inference literature behave very differently.

Also, both approaches differ fundamentally in their motivation. The motivation of utility

optimization with information constraints is to capture the trade-off between precision and

uncertainty that underlies information processing. This trade-off takes the form of a free

energy once an informational cost function has been chosen (cf. Section 4.3). Note that Bayes’

rule can be seen as the minimum of a free energy from constraints with log-likelihoods as utili-

ties, even though this equivalence is not the primary motivation of this trade-off. In contrast,

Active Inference is motivated from casting the problem of action selection itself as an inference

process [34], as this allows to express both action and perception as the result of minimizing

the same function, the variational free energy. However, there is no mystery in having such a

single optimization function, because the underlying probabilistic model already contains

both action and perception variables in a single functional format and the variational free

energy is just a function of that model. Moreover, while approximate inference can be formu-

lated on the basis of variational free energy, inference in general does not rely on this concept,

in particular inference over actions can easily be done without free energy [77, 105–107, 113].

However, there are also plenty of similarities between the two free energy approaches. For

example, the assumption of a soft-max action distribution in Active Inference is similar to the

posterior solutions resulting from utility optimization with information constraints. Moreover,

the assumption of a desired future distribution relates to constrained computational resources,

because the uncertainty constraint in a desired distribution over future states may not only be

a consequence of environmental uncertainty, but could also originate from stochastic prefer-

ences of a satisficing decision-maker that accepts a wide range of outcomes. In fact, as we have

seen in the discussion around Fig 8, various methods for inference over actions differ in how
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they treat preferences given by a distribution over desired outcomes: Some of them try to

match the predictive and desired distributions, while others simply seek to reach states whose

outcomes have a high desired probability. In S2 Notebook, we provide a comparison of the dis-

cussed methods using grid world simulations, in order to see their resulting behavior also in a

sequential decision-making task.

A remarkable resemblance among both approaches is the exclusive appearance of relative

entropy to measure dissimilarity. In the Active Inference literature it is often claimed that

every homeostatic system must minimize variational free energy [97], which is simply an

extension of relative entropy for non-normalized reference functions (cf. Section 3.2.2). In util-

ity-based approaches, the relative entropy (19) is typically used to measure the amount of

information processing, even though theoretically other cost functions would be conceivable

[74]. For a given homeostatic process, the KL divergence measures the dissimilarity between

the current distribution and the limiting distribution and therefore is reduced while approxi-

mating the equilibrium. Similarly, in utility-based decision-making models, relative entropy

measures the dissimilarity between the current posterior and the prior. In the Active Inference

literature the stepwise minimization of variational free energy that goes along with KL minimi-

zation is often equated with the minimization of sensory surprise (see S3 Appendix for a more

detailed explanation), an idea that stems from maximum likelihood algorithms, but that has

been challenged as a general principle (see [114] and the response [115]). Similarly, one could

in principle rewrite free energy from constraints in terms of informational surprise, which

would however simply be a rewording of the probabilistic concepts in log-space. The same

kind of rewording is well-known between probabilistic inference and the minimum descrip-

tion length principle [116] that also operates in log-space, and thus reformulates the inference

problem as a surprise minimization problem without adding any new features or properties.

6.3 Biological relevance

So far we have seen how free energy is used as a technical instrument to solve inference prob-

lems and its corresponding appearance in different models of intelligent agency. Crucially,

these kinds of models can be applied to any input-output system, be it a human that reacts to

sensory stimuli, a cell that tries to maintain homeostasis, or a particle trapped by a physical

potential. Given the existing literature that has widely applied the concept of free energy to

biological systems, we may ask whether there are any specific biological implications of these

models.

Considering free energy from constraints, the trade-off between utility and information

processing costs provides a normative model of decision-making under resource constraints,

that extends previous optimality models based on expected utility maximization and Bayesian

inference. Analogous to rate-distortion curves in information theory, optimal solutions to

decision-making problems are obtained that separate achievable from non-achievable regions

in the information-utility plane (cf. Fig 5). The behavior of real decision-making systems

under varying information constraints can be analyzed experimentally by comparing their

performance with respect to the corresponding optimality curve. One can experimentally

relate abstract information processing costs measured in bits to task-dependent resource costs

like reaction or planning times [20, 22]. Moreover, the free energy trade-off can also be used to

describe networks of agents, where each agent is limited in its ability, but the system as a whole

has a higher information processing capacity—for example, neurons in a brain or humans in a

group. In such systems different levels of abstraction arise depending on the different positions

of decision-makers in the network [23, 71, 85]. As we have discussed in Section 4.3, just like

coding and rate-distortion theory, utility theory with information costs can only provide
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optimality bounds but does not specify any particular mechanism of how to achieve optimal-

ity. However, by including more and more constraints one can make a model more and more

mechanistic and thereby gradually move from a normative to a more descriptive model, such

as models that consider the communication channel capacity of neurons with a finite energy

budget [24].

Considering variational free energy, there is a vast literature on biological applications

mostly focusing on neural processing (e.g., predictive coding and dopamine) [102, 117, 118],

but there are also a number of applications aiming to explain behavior (e.g., human decision-

making and hallucinations) [119]. Similarly to utility-based models, Active Inference models

can be studied in terms of as if models, so that actual behavior can be compared to predicted

behavior as long as suitable prior and likelihood models can be identified from the experiment.

When applied to brain dynamics, the as if models are sometimes also given a mechanistic

interpretation by relating iterative update equations that appear when minimizing variational

free energy with dynamics in neuronal circuits. As discussed in Section 3.2.3, the update equa-

tions resulting for example from mean-field or Bethe approximations, can often be written in

message passing form in the sense that the update for a given variable only has contributions

that requires the current approximate posterior of neighbouring nodes in the probabilistic

model. These contributions are interpreted as local messages passed between the nodes and

might be related to brain signals [102]. Other interpretations [28, 91, 100] obtain similar

update equations by minimizing variational free energy directly through gradient descent,

which can again be related to neural coding schemes like predictive coding. As these coding

schemes have existed irrespective of free energy [120, 121], especially since minimization of

prediction errors is already seen in maximum likelihood estimation [120], the question

remains whether there are any specific predictions of the Active Inference framework that can-

not be explained with previous models (see [39, 122] for recent discussions of this question).

6.4 Conclusion

Any theory about intelligent behavior has to answer three questions: Where am I?, where do I
want to go?, and how do I get there?, corresponding to the three problems of inference and

perception, goals and preferences, and planning and execution. All three problems can be

addressed either in the language of probabilities or utilities. Perceptual inference can either be

considered as finding parameters that maximize probabilities or likelihood utilities. Goals and

preferences can either be expressed by utilities over outcomes or by desired distributions. The

third question can be answered by the two free energy approaches that either determine future

utilities based on model predictions, or infer actions that lead to outcomes predicted to have

high desired probability or match the desired distribution. In standard decision-making mod-

els actions are usually determined by a utility function that ranks different options, whereas

perceptual inference is determined by a likelihood model that quantifies how probable certain

observations are. In contrast, both free energy approaches have in common that they treat all

types of information processing, from action planning to perception, as the same formal pro-

cess of minimizing some form of free energy. But the crucial difference is not whether they use

utilities or probabilities, but how predictions and goals are interwoven into action.

This article started out by tracing back the seemingly mysterious connection between

Helmholtz free energy from thermodynamics and Helmholtz’ view of model-based informa-

tion processing that led to the analysis-by-synthesis approach of perception, as exemplified in

predictive coding schemes, and in particular to discuss the role of free energy in current mod-

els of intelligent behavior. The mystery starts to dissolve when we consider the two kinds of

free energies discussed in this article, one based on the maximum entropy principle and the
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other based on variational free energy—a dissimilarity measure between distributions and

(generally unnormalized) functions that extends the well-known KL divergence from informa-

tion theory. The Helmholtz free energy is a particular example of an energy information trade-

off that results from the maximum entropy principle [46]. Analysis-by-synthesis is a particular

application of inference to perception, where determining model parameters and hidden states

can either be seen as a result of maximum entropy under observational constraints or of fitting

parameter distributions to the model through variational free energy minimization. Thus,

both notions of free energy can be formally related as entropy-regularized maximization of

log-probabilities.

Conceptually, however, utility-based models with information constraints serve primarily

as ultimate explanations of behavior, this means they do not focus on mechanism, but on the

goals of behavior and their realizability under ideal circumstances. They have the appeal of

being relatively straightforward generalization of standard utility theory, but they rely on

abstract concepts like utility and relative entropy that may not be so straightforwardly related

to experimental settings. While these normative models have no immediate mechanistic inter-

pretation, their relevance for mechanistic models may be analogous to the relevance of opti-

mality bounds in Shannon’s information theory for practical codes [90]. In contrast, Active

Inference models of behavior often mix ultimate and proximate arguments of explaining

behavior [123, 124], because they combine the normative aspect of optimizing variational free

energy with the mechanistic interpretation of the particular form of approximate solutions to

this optimization. While mean-field approaches of Active Inference may be particularly ame-

nable to such mechanistic interpretations, they are often too simple to capture complex behav-

ior. In contrast, the solutions of direct Active Inference resulting from a Bethe assumption are

equivalent to previous Control as Inference approaches [77, 105–110] that allow for Bayesian

message passing formulations whose biological implementability can be debated irrespective

of the existence of a free energy functional.

Finally, both kinds of free energy formulations of intelligent agency are so general and flexi-

ble in their ingredients that it might be more appropriate to consider them languages or tools

to phrase and describe behavior rather than theories that explain behavior, in a sense similar to

how statistics and probability theory are not biological or physical theories but simply provide

a language in which we can phrase our biological and physical assumptions.
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