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Abstract

Motivation: Considerable attention has been given to the quantification of environmental effects

on organisms. In natural conditions, environmental factors are continuously changing in a complex

manner. To reveal the effects of such environmental variations on organisms, transcriptome data

in field environments have been collected and analyzed. Nagano et al. proposed a model that

describes the relationship between transcriptomic variation and environmental conditions and

demonstrated the capability to predict transcriptome variation in rice plants. However, the compu-

tational cost of parameter optimization has prevented its wide application.

Results: We propose a new statistical model and efficient parameter optimization based on the

previous study. We developed and released FIT, an R package that offers functions for parameter op-

timization and transcriptome prediction. The proposed method achieves comparable or better

prediction performance within a shorter computational time than the previous method. The package

will facilitate the study of the environmental effects on transcriptomic variation in field conditions.

Availability and Implementation: Freely available from CRAN (https://cran.r-project.org/web/pack

ages/FIT/).

Contact: anagano@agr.ryukoku.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online

1 Introduction

Variation in environmental factors affects various aspects of organ-

isms. The comprehensive quantification of environmental effects on

organisms is an emerging problem. For example, gene-environment

interactions have been studied to explain the heritability of complex

diseases that could not be explained by conventional genome-wide

association studies (Thomas, 2010). In addition, concerns about or-

ganisms’ adaptation and response to changes in environmental con-

ditions has been growing because of climate change (Ahuja et al.,

2010; Hoffmann and Sgr�o, 2011; Nicotra et al., 2010; Weston

et al., 2008; Xu, 2016).

There is a trade-off between precise control of and minimal

intervention to the environment (Jones, 2013). Any results obtained

in the field more accurately reflect a plant’s environmental response

in natural conditions. However, these results are difficult to inter-

pret, because environmental factors are continuously changing in a

complex manner and exhibit diurnal oscillations, seasonal changes,

and long-term trends. On the other hand, experiments conducted in

controlled conditions provide results that are more precise but not

necessarily reflective of the plant’s behavior in natural conditions.

For example, photosynthetic responses to fluctuating, environments

like natural conditions differ from those to controlled, constant
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environmental conditions (Yamori, 2016). At the molecular level,

traits observed in laboratory conditions are not always consistent

with those observed in natural conditions (Malmberg et al., 2005;

Mishra et al., 2012; Weinig et al., 2002). Further, even if similar

physiological plasticity is observed, the molecular responses of

plants to drought stress can vary between the controlled conditions

of greenhouses and the uncontrolled conditions of the field (Lovell

et al., 2016).

To reveal the effects of such fluctuating environments, transcrip-

tome data in field environments have been collected (Alvarez et al.,

2015). In particular, the transcriptomic variation of plants in fields

has been studied (Hayes et al., 2010; Izawa et al., 2011; Nagano

et al., 2012; Plessis et al., 2015; Sato et al., 2011; Richards et al.,

2012). To bridge the gap between natural and laboratory condi-

tions, Nagano et al. (2012) proposed a model to relate the transcrip-

tomic variation of plants in a field to environmental conditions and

applied it to large-scale transcriptome data of samples collected in a

field. They demonstrated that the model can precisely predict tran-

scriptome variations using meteorological data. However, the vast

computational cost required to optimize parameters and select the

best model has restricted the use of the model.

To accelerate transcriptomic studies in fields, we propose a new

statistical model based on that proposed by Nagano et al. (2012).

The previous model contains some distinct functions representing di-

urnal changes in sensitivity and the characteristics of responses to

environmental stimuli. The new model reduces the computational

cost by unifying these functions. We also propose a cluster-based ap-

proach for optimizing parameters, in which we reuse the optimiza-

tion result of one gene for other genes in the same cluster. This

approach significantly reduces the cost of searching for the optimum

parameter value. Both the previous and new models are intended for

application to microarray data; however, the use of RNA-Seq

(Wang et al., 2009) technology is rapidly increasing. To apply our

model to RNA-Seq data, we incorporated precision weights for nor-

malized log-counts into the model as the voom method (Law et al.,

2014). In addition, we developed and released FIT, an R package

that provides efficient parameter optimization, model selection, and

transcriptome prediction of unsequenced samples. This is the first

tool to integrate the transcriptome data from field samples and me-

teorological data by modeling their relation.

2 Methods

2.1 Previous model
Before explaining our new model, we briefly review the previous

plant transcriptome model (Nagano et al., 2012). Let N be the num-

ber of samples and sðiÞ be an N-element vector, where each element

is the log2-transformed value of the normalized expressions for gene

i in each sample. In the model, sðiÞ is described as

sðiÞ ¼ X ðiÞbðiÞ þ eðiÞ; (1)

where X ðiÞ and bðiÞ are an N � 7 design matrix and regression coeffi-

cients, respectively. The independently and identically distributed

noise eðiÞ is drawn from a Gaussian distribution. The design matrix

XðiÞ is constructed as

XðiÞ ¼ ð1;d; cðiÞ; rðiÞ;d � cðiÞ;d � rðiÞ;nÞ: (2)

Here, 1 is a vector in which all elements are 1 and d; cðiÞ; rðiÞ, and n

are values designating the plant’s age, circadian clock, response to

environmental stimuli, and genotype, respectively. The element-wise

products d � cðiÞ and d � rðiÞ are the interactions between the age and

the clock and the age and the environmental response, respectively.

The plant’s age d is a vector of the numbers of days after transplant-

ing scaled to have a range 1 and a mean 0. In the previous study, the

authors used two rice cultivars (Nipponbare and Norin 8) as sam-

ples. If the genotype of sample j is Norin 8, the j-th element of the

genotype n is set to 1; otherwise, to 0.

Whereas d and n are independent of the genes, the circadian

clock and the response to environmental stimuli are gene specific.

Hence, we place a superscript (i), e.g. cðiÞ and rðiÞ. The circadian

clock on gene i in sample j is described by a cosine curve with a 24 h

period and the gene specific phase uðiÞ. It is defined as

c
ðiÞ
j ¼

cos 2pðtj � uðiÞÞ=24
� �

2
; (3)

where tj is the time when sample j was obtained.

The response to environmental stimuli of gene i in sample j takes

the form

r
ðiÞ
j ¼

Ptj

T¼tj�pðiÞ
gðTÞf ðwT � hðiÞÞ

aðiÞ
� bðiÞ; (4)

where g(T) is a gate aperture used to explain time-of-day-specific re-

sponses to an environmental stimulus, pðiÞ is the time period during

which gene i was affected by an environmental stimulus, wT is the

value of a meteorological parameter at time T, hðiÞ is the response

threshold to the stimulus, and f(x) determines the response to the en-

vironmental stimulus. rðiÞ is scaled by factors aðiÞ and bðiÞ as the

plant’s age. For f(x), two types of response model are considered:

dose-dependent (dd) and dose-independent (di). In the dd model, the

response function is defined as

fdd;pðxÞ ¼ maxð0; xÞ: (5)

Similarly, the function in the di model is defined as

fdi;pðxÞ ¼
1; x > 0;

0; otherwise:

(
(6)

These two response model types assume that a plant responds to an

environmental stimulus over the threshold. Two other types can also

be considered, that is, a plant responds to a stimulus under the

threshold, such as

fdd;nðxÞ ¼ maxð0;�xÞ;

fdi;nðxÞ ¼
1; x < 0;

0; otherwise:

8<
:

(7)

There are three types of gate function g(T). The first model is a

no-gate model, which takes 1 for any T. In the second model, the

gate function is defined as

g cos ðTÞ ¼
cos 2p T � wð Þ=24ð Þ þ 1

2
: (8)

The third model assumes that the gate fully opens for a specific dur-

ation and completely closes at other times, i.e.,

grectðTÞ ¼
1; oðiÞ < T < ðoðiÞ þ lðiÞÞ;

0; otherwise:

(
(9)

Here, oðiÞ is the opening time of the gate and lðiÞ is the opening length.

Parameters are optimized to maximize the likelihood by using

the Nelder–Mead algorithm (Nelder and Mead, 1965). Because the

likelihood function has multiple local maxima, a grid search is
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performed before the optimization. Regression coefficients bðiÞ and

the phase of the circadian clock uðiÞ are optimized using the nonlin-

ear least-squares method and the likelihood is calculated on each

grid point of the remaining parameters. The optimization by the

Nelder–Mead algorithm starts from the parameter values of the grid

point with the largest likelihood. The response function to environ-

mental stimuli with the largest likelihood is selected from four re-

sponse model types (fdd;pðxÞ; fdi;pðxÞ; fddn
ðxÞ, and fdin ðxÞ). Because

different gate function types have different degrees of freedom, the

optimum gate function type is selected by performing likelihood-

ratio tests. It can be considered that some variables in Equation (1)

may contribute to neither the explanation nor the prediction for the

expression patterns of many genes. Thus, a parameter reduction pro-

cess that repeats parameter optimizations and likelihood-ratio tests

is performed to obtain the simplest models.

2.2 New model
Although the previous model achieved a detailed description of tran-

scriptome fluctuations in complex environments, the parameter op-

timization for all genes is computationally expensive. The

computational cost of the optimization is due mainly to the exist-

ence of different model types, i.e., different types of response models

and gate functions, and variable selection. We need to optimize and

compare each model repeatedly. Therefore, to reduce computational

cost, we unified the different model types.

To unify the dd and di responses to environmental stimuli, we

redefined the response model, when a plant responds to an environ-

mental stimulus over the threshold, as

~f pðxÞ ¼ maxð0; tanhðexp ðcf ÞxÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ð�2cf Þ þ 1

q
: (10)

As cf approaches minus infinity, this function approaches the dd re-

sponse function. Conversely, this function approaches the di response

function in the limit of cf !1 (Fig. 1(a)). Here,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ð�2cf Þ þ 1

q
ensures that the outputs of this function have almost constant scales

regardless of the value of cf. When a plant responds to a stimulus

under the threshold, the dd and di responses are unified as

~f nðxÞ ¼ maxð0; tanh ð�exp ðcf ÞxÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ð�2cf Þ þ 1

q
: (11)

We also defined the new gate function as

hðCÞ ¼ tanh ðexp ðcgÞðC� hgÞÞ;

~gðTÞ ¼ h cos 2p T � wð Þ=24ð Þð Þ � hð�1Þ
hð1Þ � hð�1Þ ; (12)

where cg controls the shape of the gate as cf in Equations (10) and

(11), and hg determines the opening length. When the value of hg is

smaller than –1, this function corresponds to the no-gate model in

the limit cg !1. The gate function in Equation (8) is approximated

by this function with a smaller value of cg and that in Equation (9) is

approximated with a larger value of cg [Fig. 1(b)].

To eliminate the need to optimize the phase of the circadian

clock /ðiÞ by the nonlinear least-squares method, we represent the

circadian clock by the weighted sum of sine and cosine curves in-

stead of one cosine curve (Equation 3). The weights of these sine

and cosine curves are selected by linear regression together with

other regression coefficients. Let bðiÞsin and bðiÞcos be the regression co-

efficients of the sine and cosine components of the clock. Using these

coefficients, the clock phase is obtained by

uðiÞ ¼ arg bðiÞcos þ ibðiÞsin

� �
: (13)

Similarly, the interactions between the plant’s age and the circadian

clock are also represented as the weighted sum of the interactions

between the age and cosine and sine curves, and its phase is obtained

by these regression coefficients.

As in the previous model, the parameters of the new model are

optimized through two steps: the determination of the initial value by

a grid search, and nonlinear optimization by the Nelder–Mead algo-

rithm. In the first step, we optimize the parameters related to environ-

mental responses, which are pðiÞ; hðiÞ, cf, cg, and hg, and the response

function (~f p or ~f n) by a grid search. The remaining parameter bðiÞ is

optimized by linear regression for each setting and the setting that

achieves the lowest mean squared error is searched. In the second

step, parameters other than bðiÞ are optimized by the Nelder–Mead al-

gorithm. After the optimization of the environmental response param-

eters, we select variables simultaneously with the optimization of the

regression coefficients bðiÞ using an L1 regularization instead of re-

peating log-likelihood tests. To select sine and cosine curves represent-

ing the circadian clock (and the interaction between the age and the

circadian clock) into or out of a model together, we used group lasso

(Yuan and Lin, 2006) rather than lasso (Tibshirani, 1996). By using

group lasso, sparse (i.e. a small number of non-zero) coefficients can

be obtained. Let ŝ
ðiÞ
j be the predicted value of the expression of gene i

in sample j. The cost function to be minimized is defined as

LðbÞ ¼
XN
j¼1

ŝ
ðiÞ
j � s

ðiÞ
j

� �2

þk
X
k2I

fkjbkj þ fc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

cos þ b2
sin

q
þ fdc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

d cos þ b2
d sin

q !
: (14)

Here, I ¼ fd; r; dr; ng is the index set of the regression coefficients of

the plant’s age, the response to environmental stimuli, the inter-

action between the age and the response, and the genotype. In this

equation, the first term is the sum of the squared residuals and the

second term is the regularization term. With a larger value of k, we

obtain fewer non-zero coefficients. To achieve consistent variable se-

lection, we use adaptive weights fj for penalizing different covariates

as in the adaptive lasso (Zou, 2006) or the adaptive group

lasso (Wang and Leng, 2008). Let ~b denote the coefficients obtained

by ordinary least squares regression. The adaptive weights are

defined as fk ¼ 1=~b
2

k ðk 2 fd; ngÞ, fk ¼ 7=~b
2

k ðk 2 fr;drgÞ; fc ¼ 1=

ð~b2

cos þ ~b
2

sin Þ, and fdc ¼ 1=ð~b2

d cos þ ~b
2

d sin Þ. Because the responses to

environmental stimuli contain seven parameters, the adaptive

weights for the response and the interaction between the response

and the age are multiplied by seven.

The optimum value of k is selected by cross validation (CV) for

each gene. We chose the largest value of k for which the CV error

(a) (b)
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Fig. 1. Response functions (a) and gate functions (b) for various parameter

values
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was smaller than the sum of the minimum CV error and the stand-

ard error of CV errors. Because CV incurs high computational costs,

we used the approximation of leave-one-out CV errors (Obuchi and

Kabashima, 2016). A leave-one-out CV error and its standard error

is approximated by the mean and the standard deviation of

1þ
X
k;l

X
ðiÞ
jk X

ðiÞ
jl vðijÞkl

 !2

ŝ
ðiÞ
j � s

ðiÞ
j

� �2
; (15)

over all samples j. Here, vðijÞ is the matrix given by

vðijÞ ¼ ~X
ðiÞT ~X

ðiÞ� ��1

þ
~X
ðiÞT ~X

ðiÞ� ��1
~X
ðiÞT
j�

~X
ðiÞ
j�

~X
ðiÞT ~X

ðiÞ� ��1

1� ~X
ðiÞ
j�

~X
ðiÞT ~X

ðiÞ� ��1
~X
ðiÞT
j�

;

where ~X
ðiÞ

and ~X
ðiÞ
j� denote the submatrix of XðiÞ corresponding to

the set of covariates with non-zero regression coefficients, and its

j-th row. Although this approximation is based on the assumption

that the numbers of samples and covariates are sufficiently large, we

confirmed that it is sufficiently accurate even for our model, which

contains only several covariates.

2.3 Cluster-based optimization for computational

time reduction
For further computational reduction, we omit the grid search (which

is the most time-consuming step in the optimization) for almost all

genes. Similar models would be optimum for genes exhibiting simi-

lar expression patterns. Hence, it is expected that the optimum

model for one representative gene of a cluster can be used as the ini-

tial value of the Nelder–Mead optimization for genes, the expression

pattern of which is similar to the pattern of the representative gene

of the cluster.

Before optimization, we perform clustering of expression pat-

terns using the affinity-propagation method (Frey and Dueck,

2007), which automatically provides an appropriate number of clus-

ters and their exemplars. For each cluster, we optimize the param-

eter values for the exemplar of the cluster using the procedure

mentioned above, and use the optimized value as the initial value for

the Nelder–Mead method for other genes in the cluster.

2.4 Application to RNA-seq data
Recently, RNA-Seq (Wang et al., 2009) has become a widely used

technology to quantify transcriptomes. While we employed the log-

normal distribution for microarray data, RNA-Seq data are discrete

in nature and modeled by a negative binomial distribution

(Robinson et al., 2010). We associated a precision weight with each

individual normalized observation as in the voom method (Law

et al., 2014), which allows us to apply methods developed for micro-

array data to RNA-Seq data. Precision weights are estimated based

on the mean-variance relationship of the data according to the fol-

lowing procedure. The log-count per million (log-cpm) value for

each read count is defined as

y
ðiÞ
j ¼ log2

r
ðiÞ
j þ 0:5

Rj þ 1:0
� 106

 !
; (16)

where r
ðiÞ
j denotes the read count of gene i for RNA sample j and

Rj ¼
P

r
ðiÞ
j is the total number of reads for sample j. For each gene,

a model is fitted to the log-cpm value y
ðiÞ
j and its residual standard

deviation rðiÞ is obtained. In this study, we smoothed the time series

of the log-cpm values and calculated residual standard deviations.

Let rðiÞ denote the average log-count value defined as

rðiÞ ¼ yðiÞ þ log2ðRÞ � log2ð106Þ: (17)

Here, yðiÞ and R are the average log-cpm value and the geometric

mean of the total number of reads plus one, respectively. Similarly,

each smoothed log-cpm value of gene g for sample i is converted to

the smoothed log-count k
ðiÞ
j . Fitting the LOWESS curve (Cleveland,

1979) to square-root standard deviations
ffiffiffiffiffiffiffi
rðiÞ
p

as a function of

mean log-counts rðiÞ, a piecewise linear function loðÞ is yielded.

Then, the predicted square-root standard deviation of y
ðiÞ
j is loðkðiÞj Þ

and the voom precision weight is defined as

w
ðiÞ
j ¼

1

loðkðiÞj Þ
4
: (18)

Precision weights are incorporated into the model by replacing the

first term in Equation (14) with the weighted sum of squared

residuals.

3 Datasets

3.1 Meteorological data
We used meteorological data measured every 60 s at a meteoro-

logical station (Tsukuba (Tateno), 36�030N; 140�080E; attitude

25:2m) of the Japan Meteorological Agency. The data consists of

wind intensity¼ (m=s), air temperature (�C), relative humidity (%),

atmospheric pressure (hPa), precipitation (mm), and global radi-

ation (kJm�2min�1).

3.2 Synthetic gene expression data
In order to confirm that correct models can be selected by the pro-

posed method, we synthetically generated RNA-Seq data assuming

the following situation. Rice plants were transplanted into a paddy

field on June 1. Samples were collected every week from June 12 to

September 18, 2008 for 24 h. In order to verify influence of sampling

design on model selection and parameter optimization, five types of

sampling were considered: one sample at each time at intervals of

2 h, two samples at each time at intervals of 4 h, three samples at

each time at intervals of 6 h, four samples at each time at intervals of

8 h, and six samples at each time at intervals of 12 h. The total num-

ber of samples for each type was 180. For evaluation of the predict-

ive capability, we also computed gene expressions of samples

assumed to be collected every week from June 12 to September 18,

2009 for 24 h at intervals of 2 h.

The read count of gene i for RNA sample j was generated from a

negative binomial distribution:

pðrðiÞj Þ ¼
Cð/�1 þ r

ðiÞ
j Þ

r
ðiÞ
j !Cð/�1Þ

1

1þ ðlðiÞj /iÞ�1

0
@

1
Ar

ðiÞ
j

1

1þ lðiÞj /i

0
@

1
A/�1

i

; (19)

where lðiÞj and /i are the mean and the dispersion parameter, re-

spectively. The mean values varied according to the circadian clock,

the response to environmental stimuli, and the plant’s age at the

times of sampling, according to the 31 model equations shown in

Supplementary Table S1. In these equations, the logarithm of the

average expression value for each gene aj followed a normal distri-

bution with an average of 5 and a standard deviation of 1.

To decide dispersion parameters, we estimated the mean-

dispersion trend from the Pickrell real RNA-Seq data set (Pickrell

et al., 2010), which is available from the tweeDESeqCountData R
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package (http://www.creal.cat/jrgonzalez/software.htm), using the

method implemented in the edgeR package (Zhou et al., 2014).

From the estimated trend, we decided the value of the dispersion

parameter corresponding to the average expression value for each

gene aj. Because we use the log-count per million values for analysis,

9969 constantly expressed genes (lðiÞj ¼ ai; 8j) were also considered

in order to suppress the influence of the variation of the total read

counts. The dispersion parameters of these constantly expressed

genes were also decided according to the estimated mean-dispersion

trend.

3.3 Real gene expression data
We also analyzed the same data as Nagano et al. (2012), which con-

sisted of microarray data from 461 samples of mature leaves of rice

plants in a paddy field at Tsukuba collected in 2008, and 108 sam-

ples collected in 2009. We used data from the samples collected in

2008 for model selection and parameter fitting, and those from

2009 for evaluation of the model’s predictive capability. The sam-

ples collected in 2008 can be categorized into six groups: 24 h of

samples collected at intervals of 2 h starting at 7:00 am on August

12, 2008 (8 samples at each time�13 time points ¼ 104 samples);

48 h of samples collected at intervals of 2 h starting at 10:00 am on

June 5, June 19, July 3, July 17, August 7, August 14, August 21,

August 28, and September 11, 2008 (225 samples); samples col-

lected at noon every other week from June 3 to September 23, 2008

(three samples at each time�17 time points ¼ 51 samples); samples

collected at 12:00 am every other week from June 4 to September

24, 2008 (2 samples at each time�17 time points ¼ 34 samples);

samples collected from 5:00 pm to 8:00 pm at intervals of 10 min on

August 7, 2008 (19 samples); samples collected from 3:50 am to

6:00 am at intervals of 10 min on August 8, 2008 (two samples at

each time�14 time points ¼ 28 samples). The samples collected in

2009 can be categorized into six groups: 48 h of samples collected at

intervals of 6 h starting at noon on August 10, 2009 (two samples at

each time�9 time points ¼ 18 samples); 24 h of samples collected

at intervals of 2 h starting at 7:00 am on August 24, 2009 (6 samples

at each time�13 time points ¼ 78 samples); two samples collected

at noon on August 31, 2009; two samples collected at 6:00 pm on

August 31, 2009; four samples collected at 11:00 am on October 8,

2009; four samples collected at 11:00 am on October 9, 2009. This

information is also summarized in Supplementary Tables S2 and S3.

We extracted 17 616 genes having log2-transformed signals larger

than 5 in 80% of the samples from 2008.

To validate the proposed model’s applicability to RNA-Seq data,

we generated pseudo RNA-Seq data from the same microarray data.

The pseudo RNA-Seq data of sample j were sampled from the multi-

nomial distribution:

p r
ðiÞ
j

n o
i

� �
¼ Rj!Q

i r
ðiÞ
j

Q
i2

s
ðiÞ
jP

k2s
ðkÞ
j

0
@

1
Ar

ðiÞ
J

: (20)

Here, Ri ¼ 108 is the total number of reads.

4 Results

4.1 Synthetic gene expression data
We used synthetic RNA-Seq data collected in 2008 for parameter

optimization and model selection; we used synthetic RNA-Seq data

collected in 2009 to evaluate the prediction capabilities of the opti-

mized model. Mean squared errors (MSE) and correlation coeffi-

cients between the predicted and synthetic gene expressions are

plotted in Supplementary Figures S1 and S2. These figures indicate

that sampling at intervals of 4 h provides better predictive perform-

ance than sampling at longer intervals. It can be considered that

sampling at 4 h effectively captures diurnal variation of gene ex-

pression patterns. Although the predictive performance of sampling

at 2 h intervals was comparable to that of sampling at 4 h intervals,

longer intervals are preferable in terms of sampling labor. Hence,

only results of sampling at 4 h intervals are shown below.

The selected models for variably expressed genes are summarized

in Supplementary Table S4. This results indicate that the correct mod-

els were selected for 29 out of 31 genes. It is important to note that

absolute values of coefficients do not always correspond to those of

the true models in Supplementary Table S1, because of the normaliza-

tion and nonlinear transformation of inputs. Further, the constant

model, where all coefficients are zero, was correctly selected for 8441

out of 9969 constantly expressed genes. These results indicate that the

variable selection through L1 regularization worked well.

We also confirmed that the optimized parameter values were

consistent with those of the true models for variably expressed

genes. The polar plot of the optimized coefficients of circadian

clocks bðiÞcos þ ibðiÞsin is shown in Supplementary Figure S3. The phases

of circadian clocks uðiÞ ¼ argðbðiÞcos þ ibðiÞsin Þ clearly correspond to

those of the true models. The optimized memory time periods were

sharply distributed around the values, which were very close to the

true values (Supplementary Fig. S4). To confirm whether the opti-

mized parameter values of responses to environmental stimuli were

consistent with those of the true models, we computed the responses

as follows:

~f
ðiÞðTÞ ¼ brmax 0; tanh qðiÞ exp cðiÞf

� �
T � hðiÞ
� �� �� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ð�2cðiÞf Þ þ 1

q
: (21)

Here, T denotes temperature, and qðiÞ indicates the type of response,

that is, qðiÞ ¼ 1 if a plant responds to temperatures over the thresh-

old hðiÞ, otherwise, qðiÞ ¼ �1. The optimized responses of variably

expressed genes are plotted in Supplementary Figure S5. The opti-

mized models of dose-independent genes tend to exhibit step

function-like responses compared to those of dose-dependent genes.

Although some dose-independent genes with positive (negative) co-

efficients of responses respond to temperatures over (under) the

threshold contrary to the true models, they can match the response

functions by adding (subtracting) certain constant values.

4.2 Real gene expression data
We optimized the parameters of the model using the microarray

data of samples collected in 2008 by normal optimization, in which

we performed both the grid search and the nonlinear optimization

for all genes, and cluster-based optimization (section 2.3). We also

applied cluster-based optimization to pseudo RNA-Seq data gener-

ated from the same microarray data. We performed all optimiza-

tions on an Amazon EC2 m3.medium instance (one Intel Xeon E5-

2670 v2 processor, 3:75 GiB memory). The normal optimization

took 81:4 s per gene on average. If we performed the normal opti-

mization using a single m3.medium instance, we could optimize par-

ameters for 17 616 genes within 17 days. The affinity-propagation

method yielded 500 clusters and their exemplars. After normal opti-

mization for these exemplars, we performed nonlinear optimization

for other genes using the Nelder–Mead method. The nonlinear opti-

mization took 22:3 s per gene. We could optimize parameters for

17 616 genes within 5 days by using a single instance. In the
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previous study (Nagano et al., 2012), the parameter optimization

took about 30 days using a high-performance cluster computer.

Even after taking into consideration advances in computer technol-

ogy, the new model improved computational efficiency.

The fitness of the new model was compared to that of the previ-

ous model by coefficients of determination R2, defined as

R2 ¼ 1�
P

j s
ðiÞ
j � ŝ

ðiÞ
j

� �2

P
j s

ðiÞ
j � sðiÞ

� �2
(22)

for microarray data and

R2 ¼ 1�
P

j y
ðiÞ
j � ŷ

ðiÞ
j

� �2

P
j y

ðiÞ
j � yðiÞ

� �2
(23)

for pseudo RNA-Seq data. Here, ŝ
ðiÞ
j and ŷ

ðiÞ
j are the predictions of

models for microarray and pseudo RNA-Seq data, and sðiÞ and yðiÞ

denote the average log2-transformed signals and pseudo log-rpm

values, respectively. Figure 2 shows the R2 values. The R2 values of

three different optimizations were comparable to those of the previ-

ous model.

To assess the new model’s capability to predict gene expression,

we predicted the microarray data or pseudo RNA-Seq data of sam-

ples collected in 2009. We compared gene-wise mean squared errors

across samples. The mean squared errors of the new model with nor-

mal optimization, cluster-based optimization, and cluster-based op-

timization using pseudo RNA-Seq data were smaller than those of

the previous model for 12 125, 12 209 and 9305 out of 17 616

genes, respectively. Hence, the new model yields better predictions

than the previous model, regardless of whether the parameters are

optimized by the normal or the cluster-based methods and whether

the data are measured using a microarray or RNA-Seq. We also cal-

culated gene-wise correlation across samples and sample-wise cor-

relation across genes between prediction and observation. The gene-

wise correlation is illustrated in Figure 3. The distributions of the

correlation coefficients of the new model were comparable to that of

the previous model, regardless of the methods of measurement and

parameter optimization. Further, the sample-wise correlations of all

three tests were higher than 0.9 for most samples and improved in

comparison to those of the previous model (Fig. 4).

Next, we compared the models selected by the normal optimiza-

tion to those obtained in the previous study (Nagano et al., 2012).

Table 1 shows the numbers of genes for which each environmental

factor was selected in the previous study and the normal optimiza-

tion of the new model. Each row and column shows the number of

genes for which the corresponding environmental factor was se-

lected in the previous study and the normal optimization of the new

model, respectively. The bottom row represents the model without

the environmental effects. In the normal optimization, if the weight

for the environmental effects is zero, the gene is counted as "new

none." The bold-faced numbers in the diagonal cells of the table in-

dicate the numbers of genes for which the same environmental fac-

tor was selected in the previous study and the normal optimization

of the new model. The same environmental factor was selected in

both models for 4523 (sum of the first six diagonal cells) out of

7496 genes, for which the selected models contain the response to

any environmental factors in both the previous and new studies.

Meanwhile, in the previous study, the model without the environ-

mental effects was selected for 10 120 genes (sum of the bottom
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Fig. 2. Comparison of coefficients of determination (R2). Distributions of R2 from the previous model are compared to those of the new model with normal opti-

mization (a: "normal"), cluster-based optimization (b: "cluster"), and cluster-based optimization with pseudo RNA-Seq data (c: "RNA-Seq"). (d) Boxplot of R2
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Fig. 3. Comparison of gene-wise correlation across samples. Each panel is illustrated as in Fig. 2. The null model, in which the expression is the constant, was se-

lected for some genes in the previous study. Because correlation coefficients for such genes cannot be defined, the total number of genes contained in the plots

of the previous study (dashed) is smaller than that of the new model (solid)
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row); it was selected by the normal optimization of the new model

for only 5714 genes (sum of the rightmost column). The previous

model tends to select the model without the environmental effects

about twice as frequently as the new model. This difference is prob-

ably due to differences in the model selection, i.e., likelihood ratio

tests and group lasso.

We investigated the associations between gene annotations and

time-of-day characteristics of expressions to assess the consistency

between model parameters and biological knowledge. For each gene

ontology term with which more than 10 genes are annotated, we

compared the distribution of clock phases u of genes annotated with

the term to its background distribution, which is that of genes not

annotated with the term. The left-hand panel in Figure 5 indicates

that the distribution of u of genes annotated with protein serine/

threonine kinase activity (GO:0004674) was significantly different

from its background distribution (P ¼ 2:07� 10�4, Watson–

Wheeler test, Bonferroni correction). The values of u of many genes

annotated with the term were distributed from before to after mid-

night. Because there were only four genes annotated with flavonoid

biosynthetic process (GO:0009813), we did not perform the statis-

tical test. However, the distribution of u of those genes was clearly

concentrated in the early morning (right-hand panel in Fig. 5). These

results are consistent with those of the previous study and a labora-

tory study of Arabidopsis in which the genes implicated in phenyl-

propanoid biosynthesis showed expressional peaks before subjective

dawn (Harmer et al., 2000). Figure 6 shows the distributions of u of

genes annotated with rRNA processing (GO:0006364), small ribo-

somal subunit (GO:0015935), ribosome (GO:0005840), large ribo-

somal subunit (GO:0015934), and aminoacyl-tRNA ligase activity

(GO:0004812). Although the distribution of genes annotated with

rRNA processing (GO:0006364) was not significantly different

from its background distribution (P¼0.0659; Watson–Wheeler test,

Bonferroni correction), the values of u seem to concentrate in the

afternoon. Other distributions (GO:0015935, GO:0005840,

GO:0015934, and GO:0004812) were significantly different from

their background distributions (P ¼ 5:21� 10�3; P ¼ 1:01� 10�46,

P¼ 0.0168, and P ¼ 6:22� 10�6, respectively) and the peaks of the

distributions were shifted from afternoon to evening in the same

order as their biological order in rRNA processing. These results are

also consistent with the previous results, which implies that the en-

trained circadian clock in the field controls the order of the acceler-

ation of translation during the same time period.

We can also use model parameters to form a hypothesis about

biological processes occurring in a field. The associations between

gene annotations and regression coefficients were also investigated.

Before the investigation, we divided the regression coefficients

for each gene by the standard deviation of the observed expression

of the gene to normalize coefficients. The absolute values of the

normalized coefficients of genotype bðiÞn for genes annotated with

photosynthesis (GO:0015979), thylakoid (GO:0009579), and pho-

tosysthetic membrane (GO:0034357) were significantly larger than

the background distributions of those values (P ¼ 3:04� 10�6;

P ¼ 5:93� 10�4, and P ¼ 1:51� 10�3, respectively, Wilcoxon

rank sum test, Bonferroni correction). This result implies that the

difference in genotype affects photosynthesis. Further, the absolute

values of normalized coefficients of the response for genes, for

which temperature was selected as an environmental factor, indi-

cated a significant association with phosphorus metabolic process

(GO:0006793) (P ¼ 6:93� 10�3, Wilcoxon rank sum test,
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Fig. 4. Comparison of sample-wise correlation across genes. Each panel is illustrated as in Figure 2

Table 1. Comparison of selected models

New wind New temperature New humidity New atmosphere New radiation New precipitation New none

Previous wind 56 20 8 3 7 4 113

Previous temperature 36 3762 99 68 92 15 877

Previous humidity 10 49 340 7 27 14 237

Previous atmosphere 6 18 6 38 7 6 78

Previous radiation 26 238 91 49 309 20 647

Previous precipitation 4 8 13 5 10 18 55

Previous none 233 4434 641 343 643 119 3707
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Fig. 5. Distributions of clock phases u of genes annotated with protein serine/

threonine kinase activity (GO:0004674) and flavonoid biosynthetic process

(GO:0009813). Fractions of genes annotated with the term and not annotated

with the term are shown in red and gray, respectively
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Bonferroni correction). This association suggests that phosphorum

metabolism may be affected by fluctuations in temperature.

5 Conclusion

In this paper, we proposed a new gene expression model for organisms

in a field, based on a previous model (Nagano et al., 2012). The new

model vastly reduces the computational time required for parameter

optimization and model selection by unifying various types of gate

functions and response functions, and introducing group lasso (Yuan

and Lin, 2006). By applying the model to synthetically generated

RNA-Seq data, we confirmed that the optimized model was consistent

with the true gene expression dynamics for most genes. Further, to as-

sess the capability of the new model, we applied it to the same ric plant

data that were used in the previous study. The new model offered a

comparable or slightly better prediction for most genes.

The model parameters were consistent with those of the previous

study and the biological knowledge. This consistency indicates the

model’s capability to provide biological insights. In fact, the investi-

gation of model parameters found associations between genotypes

and photosynthesis and between the response to temperature and

phosphorum metabolism, which were not discovered in molecular

biological studies. We can form a hypothesis based on such associ-

ations; it will be validated by further experimental studies.

Whereas the previous model was targeted only for microarray

data, the new model is applicable to RNA-Seq data. The results of

applying the new model to synthetic RNA-Seq data assuming known

true models and pseudo RNA-Seq data generated from real micro-

array data indicated that the model may be useful for the analysis of

RNA-Seq data. However, it should be noted that, in this study, the

applicability was verified with only simulated data rather than real

data. Further verification of performance with real data is required.

In this study, we focused on the time variation of gene expression

and analyzed transcriptome data sampled over time. However, the

proposed model is applicable to data collected by other sampling

strategies, such as multiple treatments at a single time point, only by

preparing meteorological data of sufficient length. Further, although

we applied the model to the transcriptome data of rice plants in this

study, it is applicable to those of other organisms.

The developed package (FIT) offers efficient parameter optimiza-

tion and model selection. While the parameter optimization and

model selection processes for all genes in the previous study required

30 days when a high-performance cluster computer was used, our

new package does not incur such a high computational cost.

Because the model describes the expression of each gene independ-

ently, the parameter optimization and model selection processes can

be easily performed in parallel by dividing genes into several groups

and performing these processes for each group. For example, it is ex-

pected that the parameter optimization and model selection proc-

esses can be completed by 10 Amazon EC2 m3.medium instances in

half a day. This package will accelerate field transcriptomic studies.
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