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Abstract 

Compound identification by mass spectrometry needs reference mass spectra. While there are over 102 million com-
pounds in PubChem, less than 300,000 curated electron ionization (EI) mass spectra are available from NIST or MoNA 
mass spectral databases. Here, we test quantum chemistry methods (QCEIMS) to generate in silico EI mass spectra 
(MS) by combining molecular dynamics (MD) with statistical methods. To test the accuracy of predictions, in silico 
mass spectra of 451 small molecules were generated and compared to experimental spectra from the NIST 17 mass 
spectral library. The compounds covered 43 chemical classes, ranging up to 358 Da. Organic oxygen compounds 
had a lower matching accuracy, while computation time exponentially increased with molecular size. The param-
eter space was probed to increase prediction accuracy including initial temperatures, the number of MD trajectories 
and impact excess energy (IEE). Conformational flexibility was not correlated to the accuracy of predictions. Overall, 
QCEIMS can predict 70 eV electron ionization spectra of chemicals from first principles. Improved methods to calcu-
late potential energy surfaces (PES) are still needed before QCEIMS mass spectra of novel molecules can be generated 
at large scale.
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Introduction
Mass spectrometry is the most important analytical tech-
nique to detect and analyze small molecules. Gas chro-
matography coupled to mass spectrometry (GC/MS) is 
frequently used for such molecules and has been stand-
ardized with electron ionization (EI) at 70 eV more than 
50 years ago [1]. Yet, current mass spectral libraries are 
still insufficient in breadth and scope to identify all chem-
icals detected: there are only 306,622 EI-MS compound 
spectra in the NIST 17 mass spectral database [2], while 
PubChem has recorded 102 million known chemical 
compounds of which 14 million are commercially avail-
able. That means there is a large discrepancy between 
compounds and associated reference mass spectra [3]. 
For example, less than 30% of all detected peaks can be 

identified in GC–MS based metabolomics [4]. To solve 
this problem, the size and complexity of MS libraries 
must be increased. Several approaches have been devel-
oped to compute 70 eV mass spectra, including machine 
learning [5, 6], reaction rule-based methods [7] and a 
method based on physical principles, the recently devel-
oped quantum chemical software Quantum Chemical 
Electron Ionization Mass Spectrometry (QCEIMS) [8].

While empirical and machine learning methods depend 
on experimental mass spectral data for development, 
quantum chemical methods only consider physical laws. 
Thus, in principle, QCEIMS can compute spectra for 
any given compound structure. Yet, approximations and 
parameter estimations are needed to allow predictions in 
a timely manner, reducing the accuracy of QCEIMS pre-
dictions. QCEIMS uses Born–Oppenheimer molecular 
dynamics (MD) to calculate fragment ions within pico-
second reaction times with femtosecond intervals for the 
MD trajectories. A statistical sampling process is used to 
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count the number of observed fragments and to derive 
the peak abundances for each observed ion [9] (Fig. 1).

It is unclear how reliable QCEIMS predictions are 
because the methods have not yet been tested on hun-
dreds of compounds. MS matching accuracy is neither 
easily predictable nor quantifiable, because theoretical 
and experimental EI mass spectra have not been com-
pared on a large scale. To test how structural constraints 
affect prediction accuracies, we utilized the QCEIMS 
method to predict spectra of 451 compounds with differ-
ent molecular flexibility, sizes and chemical classes.

Methods
Molecular structure preparation
We used ChemAxon’s [10] MarvinView and Marvin-
Sketch (v18.23) to manipulate structures. First, small 
molecules were manually chosen from the NIST 17 
mass spectral database. 3-D coordinates were generated 
using the Merck Molecular Force Field (MMFF94) [11] 
with Avogadro (v1.2.0) [12] in Molfiles (*.mol) format. 
We used OpenBabel (v2.3.90) [13] to convert structures 
to the TurboMole format (*.tmol) as required by the 
QCEIMS (v2.16) program. We used the QCEIMS plotms 
program to export JCAMP-DX mass spectra. External 
additional conformers were generated independently by 
conformational search packages, including GMMX from 
Gaussian [14], the conformer generator in ChemAxon’s 
MarvinSketch and by using RDKit [15] (v2019.03.1).

Parallel cluster calculation with QCEIMS
We utilized the QCEIMS program for in silico fragmen-
tation with the following parameters: 70  eV ionization 
energy, 500  K initial temperature and 0.5 femtosecond 
(fs) time steps. For molecular dynamics, we used the 
semiempirical OM2 method [16] (Quantum-Chemi-
cal-Orthogonalization-Corrected Method) using the 
MNDO99 (v2013) [17] software. The impact excess 
energy (IEE) satisfied the Poisson type distribution. The 
Orca software (3.0.0) [18] was employed to calculate the 
vertical SCF ionization potential at the PBE0 [19] – D3 
[20] /SV(p) [21] level.

We conducted QCEIMS calculations on cluster nodes 
equipped with two Intel Xeon E5-2699Av4 CPUs, 44 
cores and 88 threads in total, operated at 2.40 GHz. Each 
node was equipped with 128 GByte RAM and a 240 
GByte Intel DCS3500 datacenter grade SSD. In order to 
conduct and monitor the calculation process, we devel-
oped a SLURM job script to submit batch jobs. While 
the initial ground state molecular dynamics simulation 
is only single-threaded, all subsequent calculations were 
massively parallelized. Because QCEIMS executes multi-
ple trajectory calculations at once, we oversubscribed the 
parallel number of CPU threads to be used to 66 (instead 
of 44) during QCEIMS production runs. Such a CPU 
oversubscription is possible, because molecular dynam-
ics (OM2 with MNDO99) and density functional theory 
(DFT) calculations are executed in a heterogeneous way 
by different programs [8]. The speed advantage of using 
more threads than CPU cores available was confirmed 
with benchmarks.

Similarity score evaluation
QCEIMS generated several outputs and logging files, 
including the in silico mass spectrum in JCAMP 
exchange format (*.jdx), structures of fragments (*.xyz) 
and molecular dynamics trajectories (*.xyz). We then 
used experimental mass spectra from the NIST17 data-
base as references to compare with our computational 
results. In GC–MS, mass spectral similarity scores (0 
to 1000) describe how well experimental spectra match 
recorded library spectra [22, 23]. Here we used the 
same principle for QCEIMS-generated spectra as input. 
We used two different kinds of similarity scores (see 
Eqs. 1–3):
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Fig. 1 Workflow of QCEIMS. (1) generating conformers by 
equilibrium molecular dynamics; (2) ionizing each neutral starting 
structure by assigning impact excess energy (IEE) to kinetic energy; 
(3) generating EI fragments by parallel molecular dynamics; (4) 
assigning charges on each fragment using ionization potential (IP) 
energies and peak intensity counts, then assembling fragments to 
obtain summary spectra
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We wrote a Python (v3.6) script to read mass spectra 
and analyze the similarity by (a) cosine similarity (Cos, 
Eq.  1) (b) weighted dot-product similarity (Dot, Eq.  2); 
with the test data, we set the parameters as m = 0.6 and 
n = 3. Our method calculates very similar values as imple-
mented in the NIST MS Search program (see Additional 
file 1). To validate some of our simulations, we also used 
MassFrontier 7.0 [7] to generate fragmentation pathways 
and compared them with the mechanisms found from 
our trajectories. MassFrontier can predict fragmentation 
pathways from general fragmentation rules and mecha-
nisms recorded in its literature database.

Flexibility analysis
To describe molecular flexibility, we used two molecu-
lar descriptors: the number of rotatable bonds (RBN) 
[25] and Kier flexibility index (PHI) [26]. The RBN is the 
number of bonds for which rotation around themselves is 
expected to be associated with low (< 5 kcal/mol) barri-
ers, excluding ring bonds and amide bonds. The Kier flex-
ibility index is a structure-based property calculated from 
atom numbers, rings, branches and covalent radii. With 
fewer rotatable bonds and lower Kier flexibility index, the 
molecule has less conformational flexibility. The software 
AlvaDesc [27] (v1.0.8) is utilized to compute these prop-
erties. We used both Microsoft EXCEL for Mac and Mat-
plotlib (v3.1.1) to analyze and visualize the data.

Results
Comparison of in silico and experimental spectra 
of example molecules
Following the general workflow, we first tested the 
QCEIMS software on two trajectories for a simple 

(3)W =
[

Peak intensity]m
[

Mass]n molecule, 3-cyclobutene-1,2-dione (Fig. 2). The observed 
fragment ions yielded an excellent weighted dot-product 
similarity score of 972 and a cosine similarity of 839. 
When analyzing the trajectories to show the fragmenta-
tion pathways, we found clear evidence of the mecha-
nisms by which the three main product ions observed 
in the experimental mass spectrum were produced (m/z 
82, 54, 26), i.e., molecular ion, a neutral loss of carbon 
monoxide [M-CO]˙+ and loss of another carbon mon-
oxide to yield [M-2CO]˙+ (Fig.  2). Trajectory 2 lasted 
only 402  fs until the maximum of three fragments per 
trajectory was achieved (set in the QCEIMS source 
code), while trajectory 1 lasted 656 fs, because the initial 
two fragments reached a stable state and did not frag-
ment further for a long time. The QCEIMS predictions 
also agreed with mechanisms predicted by the heuristic 
rule-based commercial MassFrontier software, showing 
first an α-cleavage followed by a CO molecule loss. This 
simple example shows that QCEIMS can generate cor-
rect molecular fragments and predict reasonable reaction 
mechanisms.

Here we show six molecules (Fig.  3a–f) as examples 
for QCEIMS predicted spectra versus experimental 
library spectra (Table  1). These examples demonstrate 
that QCEIMS yields different prediction accuracies. The 
examples also show different degrees of molecular flex-
ibility. For each molecule, spectra showed specific char-
acteristics that are here explained in brief.

2,4‑dimethyl‑oxetane (Fig. 3a)
With a weighted dot-product score of 417, this spectrum 
represents a low quality in silico prediction. We need to 
clarify that, for simplicity, we only calculated the spec-
trum of cis-2,4-dimethyl-oxetane, while its reference 
spectrum in NIST 17 mass spectral library contains no 
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Fig. 2 Example for correctly predicting experimental EI mass spectra through molecular dynamics. a Fragmentation trajectories of 
3-cyclobutene-1,2-dione to generating EI fragment m/z 54 (upper panel) and m/z 26 (lower panel). b Quantum chemistry molecular dynamics in 
silico spectrum (upper panel) versus experimental mass spectrum (lower panel)
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stereochemistry information because neither EI-MS 
nor chromatography technology can easily differenti-
ate diastereomers. The experimental spectrum showed 
a low-intensity [M]˙+ at m/z 86 and initial neutral losses 
of a methane and water molecule (m/z 71 and m/z 68). 
QCEIMS did not predict these initial losses. Indeed, the 
high number of experimental fragment ions suggest that 
this molecule splits readily along multiple reaction path-
ways, most likely through breaking the molecular ether-
bonds that subsequently break into smaller fragments. 

The main fragment ions at m/z 42 and m/z 44 were cor-
rectly predicted by QCEIMS as  C3H6˙+ and  C2H4O˙+ but 
not by the rule-based software MassFrontier. This case 
suggests that quantum mechanics-based simulations can 
produce novel reaction pathways that are absent from 
rule-base software predictions.

2‑Nonene (Fig. 3b)
The in silico spectrum of 2-nonene was highly similar to 
the experimental spectrum with dot-product match of 

Fig. 3 Examples for comparing experimental 70 eV EI mass spectra (lower panels) to QCEIMS in silico mass spectra (upper panels) for six small 
molecules
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789. The main fragment ion at m/z 55 and the [M]˙+ at 
m/z 126 were very well reproduced. However, ion abun-
dances of [M-1]+, [M-2]˙+, [M-3] + and [M-4]˙+ were 
overestimated. In QCEIMS, these ions resulted from loss 
of several atomic or molecular hydrogens, suggesting that 
these bonds were fragmented more easily under semiem-
pirical methods [23] than under experimental conditions.

Aromatic systems (Fig. 3c and d)
Both 2-propynyloxy benzene and furan were aromatic 
oxygen-containing molecules with low PHI values (1.71 
and 0.55, respectively). Although the presence of most 
fragment ions was correctly predicted by QCEIMS for 
both molecules, dot-product similarity scores were 
radically different with a dot-product of 379 for 2-pro-
pynyloxy benzene and a dot-product similarity of 988 
for furan). For 2-propynyloxy benzene, this low match-
ing score was caused by the absence of an experimental 
[M]˙+ at m/z 132 that was largely overestimated in the 
in silico spectrum. The fragmentation base ion (at 100% 
intensity) at m/z 93 represents the stable phenol ion and 
a neutral loss of  C3H3˙ while the experimentally observed 
fragment at m/z 95 was missed in the QCEIMS predic-
tion. At the same time, the presence of the  C3H3

+ prod-
uct ion at m/z 39 (and a neutral loss of a phenolic radical) 
was overestimated by the QCEIMS method. This result 
suggests that the QCEIMS method needs further opti-
mization in predicting the correct assignment of cation 
stability and assignment of the molecule with the lowest 
ionization energy in the fragmentation process (Steven-
son’s rule [28]).

1,8‑nonadiene (Fig. 3e)
For this molecule, a great disagreement between the 
cosine similarity score of 713 and the weighted dot-
product of 163 was observed. The weighted dot-prod-
uct emphasizes high m/z ions that are penalized if 
missing in spectral matching. Again, QCEIMS overesti-
mated the abundance of the molecular ion [M]˙+ and of 

several atomic or molecular hydrogens from it. In addi-
tion, QCEIMS underestimated a neutral methyl radical 
loss (to m/z 109) and a neutral loss of ethylene (to m/z 
96). To capture all potential fragmentations in QCEIMS 
such as the missed ethylene loss, more accurate PES 
estimates are needed.

Adamantane (Fig. 3f)
Adamantane is a well-known inflexible molecule. Our 
QCIEMS simulations correctly predicted the structure 
of the m/z 79 product ion as protonated benzene, proved 
by an independent publication of an infrared multipho-
ton dissociation spectrum [29] and DFT computations 
[30]. In comparison, the rule-based MassFrontier gener-
ated less reasonable fragment molecules that included 
cyclopropyl-moieties. The QCEIMS results showed that 
the m/z 93 product ion is likely associated with both 
ortho- and para-protonated toluene, in accordance with 
infrared multiphoton dissociation spectrum results [29]. 
These instances highlight the ability of QCEIMS to pre-
dict non-obvious mechanisms, such as rearrangements 
from  sp3 hybrid carbons to aromatic system.

Probing the QCEIMS parameter space
A number of parameters can be chosen in the QCEIMS 
software, including the number of trajectories, impact 
excess energy per atom and initial temperatures. Other 
parameters such as the type of energy distribution and 
maximum MD time were excluded because they were 
already optimized during the development of QCEIMS 
[8]. We used OM2 because other semiempirical meth-
ods had been shown previously to perform worse [8]. For 
each molecule we chose one conformer and performed 
QCEIMS simulations with different parameter settings. 
By repeating QCEIMS simulations 50 times, we con-
firmed that identical mass spectra were obtained when 
using the same conformer under the same parameter set-
tings. We changed parameter settings for 2,4-dimethyl-
oxetane, 2-nonene and adamantane.

Table 1 Mass spectral similarities of QCEIMS simulations against experimental spectra for select compounds

a First 14-characters of full InChIKey
b M.W. is the molecular weight in Daltons (Da); RBN (rotatable bond number) and PHI (Kier flexibility index) are rigidity descriptors and Dot and Cos are mass spectral 
similarity scores

Name InChIKey (short)a M.W.b RBN PHI Dot Cos

2,4-Dimethyl-oxetane KPPWZEMUMPFHEX 86.07 2 2.64 414 729

2-Nonene IICQZTQZQSBHBY 126.27 5 7.52 789 762

2-Propynyloxy benzene AIQRJSXKXVZCJO 132.06 0 1.17 379 426

Furan YLQBMQCUIZJEEH 68.08 0 0.55 988 806

1,8-Nonadiene VJHGSLHHMIELQD 124.25 6 7.05 163 713

Adamantane ORILYTVJVMAKLC 136.13 0 1.18 883 678



Page 6 of 11Wang et al. J Cheminform           (2020) 12:63 

(1) Number of trajectories (ntraj)

In molecular dynamics, different reaction trajectories 
must be explored to cover possible routes of independent 
fragmentations across the energy surface. Each trajectory 
requires computational time, and therefore, the number 
of trajectories should be as low as possible. However, it 
is not clear a priori how many trajectories sufficiently 
cover the chemical reaction space and allow convergence 
to a consensus spectrum. By default, the QCEIMS pro-
gram automatically calculates the number of trajectories 
by multiplying the number of atoms by 25. We explored 
this default value ranging from 8 to 1000 trajectories per 
atom for the different molecules, yielding up to 15,000 
trajectories in total (Fig. 4a). For each of the three mole-
cules, the difference between the best and the worst simi-
larity score differed only by 10% or less. None of the three 
molecules had improved similarity scores with higher 
number of trajectories. Indeed, it appeared that increas-
ing the number of trajectories might lead to slightly lower 
dot-product similarity scores as observed for 2-nonene 
and adamantane, possibly due to a higher contribution 
of rare fragmentation reactions that lead to low abun-
dant fragment ions that negatively impact similarity to 
experimental spectra. We concluded that the default 
value of 25 trajectories per atom number in a molecule 
was reasonable.

(2) Impact excess energy per atom (ieeatm)

Next we tested the impact excess energy (IEE) that is 
introduced by the colliding electron in electron ioniza-
tion as vibrational energy into the molecules. The default 
value (ieeatm) in QCEIMS software is set at 0.6  eV per 
atom on the basis of previous OM2 tests [31]. At the 
beginning of each molecular dynamics simulation the 
molecule is heated by increasing the atom velocities 
until the impact excess energy is converted to kinetic 

energy that leads to bond fragmentation. In other words, 
the collision energy is used to vibrationally excite and 
break the molecule. Higher impact excess energy will 
lead to a higher kinetic energy, causing the molecule to 
fragment more easily and to decrease the intensity of 
molecular ions. We observed that QCEIMS-simulated 
mass spectra contained fewer fragment ions than their 
experimental references. For example, the experimental 
spectrum of 2,4-dimethyl-oxetane (Fig. 3a) has 23 prod-
uct ions, while our QCEIMS simulation produced only 
four fragment ions plus the molecular ion peak m/z 86. 
We probed different internal excess energies from 0.2 to 
0.8 eV (Fig. 4b). With increasing IEE, more fragmentation 
occurs, increasing the intensity of low mass fragments, 
but we did not see an increase in the total number of 
fragments produced. Because the weighted dot-product 
score gives more weight to the more selective masses 
found at high m/z ranges, we found that higher IEE val-
ues led to decreasing similarity scores. In short, changing 
ieeatm did not provide a route to improve QCEIMS spec-
tra and we kept the default value of 0.6 eV for subsequent 
tests.

(3) Initial temperature (tinit)

Last, we investigated the effect of temperature set-
tings ranging from initial temperatures (tinit) of 300 to 
1000  K, while keeping all other parameters at default 
values (Fig. 4c). For 2-nonene and adamantane we found 
that the initial temperatures led to decreasing similarity 
scores, consistent with the concept that molecules under 
higher temperature will have more kinetic energy and 
tend to fragment more easily. For QCEIMS simulations, 
2,4-dimethyl-oxetane generated the molecular ion m/z 86 
only at low tinit of 300 K, leading to an artificially higher 
similarity score. As the other two tested molecules also 
showed their best spectrum similarities at tinit 300 K, we 
chose this parameter value for a final test that utilized a 
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Fig. 4 Impact of QCEIMS parameter settings on MS similarity scores comparing in silico spectra to experimental spectra. Left panel: altering the 
number of trajectories (ntraj). Mid panel: altering the external energy per atom (ieeatm). Right panel: altering the initial temperature (tinit)
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combination of each best setting of ieeatm, ntraj and tinit 
for each molecule. Interestingly, these simulations did 
not lead to significant improvements or even to overall 
decreased similarity scores (see Additional file 1). There-
fore, we kept the overall default parameter values for sub-
sequent studies.

Different starting conformers as input for QCEIMS
Local minima on the potential energy surface that are 
related by rotations around single bonds are called 
conformational isomers, or conformers. In a mass 
spectrometer, the conformations of a large cohort of indi-
vidual chemical molecules are distributed in accord with 
a Boltzmann distribution at a given ion source tempera-
ture. All conformers contribute to the final mass spec-
trum, to varying degrees related to their relative energies. 
Ideally, QCEIMS should cover the overall ensemble 
of conformers. To investigate the impact of the input 

conformers on the overall QCEIMS results, we selected 
the highly flexible 2-nonene (PHI = 7.51, RBN = 5) and 
the non-flexible adamantane (PHI = 1.17, RBN = 0) 
structures. We employed the GMMX software with the 
Merck Molecular Force Field (MMFF94) to generate 
starting conformers for individual QCEIMS simulations. 
For 99 simulations with different starting conformers of 
2-nonene, the maximum difference between the lowest-
energy and the highest-energy conformer was 2.83 kcal/
mol (Fig. 5a). For these conformers, dot-product similar-
ity scores ranged from 719 to 824, with a median of 781 
and a standard deviation of 24 (Fig. 5b). Due to the rigid 
skeleton and inflexibility of adamantane, GMMX pro-
vided only one conformer. Therefore, we used the open 
source molecular dynamics package CP2K [32] to gener-
ate 50 adamantane structures with twisted or stretched 
bonds that yielded an overall energy range of 5.39 kcal/
mol (Fig. 5c). Dot-product similarity scores ranged from 

Fig. 5 Impact of using different starting conformational isomers on MS similarity scores comparing in silico spectra to experimental spectra. 
Each conformer has a specific single-point electronic energy. Upper panels: 2-nonene conformers yielding dot-product MS similarity scores 
with histogram of the simulation results. Lower panels: adamantane conformers yielding dot-product MS similarity scores with histogram of the 
simulation results
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849 to 948, with a median similarity of 923 and a stand-
ard deviation of 31 (Fig. 5d). The examples of these very 
different molecules showed that QCEIMS similarity 
scores were independent from input conformer ener-
gies (Fig. 5a, c). Yet, these examples also showed that for 
both molecules, the QCEIMS fragmentation of specific 
conformers can lead to quite different dot-product simi-
larities compared to experimental mass spectra, ranging 
over 100 similarity score units. In addition, we found that 
dot-product similarities were not normally distributed 
(Fig. 5b, d). Our results showed that conformational and 
other small structural changes may affect QCEIMS simu-
lations. Although adamantane has only a single confor-
mational energy minimum, even slight bond stretches 
or twists led to quite different mass spectral similarity 
scores, presumably by biasing molecular dynamics tra-
jectories toward different regions of the potential energy 
surface. While the QCEIMS software automatically 
chooses energy-optimized conformers, we propose that a 
range of different conformers must be calculated to get a 
good estimate of average mass spectra across the confor-
mational space.

Large scale QCEIMS prediction of small molecule 
fragmentations
In order to be useful for experimental mass spectrome-
try, in silico predictions must not only correctly explain 
fragmentation and rearrangement reactions for specific 
molecules, but must also be scalable to generate spectra 
for hundreds, if not thousands of molecules. Here, we 
demonstrate the scalability of QCEIMS predictions for 
small molecules to systematically evaluate parameters 
and overall accuracies.

The OM2 method only supports carbon, hydrogen, 
nitrogen, oxygen and fluorine. We therefore chose 451 
low molecular weight compounds containing only car-
bon, hydrogen, nitrogen and oxygen (CHNO). Molecular 
masses ranged from 26 to 368 Da with an average mass 
of 129  Da (see Additional file  1). For OM2, computa-
tional effort scales as O(N2) ~ O(N3) [33], with N as num-
ber of atoms per molecule [33]. The number of single 
point energy calculations can be estimated to be linearly 
related to the number of trajectories, and thus linear to 
the number of atoms. On our computer system with 66 
CPU threads, we achieved an average calculation time of 
1.55 h per molecule (Fig. 6a). Yet, as expected, calculation 
times exponentially increased with the number of atoms 
per molecule. For example, with more than 50 atoms, 
calculation times exceeded 14  h on the system we had 
employed (Fig. 6a).

Overall, the QCEIMS calculations across all 451 mol-
ecules yielded moderately accurate weighted-dot prod-
uct similarity scores with an average of 608 (Fig. 6b) [24]. 
In GC–MS, similarity scores below 500 are usually not 
considered for annotation of compounds. While similar-
ity scores above 700 may represent true matches, only 
scores above 850 are regularly used for direct compound 
identifications in GC–MS experiments [24]. 47% of all 
molecules showed good dot-product match factors > 700 
and 20% of the molecules had excellent scores at > 850 
similarity. In comparison, lower cosine similarity scores 
were achieved with an average mass spectral similarity of 
557 and a much higher proportion of unacceptably low 
scoring spectra at similarities < 500 (Fig.  6b). The regu-
lar cosine similarity score does not use weight functions 
for specific m/z values, unlike the weighted dot product 

Fig. 6 a Processing time of QCEIMS simulations of all 451 molecules versus the number of atoms per molecule. Red trend line: fitted exponential 
functions. b Histogram of weighted dot-product MS similarity scores against experimental spectra for all 451 molecules versus simple cosine 
similarity matches
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score introduced in 1994 [22] that gives more weight to 
more specific high m/z product ions in MS fragmenta-
tion compared to less specific low m/z fragmentations 
based on large GC–MS library evaluations. Here, we see 
a similar trend for QCEIMS spectra.

Molecular descriptors and prediction accuracy
Next we tested the impact of the chemical structures 
themselves. We used ClassyFire [34] to classify all 451 
chemicals into superclasses (supplement file). We found 
QCEIMS predictions were significantly worse when com-
paring the organic oxygen superclass of 75 compounds 
against other superclasses with more than 50 members. 
Organic oxygen compounds had an average weighted 
dot-product of 520 whereas the 128 organoheterocyclic 
compounds achieved significantly better similarities of 
648 at p < 0.0015 (supplement file). The 100 organic nitro-
gen compounds yielded an average dot-product similar-
ity of 657 at p < 0.001 and the 62 hydrocarbons gave an 
average of dot-product similarity of 692 at p < 0.0001 
(supplement file). In conclusion, the QCEIMS method 
appears to perform worse for oxygen-containing organic 
compounds than for other major classes. For super-
classes with fewer than 50 compounds, statistical tests 
were deemed to be not robust enough to allow such 
conclusions.

We also tested if rigid molecules resulted in better pre-
diction accuracy than more flexible ones. Our hypothesis 
was based on an initial observation that for planar aro-
matic compounds such as pyridine or aniline, QCEIMS 
created better quality spectra than for molecules with 
long chain flexible structures. Our compound data set 
contained 295 molecules with low flexibility at Kier 

flexibility index (PHI) < 5 and 161 molecules with high 
flexibility of PHI > 6. Dot product scores varied signifi-
cantly across both high-flexibility and low-flexibility 
molecules (Fig.  7a). We found no relationship between 
flexibility and prediction accuracy. Similarly, we tested 
rotatable bond number (RBN) as a potential cause for 
prediction errors (Fig.  7b). The median scores for mol-
ecules with different RBN values varied between 200 and 
800 and did not depend on increasing RBN. This finding 
suggests that prediction accuracy is independent of the 
number of rotatable bonds. In conclusion, we could not 
find a correlation between flexibility and prediction accu-
racy at the level of simulation employed.

Conclusions
We here show that quantum chemistry calculations can 
be effectively used to correctly predict electron ioniza-
tion fragmentation mass spectra as used in GC/MS anal-
yses worldwide. Using QCEIMS software, mechanisms 
of fragmentation confirmed classic fragmentation rules. 
However, we found large differences in accuracy of pre-
dictions for different molecules. Changing parameters 
in QCEIMS was not a viable method to improve simula-
tion results. Likely, capturing the potential energy surface 
accurately or even conducting the excited-state molecu-
lar dynamics [35, 36] can be the key to further improving 
EI-MS prediction. For the first time, QCEIMS simulation 
was tested on hundreds of small organic molecules with 
limited computational resources within 1  month. We 
found that the superclass of organooxygen compounds 
performed much worse than organoheterocyclic com-
pounds, hydrocarbons or organic nitrogen compounds. 
This observation may lead to future improvements in 

Fig. 7 Impact of molecular flexibilities on MS similarity scores comparing in silico spectra to experimental spectra. Influence of molecular flexibility. 
a Scatter point plot of dot-product scores versus Kier flexibility index PHI; b boxplot of dot-product scores versus rotational bond number RBN
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QCEIMS software as well as further inclusion of other 
heteroatoms in QCEIMS simulations. In comparison, 
QCEIMS of inorganic molecules [37] were regarded as 
less important for GC–MS applications.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1332 1-020-00470 -3.
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