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Abstract

Equine abortion is a cause of severe economic loss to the equine industry. Equine herpesvi-

rus 1 is considered a primary cause of infectious abortion in horses, however other infec-

tious agents can also cause abortion. Abortions due to zoonotic pathogens have

implications for both human and animal health. We determined the prevalence of Coxiella

burnetii, Leptospira spp. and Toxoplasma gondii in 600 aborted equine foetal tissues that

were submitted to our diagnostic laboratories at the University of Melbourne from 1994 to

2019. Using qPCR we found that the prevalence of C. burnetii was 4%. The highest annual

incidence of C. burnetii was observed between 1997–2003 and 2016–2018. The prevalence

of C. burnetii in Victoria and New South Wales was 3% and 6% respectively. All the samples

tested negative for Leptospira spp. and Toxoplasma gondii DNA. Equine herpesvirus 1 DNA

was detected at a prevalence of 3%. This study has provided evidence for the presence of

C. burnetii in equine aborted foetal tissues in Australia, but the role of C. burnetii as potential

cause of abortion in Australia requires further investigation. C. burnetii is a zoonotic disease

agent that causes the disease ‘Q fever’ in humans. We recommend that appropriate protec-

tive measures should be considered when handling material associated with equine abor-

tions to reduce the risk of becoming infected with C. burnetii.

Introduction

Abortion in horses, classified as loss of the foetus before 300 days of gestation, causes severe

economic loss to the equine industry [1, 2]. Several previous studies have investigated the

causes of equine reproductive loss globally and have identified that losses due to infectious,

non-infectious and idiopathic causes were 20–60%, 36–72% and 8–16.0% respectively [1, 3–5].

Although equine alphaherpesvirus-1 (EHV-1) is considered a major cause of infectious equine
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abortion, recent studies have identified bacteria as additional important infectious causes of

abortion. The bacteria identified in these studies include Streptococcus species [1, 4–6] as well

as Chlamydia psittaci, which has recently been identified as an important zoonotic cause of

equine abortion in Australia [7]. Other zoonotic pathogens such as Coxiella burnetii, Leptos-
pira spp. and Toxoplasma gondii are known to cause abortion in multiple animal species such

as cattle, sheep and goats but are less commonly reported in horses where they have been asso-

ciated with only sporadic cases to date [8–10].

Coxiella burnetii is an intracellular gram-negative bacterium that causes a zoonotic disease

known as coxiellosis in humans and animals. The disease is frequently termed ‘Q fever’ in

humans. It has been detected in a broad range of animal hosts including domestic and wild

mammals, birds, as well as in arthropods such as ticks [11, 12]. Infection can range from

asymptomatic to severe in humans. Acute forms of diseases in humans are characterized by a

non-specific flu-like syndrome, pneumonia, or hepatitis. Chronic forms of the disease can be

manifested by endocarditis and chronic hepatitis [13–15]. Infected animals may not show clin-

ical signs of disease, or may develop reproductive disorders, abortions and stillbirths or deliv-

ery of weak neonates [16, 17]. Depression, fever, enteritis, and bronchopneumonia have been

reported in experimentally infected horses [18].

C. burnetii has been detected in people who ride horses or visit horse facilities, but contact

with other livestock or ticks at the horse facilities have often been considered to be the source

of infection [19–21]. Although human infection transmitted from horses has not been

reported, studies have hypothesised that individuals such as equine veterinarians or breeders

could potentially be at higher risk of infection [22–25]. The role of horses as a reservoir of Q

fever is unclear. Few serological studies are available, but those that have been undertaken

have reported seroprevalence ranging from 0–52.5% [20, 26–31]. Moreover, some studies have

detected C. burnetii in equine aborted foetuses or placentas, but the association of C. burnetii
with reproductive losses are unclear [4, 20, 21] despite several epidemiological studies investi-

gating the role of C. burnetii infection in equine abortion cases in Europe [4, 20, 26]. The role

of C. burnetii as a possible cause of equine abortion in Australia has not been investigated.

Leptospira spp. are the causative agent of the zoonotic disease leptospirosis. The pathogenic

species of Leptospira cause leptospirosis in a wide variety of hosts [32] including domestic ani-

mals (including cattle, sheep, pigs, horses and dogs), wildlife and humans [33, 34]. Leptospira
transmits by direct or indirect contact with the infected host such as ingestion of contaminated

food and inhalation of urine droplets from infected hosts [35]. Infection in humans varies

from mild to fatal and fever is a common clinical sign of infection in the acute phase of disease,

while headaches, chills and myalgia are non-specific signs of leptospirosis [36, 37]. Leptospiro-

sis in animals can vary with the infecting species or serovar of Leptospira and is well defined

for many livestock species including cattle, pigs and small ruminants [38, 39]. In horses, recur-

rent uveitis and periodic ophthalmia are the most common clinical manifestations [36]. Lep-
tospira has also been detected in cases of stillbirths, abortions, weak foals, and hepatic and

renal dysfunction in horses [40–44]. Serological studies indicate that horses are frequently

exposed to Leptospira and the seroprevalence can range from 2–79% [45–50]. Recently, Leptos-
pira has detected in equine aborted material by PCR in Brazil [42] and the USA [51]. In Aus-

tralia, several serological surveys have detected Leptospira in healthy horses [52–55] but the

occurrence of these bacteria in abortion cases are unknown.

T. gondii is a ubiquitous, obligate intracellular protozoan parasite. It causes the zoonotic

disease toxoplasmosis in humans and all warm-blooded animals [56–58] and results in sub-

stantial financial loss to the livestock industry by causing reproductive loss and mortality [59,

60]. In horses, T. gondii infection is frequently subclinical. However, fever, ataxia, retinal

degeneration and encephalomyelitis, as well as abortion or stillbirth in pregnant mares, has
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been observed [61, 62]. The epidemiology of T. gondii infection in horses has been investigated

in several countries. Those studies reported that seroprevalence of T. gondii in horses may

range from 0–100% [63–66]. T. gondii-like protozoa have also been identified in an equine

aborted foetus by histopathology with associated pathological changes, indicating that Toxo-
plasma could play a role in equine abortion [67]. Some studies have explored the presence of

T. gondii in Australian livestock, particularly in sheep and cattle, [68, 69] but its presence in

Australian horses has not been investigated.

This study aimed to determine the prevalence of these three pathogens (Coxiella, Leptospira
and Toxoplasma) in equine abortion cases in Australia using archived samples extending over

25 years (2004 to 2019). The prevalence of EHV-1 was also assessed.

Materials and methods

Sample collection

This study used archived samples from equine abortion cases that were submitted to our diag-

nostic laboratories at the University of Melbourne from 1994 to 2019. The samples were pre-

dominantly from New South Wales (NSW), and Victoria (VIC), Australia (Table 1). For each

case, different types of foetal tissue including lung, liver, spleen, placenta and thymus were sub-

mitted. Based on the availability of tissues, a total of 600 foetal tissues (lung, spleen, thymus

and placenta for each foetus) were selected from the archive for this study. The tissues were

stored at -80˚C in 1.5 mL tubes after submission. Selected samples were thawed, and a plastic-

shafted rayon tipped swab (Copan Italia) was used to sample each tissue. Swabs from tissue

originating from the same foetus were combined in 500 μL of PBS and the pooled swabs were

stored at -80˚C until DNA extraction.

DNA extraction

Each tube of swab/PBS solution was vortexed for approximately 5 sec before a 200 μL aliquot

was removed for extraction. DNA was extracted from the PBS (pH 7.4) solution by a King-

fisher robot with a MagMAX™ Core Nucleic Acid Purification Kit (Thermo Fisher Scientific)

according to the manufacturer instructions. Axenically cultured C. burnetii Nine Mile Phase II

was used as a positive extraction control and PBS was used as a negative extraction control.

Extracted DNA was eluted in 90 μL of elution buffer and stored at -80˚C for further use. These

extraction methods were followed for extraction of 483 swab/PBS pools encompassing samples

collected between 1994–2004. The remaining 117 samples submitted to our diagnostic labora-

tories at the University of Melbourne or to Agriculture Victoria between 2010–2019 had been

pre-extracted from pooled tissue swab for routine diagnostic testing and stored prior to this

study.

Table 1. Number of selected foetal tissues submitted between 1994–2019.

State Number of submitted samples (N)

Victoria 395

New South Wales 182

Queensland 4

Tasmania 1

South Australia 13

Northern territory 1

Western Australia 4

Total 600

https://doi.org/10.1371/journal.pone.0233100.t001
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Polymerase Chain Reaction (PCR)

Real-time qPCR for detection of C. burnetii. Real-time qPCR targeting an 82 bp region

of the ompA gene was performed to detect C. burnetii DNA [70]. A total of 20 μL reaction mix-

ture comprising of 10 μL of Sensifast SYBR No Rox master mix (Bioline), 0.4 μM of each

primer (S1 Table) (Integrated DNA Technologies), 5 μL of template DNA template, and Milli-

Q filtered water to reach the final volume were prepared. The cycling parameters were; 3 mins

at 95˚C, followed by 45 cycles of 5 sec at 95˚C and 20 sec at 65˚C. Genomic DNA extracted

from C. burnetii Nine Mile Phase II was used as positive control template and Milli-Q filtered

water was used as negative control template.

TaqMan qPCR amplification to detect pathogenic Leptospira. Pooled swabs were

screened to detect a 242 bp fragment of the lipL32 gene of pathogenic Leptospira by using Taq-

Man qPCR as described previously [71]. Briefly, a 20 μL PCR reaction mixture comprising of

10 μL of TaqMan Universal PCR master mix (Thermo Fisher Scientific), 0.7 μM of each primer

(S1 Table), 0.15 μM of probe (S1 Table) (Bio Search Technologies), 5 μL of template DNA and

Milli-Q filtered water to reach the final volume. The cycling conditions were; 10 min at 95˚C,

followed by 45 cycles of amplification at 95˚C for 15 sec and 58˚C for 60 sec. A commercially

produced (Integrated DNA Technologies) plasmid containing the full lipl32 gene was used as

positive control template. Milli-Q filtered water was used as a negative control template.

Real-time qPCR for detection of T. gondii. Extracted genomic DNA was used in a qPCR

to amplify a 529 bp highly repetitive element as described previously [72]. The 20 μL reaction

was comprised of 10 μL of GoTaq qPCR Master Mix (Promega), 0.15 μM of the probe (S1

Table), 0.15 μM of each primer (S1 Table) (Integrated DNA Technologies), 5 μL of template

DNA and Milli-Q filtered water to reach final reaction volume. The reaction mixture was sub-

jected to an initial incubation of 95˚C for 2 minutes, and then 45 cycles of denaturation at

95˚C for 15 sec and annealing/extension at 60˚C for 60 sec. Laboratory stock of genomic DNA

of T. gondii was used as positive control template and Milli-Q filtered water was used as a nega-

tive control template.

Limit of detection

The limit of detection of each qPCR assay (Table 2) was determined by testing ten-fold serial

dilutions of 1×109 or 1×108 copies of genomic/ plasmid DNA in triplicate. All qPCRs were car-

ried out using an Mx3000P qPCR (Agilent Technologies) thermocycler. The cycle threshold

value (Ct value) was used to determine positive Coxiella, Leptospira and Toxoplasma DNA

with potentially positive PCR products visualised by UV transillumination using Bio-Rad

Image Lab software after electrophoresis of 10 μL aliquots through a 2% agarose gel containing

SYBR Safe DNA gel stain and run in TBE buffer (45 mM Tris-HCl, 45 mM Boric acid, 1mM

EDTA, pH 8.3) at 90 V. Hyper ladder 25 and 100 bp (Bioline) was used for the estimation of

amplicon size.

Table 2. Details of the assays used in this study.

Pathogen Type of assay Product size (bp) Cut-off Ct value Limit of detection (Copy number /reaction)

C. burnetii Real-time qPCR 82 38 20

Leptospira spp. TaqMan qPCR 242 36 200

T. gondii Real-time qPCR 529 37 200

Equine herpesviruses Nested conventional PCR 215 Not applicable � 200�

� The PCR to detect equine herpesviruses is a non-quantitative nested PCR that can detect all herpesviruses. The limit of detection for another alphaherpesvirus

(infectious laryngotracheitis virus) has previously been estimated at approximately 200 copies/reaction [73].

https://doi.org/10.1371/journal.pone.0233100.t002
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Quantitation of C. burnetii loads from equine foetal tissues

Genome copy numbers of C. burnetii -positive samples were calculated using a standard curve

consisting of 10-fold dilutions, in triplicate, of a purified plasmid containing C. burnetii ompA
at 107 to 101 copies per reaction. A Qubit 3.0 fluorometer (Invitrogen) was used to calculate

the copy numbers of plasmid DNA.

Detection of herpesviruses

A universal PCR targeting the herpesvirus DNA polymerase gene was carried out in a nested

format with previously published primers (S1 Table) [74]. In the first round of PCR, the

total volume of each reaction was 50 μL which contained 2 mM MgCl2 (Promega), 0.2 mM of

each dNTPs (Bioline), 0.2 μM of each primer (S1 Table), 1× Green GoTaq Flexi Buffer (Pro-

mega), 1 U of GoTaq DNA polymerase (Promega), 5 μL of template DNA, and Milli-Q filtered

water to reach the final volume. DNA extracted from laboratory stocks of EHV-1 was used as a

positive control template and Milli-Q filtered water was used as a negative control template.

The reaction mixtures were subjected to the following thermocycling parameters: initial dena-

turation at 95˚C for 5 min followed by 45 cycles of denaturation at 95˚C for 30 sec, annealing

at 46˚C for 60 sec, and extension at 72˚C for 1.5 min, followed by a final extension of 72˚C for

5 min.

In the second-round PCR, the volume and concentration of all reagents were the same as

the first round except that the concentration of primer was increased to1 μM. Cycling condi-

tions were also the same except that the annealing and extension times were reduced to 30 and

60 sec respectively. All PCRs were carried out in a T100 Bio-Rad thermal cycler. The amplified

PCR products were visualised by UV transillumination using Bio-Rad Image Lab software

after electrophoresis of 10 μL aliquots through a 2% w/v agarose gel containing SYBR Safe

DNA gel stain in TBE buffer at 90 V. Hyperladder 25 bp (Bioline) was used for the estimation

of the amplicon size. Since this PCR amplifies equine alphaherpesviruses-1, -3 and -4, as well

as the equine gammaherpesviruses-2 and -5, amplicons of the expected sizes were sequenced

to identify the virus type. Then, the identified herpesvirus (EHV-1) were further analysed

using ORF30 and ORF68 PCR.

EHV-1 Open Reading Frame 30 (ORF30) and 68 (ORF68) PCR

In the samples identified as EHV-1 positive by the universal herpesvirus PCR, the EHV-1

ORF30 gene was amplified using nested PCR as described previously to determine if the iso-

lates were the non-neuropathogenic or neuropathogenic genotype [75]. In the first round of

PCR, the total volume of each reaction was 50 μL which contained 2 mM MgSO4 (Invitrogen),

0.2 mM of each dNTPs (Bioline), 0.4 μM of each primer (S1 Table), Platinum Taq DNA poly-

merase High Fidelity Buffer (Invitrogen), 1U of Platinum Taq DNA polymerase High Fidelity

(Invitrogen), 10 μL of template DNA, and Milli-Q filtered water to reach the final volume.

DNA extracted from laboratory stocks of EHV-1 was used as positive control template and

Milli-Q filtered water was used as a negative control template. The cycle conditions were: 1

cycle of 94 ˚C for 30 sec, followed by 35 cycles of 94 ˚C for 30 sec, 48˚C for 30 sec and 68˚C for

60 sec. In the second-round, 10 μL of PCR product from the first round was used as a template.

The volume and concentration of all reagents were the same as the first round. Cycling condi-

tions were also the same except that extension times were reduced to 60 sec.

The ORF68 gene was also sequenced in the current study. A region of this gene has some-

times been considered as a marker that can be suitable for epidemiological studies. EHV-1

ORF68 gene was amplified using conventional PCR as described previously [76]. EHV-1

ORF68 was amplified with 1.25 U of GoTaq DNA polymerase (Promega) in a 50 μL reaction
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mixture containing 1.5 mM MgCl2 (Promega), Green GoTaq Flexi Buffer (Promega), 0.2 mM

of each dNTPs (Bioline), PCR Enhancer solution (Invitrogen), 0.4 mM of each primer (S1

Table), 5 μL of template DNA and Milli-Q filtered water to reach the final volume. DNA

extracted from laboratory stocks of EHV-1 was used as positive control template and Milli-Q

filtered water was used as a negative control template. All PCR reactions were carried out in a

T100 Bio-Rad thermal cycler. The cycle conditions were: 1 cycle of 95 ˚C for 3 min, followed

by 40 cycles of 95 ˚C for 60 sec, 56 ˚C for 60 sec and 72 ˚C for 120 sec. The amplified PCR

products were visualised by UV transillumination using Bio-Rad Image Lab software after

electrophoresis of 10 μL aliquots through a 2% agarose gel containing SYBR Safe DNA gel

stain in TBE buffer at 90 V. Hyperladder 1kb (Bioline) was used for the estimation of the

amplicon size.

Sequencing of PCR products

PCR products were purified from the PCR reaction mixtures using the QIAquick Gel Extrac-

tion Kit (Qiagen) according to the manufacturer’s instruction and eluted in 30 μL elution

buffer (10 mM Tris-Cl, pH 8.5). The quantity of purified DNA was estimated using a spectro-

photometer (NanoDrop Technologies) and sequenced using Big Dye Terminator (BDT) v3.1

(Applied Biosystems) according to the manufacturer’s instructions. The products were sent to

the Australian Genome Research Facility (AGRF) for sequencing. Geneious bioinformatics

software version 11.1.4 (Biomatters Ltd) was used to trim, edit and align all obtained

sequences. Nucleotide sequences were compared with publicly available sequences in the Gen-

bank database (National Center for Biotechnology Information), (https://www.ncbi.nlm.nih.

gov/genbank) using the NCBI Nucleotide Basic Local Alignment Search Tool (BLASTN)

online algorithm (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Statistical analysis

The statistical significance of the prevalence of target pathogen between different states was

tested using Fisher’s exact test in IBM SPSS software. The result was considered statistically

significant if the P value was < 0.05. The percentage of positive cases for each year of the study

was calculated using the number of samples tested in each year and the number of samples

that were positive for the same year.

Results

Prevalence of potential pathogens in foetal tissues

The Ct cut-off value for each pathogen was determined using a standard curve of control sam-

ples containing known concentrations of C. burnetii, Leptospira and T. gondii target DNA.

DNA from these positive controls were consistently detected at Ct values of 38, 36 and 37,

respectively. This corresponsed to limits of of detection of 20, 200 and 200 copy numbers per

reaction, respectively (Table 2). Thus test samples were considered to be C. burnetii, Leptospira
spp. and T. gondii positive if the Ct values were lower than these values, and if the size of DNA

product was consistent with the positive control sample. In the present study, C. burnetii was

detected in 21 abortion cases giving a prevalence of 4% (95% CI: 2–5%) (Table 3). Of the 21

positive isolates, 10 cases (3%, 95% CI: 1–5%) were from Victoria and 11 cases (6%, 95% CI:

3–11%) were from NSW (Fig 1). There was no significant difference observed between the

prevalence of C. burnetii in Victoria and NSW. The annual incidence of C. burnetii ranged

from 0–14% and was highest between 1997–2003 and 2016–2018 (Table 4). A selection of posi-

tive samples were sequenced to confirm that the amplified products were C. burnetii DNA.
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The sequences were compared to those available in Genbank. The nucleotide sequence of the

amplified ompA gene had 98.4–100% nucleotide identity to the reference sequences

AY502769.1 and MK168663.1.

No samples were positive for Leptospira or Toxoplasma spp.(Table 3). The samples were

also tested for herpesviruses and 18 samples were identified as herpesvirus positive. All of the

detected herpesvirus were EHV-1. The prevalence of EHV-1 was 3% (Table 3). One sample

was positive for both C. burnetii and EHV-1.

Load of C. burnetii in positive samples

Genome copy numbers of C. burnetii in the positive samples were quantified by ompA qPCR.

The median (range) of C. burnetii in the positive samples was 3.77 × 102 (4.03 × 101–2.6 × 103)

genome copies per reaction.

Fig 1. Map of state of Victoria and New South Wales, Australia showing the location of positive isolates. Here,

positive isolates and negative isolates in VIC and NSW are represented by different symbols and colours. The state

map is reprinted from an outline map of Australia (Geoscience Australia, Canberra) under a CC BY license with

permission from the Commonwealth of Australia (Geoscience Australia). Original copyright (2005).

https://doi.org/10.1371/journal.pone.0233100.g001

Table 3. Prevalence of potential pathogens in equine abortion cases.

Pathogen Positive (N) Prevalence (%) 95% CI (%) Negative (N) Total (N)

C. burnetii 21 4 2–5 579 600

Leptospira spp. 0 0 0–1 600 600

T. gondii 0 0 0–1 600 600

EHV-1 18 3 2–5 579 600

N = Number, CI = Confidence interval

https://doi.org/10.1371/journal.pone.0233100.t003
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EHV-1 ORF30 and ORF68 sequence analysis

Sequence analysis of the ORF30 gene showed that all EHV-1 detected from the equine abor-

tion cases were of the non-neuropathogenic genotype (A2254). The nucleotide 125,387–

125,945 region of ORF68 gene has sometimes been considered a useful marker related to the

geographical origins of EHV-1 isolates [75]. A series of SNPs were used to group the isolates

based on ORF68 sequence. Based on the previously proposed classification, 15 isolates were

classified as group 2, and two of the isolates were classified as either group 5 or 6. One isolate

could not be placed into a classified group (Fig 2) [75] and has submitted in GenBank under

the accession number MN786807.

Discussion

The current study investigated the prevalence of the important zoonotic pathogens C. burnetii,
T. gondii and pathogenic Leptospira spp. in equine aborted foetal tissues. The distribution of

Table 4. Number of C. burnetii positive cases between 1994–2019.

Years Samples tested Positive (N) Positive (%) Negative (N)

1994 5 0 0 5

1995 7 0 0 7

1996 4 0 0 4

1997 32 4 13 28

1998 32 2 6 30

1999 62 2 3 60

2000 54 0 0 54

2001 64 2 3 62

2002 86 1 1 85

2003 90 5 6 85

2004 47 0 0 47

2010 2 0 0 2

2011 17 0 0 17

2012 13 0 0 13

2013 14 0 0 14

2014 9 0 0 9

2015 21 0 0 21

2016 21 3 14 18

2017 8 1 13 7

2018 9 1 11 8

2019 3 0 0 3

Total 600 21 3.5 579

https://doi.org/10.1371/journal.pone.0233100.t004

Fig 2. Sequences of EHV-1 ORF68 are aligned with reference sequence (GenBank AY665713.1). The representatives of variation in sequences in archived isolates are

shown and the position of nucleotide relative to Ab4 (GenBank AY665713.1) are numbered. The sequence identity is denoted by dots and non-synonymous changes are

highlighted.

https://doi.org/10.1371/journal.pone.0233100.g002
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two of these pathogens in equine foetal tissues has been described previously. C. burnetii has

been detected in high levels in equine foetal lung and placenta [4]. Leptospira has been

detected in equine foetal lung, spleen and kidney [51]. The distribution of T. gondii in equine

aborted material is not as well described [77]. In this study we pooled available foetal tissues

from each abortion event in order to increase the likelihood of including tissue that contained

a high pathogen load.

C. burnetii was detected by qPCR for the first time in equine aborted foetal tissues in Aus-

tralia. The prevalence of C. burnetii in equine abortion cases was 4% which is consistent with

previous international studies that have reported prevalence rates of 4% (1/23) in aborted

equine foetuses using real-time PCR in Germany in 2012 [21] and 3.4% (22/629) and 1.5% (6/

407) using PCR in France in 2009 and 2012, respectively, [4, 78]. A similar study reported that

the prevalence of C. burnetii was 8% in abortion cases in the Netherlands in 2011 [20].

In the present study, low loads of C. burnetii were detected in the equine foetal tissues when

compared to those reported in ovine and caprine placental tissues [79]. This is consistent with

a previous study that also reported low loads of C. burnetii DNA in equine placental tissues

[20]. Detection of C. burnetii DNA is not sufficient in itself to implicate the bacteria as the

cause of abortion [4]. Indeed, the low loads of C. burnetii DNA detected in equine foetal tissues

could indicate that the bacteria may not be the cause of the abortion event. Future work to

determine the prevalence and load of C. burnetii infection in animals with normal reproduc-

tive outcomes would be important to understand the significance of infection in horses [26].

Moreover, studies to determine if the presence of C. burnetii DNA is associated with pathologi-

cal changes are indicated [80] as we did not have histological examination results for any of

the samples used in this current study. The low loads of C. burnetii DNA present in the sam-

ples in this current study prevented genotyping being performed successfully using genotyping

systems described previously [81, 82], consistent with a previous equine study [20].

Leptospira spp. was not detected in any cases of abortion in this current study. Previous

studies have used PCR to detect Leptospira DNA in 12 aborted equine foetal tissues or fluids in

USA and Brazil [42, 51]. However a large study performed in the USA by Tengelsen et al.

(1997) reported that 290 equine foetal tissues were Leptospira negative by direct immunofluo-

rescence [83]. Serological testing has revealed a high Leptospira seroprevalence in clinically

normal horses in Queensland, Australia [52] but no previous studies have investigated Leptos-
pira infection in equine abortion cases in Australia. The negative results of the current study

suggest that Leptospira spp. may not be associated with equine abortion in Australia, although

it would be beneficial for future studies to incorporate higher numbers of samples from other

geographical regions, including Queensland, as the samples in this current study were mostly

from Victoria and NSW.

T. gondii DNA was not detected in equine foetal tissues in the current study. This result is

consistent with results from a study conducted in Hungary between 1998–2000, where all 96

equine aborted foetal tissues were T. gondii negative by immunohistochemistry [6]. This find-

ing is despite previous studies which have shown that T. gondii is able to cross the equine pla-

centa in an experimental model, and the reported detection of T. gondii-like protozoa in an

equine aborted foetus [67, 84]. Serological surveys suggest that subclinical Toxoplasma infec-

tion is common among horse populations worldwide [64, 85, 86] although it should be noted

that no such studies have been conducted in Australia. Taken together these results suggest

that that T. gondii is not associated with abortion in horses in Australia.

Equine herpesvirus-1 is recognised as an important cause of equine infectious abortion and

was included in this study for this reason, despite EHV-1 being non-zoonotic. The neuro-

pathogenic genotype of EHV-1 (possessing the G2254 substitution in ORF30) was not detected

in the sequence analysis of EHV-1 positive isolates in this study. A previous study in Australia
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detected the G2254 substitution in only a low percentage (1.5%) of isolates from abortion cases

[87]. Neuropathogenic EHV-1 has been reported at a higher prevalence in abortion cases from

other parts of the world, including 8.9% in Central Kentucky of the USA [88], 10.6% in Ger-

many [89], and 25.9% in France [90]. These studies suggest that the prevalence of neuropatho-

genic EHV-1 in abortion cases may be increasing in different parts of the world, along with an

increasing incidence of neurologic disease (equine herpesvirus myeloencephalopathy, EHM).

The frequency of EHM in Australia is low compared to other countries which is likely associ-

ated with the low prevalence of ORF30 G2254 genotype in Australia [91].

Nugent et al., (2006), identified six different ORF68 groups for the first time using SNPs

present in 559 bp region of ORF68 gene and proposed that this region as a suitable marker to

study the geographical origin of the EHV [75]. In the current study, 83.33% (15/18) of the Aus-

tralian EHV-1 isolates belonged to group 2 and this is consistent with that previously found

for Australian EHV-1 isolates [87].

This study tested swabs taken from foetal tissues, rather than testing foetal tissues directly,

in order to facilitate high throughput testing and to avoid the presence of PCR inhibitors in tis-

sue extracts. PCR detection of pathogen DNA in tissue extracts can be limited by naturally

occurring inhibitory substances [92, 93]. The inhibitor-containing substrate may be avoided

by using a swab-transfer methods [94]. This study used rayon swabs which are not associated

with PCR inhibition [95]. It is possible that the sensitivity of the assays was too low to detect

pathogens if they were present at low copy numbers in the tested samples. It is also possible

that pathogen detection may have been impacted by freeze/thawing of samples which can

degrade DNA. Some of the tissues in this study had been in our archives for up to 25 years and

may have experienced freeze/thawing over this time, although this is avoided whenever possi-

ble. DNA sizes smaller than 100 kb are less sensitive to freeze/thaw degradation. In this study

the PCR product sizes were small (Table 2) which suggests that multiple freeze thaw cycles

would have a small effect on detection [96].

In conclusion, this study revealed the presence of the zoonotic agent C. burnetii in aborted

equine foetal tissues in Australia. C. burnetii was detected at a prevalence similar to EHV-1

(4% and 3%, respectively), however the low copy numbers of C. burnetii could suggest that the

bacteria were not the cause of the abortion event. Future studies to assess any pathological

changes associated with the presence of the bacteria are indicated, as are studies to determine

the prevalence and load of C. burnetii in placental tissues from healthy foals. Together such

studies will help to clarify the role of C. burnetii in equine abortion in Australia. The dose of C.

burnetii for human infection is very low (only 10–15 organisms) [97], and therefore people

handling material associated with equine abortions may be at risk of being infected with C.

burnetii. This is in addition to risks posed by possible infection with C. psittaci [98]. Thus, it is

recommended that appropriate measures to minimise the risk of infection, such as the use of

personal protection equipment, vaccination and biosecurity procedures, be considered when

handling aborted equine materials.
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