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The comprehensive analyses of the SARS-CoV-2 genomes could
provide a global picture of how the virus was transmitted among
different populations, which may help predict the oncoming trends
of the pandemic. The main approach for the molecular tracing of
viral transmission is to thoroughly compare the genomes of differ-
ent viral strains, leading to a series of phylogenetic trees or evolu-
tion networks that can also help to interpret the genomic
mutations along with transmission [1-3].

Previously, Lu and colleagues [4] used linkage disequilibrium
and haplotype map to analyze genomes of 103 SARS-CoV-2 sam-
ples, and classified the viral genomes into type L and S. Similarly,
a phylogenetic network was also constructed by Forster et al. using
160 viral genomes, which classified the viruses into three types (A/
B/C) based on the nucleotide variants at five genomic loci [5]. How-
ever, construction and interpretation of the viral genome evolution
network had become increasingly complicated with the rapid
accumulation of available viral genomes, and therefore to artifi-
cially genotype and cluster the viruses from the network has
become almost impossible. To meet the challenge of constructing
a single high-quality tree from a huge number of sequences, Roch-
man et al. [6] developed a compromised method using a “divide
and conquer” strategy to analyze over 300,000 SARS-CoV-2 gen-
omes and reconstruct a global phylogeny. In addition, since the
construction of the evolution network involves extensive calcula-
tions of large matrices, single-threaded analysis tools are unable
to complete the analysis within a reasonable time limit in order
to continuously track the dynamic changes of viral mutational
patterns.

Facing these challenges, we developed a new software pipeline,
the viral genome evolutionary analysis system (VENAS), which
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enables integrated analyses of genomic variations within a newly
constructed evolution network. We also adopted a highly paral-
leled multi-processing strategy to maximize the computation effi-
ciency in calculating the distance matrices. The VENAS further
applied a community detection method to transform the evolution
network into a two-dimensional isomorphic topological space, and
used a network disassortativity trimming algorithm to extract the
backbone network of the topological space. The development of
VENAS enables researchers to rapidly construct a large-scale evolu-
tion network at a reduced time and computational cost, enabling
interactive tracing of the viral evolution and core mutations among
distinct strains. VENAS is cross-platform open-source software
available at https://github.com/qgianjiagiang/VENAS. It can be
easily installed using source code or pre-build binary.

To trace viral mutations along transmission routes using daily
updated SARS-CoV-2 genomes, we seek to develop reliable compu-
tational algorithms to build an integrative genomic analysis sys-
tem. The resulting system, VENAS, was constructed through a
series of steps (Fig. 1). Briefly, we first collected all available
SARS-CoV-2 genome datasets with stringent quality-control
(Fig. 1a). Each genome was assigned with a series of binary labels
(PIS, v) that identify the parsimonious information sites (PISs) and
their corresponding allele frequencies, where a unique set of PISs
present a distinct genome type. The PISs with frequencies above
a user-defined threshold (i.e., effective PISs, or ePIS) was used to
calculate the Hamming distance between distinct genome types
[7] (Fig. 1b and Supplementary methods online).

We further sorted the distances between different genome
types and sequentially connected all types using the neighbor-join-
ing method, resulting in a fully connected network with the short-
est sum of distance (Fig. 1c, the nodes present genome types and
the edges present adjusted Hamming distances). The pairs of gen-
ome types with the same distance were adjusted by the minor
allele frequencies (MAFs) of differential ePISs, where the pairs with
lower MAFs (i.e., higher conservation) were given a higher rank

2095-9273/© 2022 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
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Fig. 1. The construction process and the latest version of the VENAS evolution network. (a) Collecting SARS-CoV-2 genomes from the GISAID database. (b) Generating a
distance matrix between different genome types based on the Hamming distance, sorting, and adjusting the distances with MAFs. (c) Constructing the viral evolution network
for genomic variation analysis. (d) Topologically clustering the network into subspaces using community detection. (e) Analyzing the evolution network to extract the major
transmission paths that consist of core genome types with associated core mutations; the network is clustered into 16 topological clades, with self-increasing ordinal
numbered clade names, and labeled links with differential variations between clades. (f) Current VENAS evolution network using fully sequenced SARS-CoV-2 genomes by
June 2021. The backbone genome types were labeled by Pangolin lineage. The clade A was first detected during the early pandemic, and four variants of concern (VOCs) were
highlighted in blue (Alpha), yellow (Beta), red (Gamma), and orange (Delta).
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(see Supplementary methods online). Importantly, this evolution
network was constructed with multiple linkages, whereas the con-
ventional phylogenetic trees have bifurcate limitations. Therefore,
unlike the phylogenetic tree, we provide additional spatial freedom
to the network that is more consistent with the simultaneous
mutation accumulation during the viral transmission. Since the
number of genomic mutations that occurred during a single human
to human transmission is relatively small, this method effectively
combined viral genomic alterations with transmission events to
reliably construct a network of viral evolution.

We next used a disjoint community detection method to cluster
the evolution network into topologically linked subdomains, which
represent different evolution clades containing many closely-con-
nected genome types (Fig. 1d). Such segmentation enabled us to
subjectively identify the topological clades with “tight” intraclade
connectivity and the “sparse” interclade connectivity, which reflect
the relationship of different genome types among viral communi-
ties formed during natural transmission. Finally, we used the net-
work disassortativity trimming algorithm to extract the core nodes
from the evolution network, and further calculated the shortest
paths between the core nodes using the Dijkstra algorithm [8],
generating a “backbone network” that recapitulates the main
mutational paths (Fig. 1e and Supplementary methods online).
Many SARS-CoV-2 genome samples also contain associated epi-
demiological information, including the sampling time, location
and protocol, sequencing platform and organization, patient’s tra-
vel and exposure history, etc., which was further integrated into
the VENAS network (by labeling the relevant nodes) to directly
infer the viral evolution patterns at critical points of transmission.

The computation of MAF-adjusted Hamming distance matrices
is the rate-limiting step during the construction of the viral evolu-
tion network of VENAS. To improve the computing efficiency, we
took advantage of the multi-core and multi-threaded features in
high-performance computers and developed a highly parallel net-
work construction pipeline (Supplementary results online). Com-
pared with previous tools (POPART [9] and Pegas [10]), VENAS
achieved a dramatic improvement of computational efficiency
and completed the analysis of >10,000 genomes in ~10 min, mak-
ing it possible to handle the future accumulation of big data that is
beyond the capacity of existing analysis tools (Table S1 online). The
resulting VENAS network can be visualized with a general relation-
ship graph or force-directed graph tools, such as the web-based
Apache Echarts (https://echarts.apache.org/), d3.js (https://d3js.
org/), or the application-based Gephi.

Evolution networks have an advantage over phylogenetic trees
due to additional spatial freedom of connectivity. We first exam-
ined if the VENAS can recapitulate the SARS-CoV-2 haplotype net-
work in an early study using a small number of genomes before
March 2020 [4], and confirmed that the community detection
method in VENAS can reliably separate the L/S type into two clades
with the same core mutations reported earlier (Fig. S1 online). We
next applied VENAS to analyze the early stages of global transmis-
sion using a dataset containing all 1050 high-quality entries
released by 25 March 2020. VENAS produced a “backbone net-
work” with 16 major viral clades in the topological space that
reflect the possible transmission paths (Fig. 1e). Each pair of viral
clades was separated by core variants that also were identified
by comparing PIS sites in these clades (Table S2 online). For exam-
ple, the core variants C8782T/T28144C recognized as the PIS
between clades 1 and 2 (i.e., separating the Clades 2, 3, and 4 from
the other clades), which was also reported to distinguish the “type
L/S” [4,5]; The variants G11083T between Clades 1 and 5 were first
identified from the patients in Diamond Princess Cruise and were
also reported by Sekizuka et al. [11]. Interestingly, Clades 1 and
12 were connected by a set of tightly-linked variants (C241T/
C3037T/A23403G), which can cause single amino acid substitution
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in S protein. This mutational event coincided with a single patient
who traveled from Shanghai to Bavaria for a business meeting of
Webasto [12].

Comparing the VENAS network from different stages of the
COVID-19 pandemic, we can trace the occurrence and develop-
ment process of the variants (Fig. S3 online). The first clade
detected in China (Clade 1 or Pango B) showed a much smaller
growth in genome type diversity compared to Clade 13 (also
known as Pango B.1) or Clade 14 (also known as Pango B.1.1),
probably due to the strict confinement of the virus. In contrast,
the clades mainly detected in Europe (Clades 12 and 13) mutated
into additional genome variants, resulting in many novel types
that were clustered into new clades and sub-branches (Clades
14-16), and were widespread in Europe and North/South America.
Meanwhile, some of the clades (Clades 5-9, mainly detected on
the Princess Diamond cruise) showed a linear sequential branch-
ing pattern with a small number of variations detected, likely
reflecting some transmission patterns of isolated and localized
space. In addition, several variations (e.g., G11083T, C21757T)
were detected in multiple viral genome types from different
clades, reflecting recurrent mutations independently evolved from
multiple places without direct transmission. These genomic
regions may be the mutational “hot-spots” that should be closely
monitored in the future.

By October 2021, more than 4 million SARS-CoV-2 genomes
have been sequenced worldwide, with several variants of concern
(VOC) and variants of interest (VOI) showing higher transmission
ability than the original type. We applied VENAS to analyze the
up-to-date data, and found that VENAS can efficiently generate a
comprehensive evolution network with precise annotation of the
evolutional relationship between different genome types (Fig. 1f).
We also mapped the 4 VOCs and 2 VOIs on the viral evolution net-
work with PANGO nomenclature [13] to trace the mutational
routes. The early type A virus named by pangolin first evolved into
the type B virus through the S84L variation on ORF8 (first observed
around 5 January 2020); then, the type B.1 virus evolved through a
series of variations represented by D614G on the S protein (first
observed around 28 January 2020). Subsequently, the virus began
to mutate in different directions and branched stepwise into many
variants, including 4 VOCs and 2 VOIs. The network suggests that
the VOCs and VOIs arise independently during transmission from
weaker strains, which is in line with the general understanding.

The new network showed that the Delta variant is replacing
Alpha as the most dominant viral type globally, with a very large
viral diversity and new variants being generated (Fig. 1f dark
green). Topologically, the VENAS network directly showed the
complex evolutionary relationship between various branches/-
sub-branches, such as the multilayer relationships between Beta
(B.1.351), Alpha (B.1.1.7), and Lambda (C.37 or B.1.1.1.37). The
VENAS network can also accurately classify the variants that can-
not be identified by existing virus nomenclature software. For
example, the variants on the edge of Delta clade were classified
as B.1.617.2 but not AY.* by Pangolin software [14]. Moreover,
the evolutionary relationships from VENAS have important clinical
implications, as the treatment option of new variants can be devel-
oped based on the studies from its neighbor or nearby branches.

Previously, the common method to study viral genome varia-
tions was through the construction of phylogenetic trees, often
using a neighbor-joining algorithm [15]. We made an important
improvement in VENAS by changing the binary structure into a
multi-dimensional force-directed graph and adjusting the order
of ambiguous connections with MAFs. The VENAS effectively clus-
tered the viral genome types into clades by the topological layout
of the graph, which reflected the major evolutionary patterns
between virus genomes within each clade and provided a basic
data model for the study of virus transmission trends.
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We filtered PISs with a threshold of variant frequency to obtain
ePISs, which increased the confidence level and enabled a direct
comparison of MAFs even with sequencing errors or incomplete
sequencing. VENAS combined a biological measurement of varia-
tion frequency (MAF) with the Hamming distance by assigning
the MAF as a weight of Hamming distance, and thus the differential
genome types with the maximum conservation were firstly con-
nected to enhance the robustness of the network.

It should be noted that the VENAS network is a non-directional
acyclic graph, and thus people should combine the epidemiological
information when inferring transmission path from the network.
For example, the sampling times in the VENAS network may reveal
the direction of virus transmission, the locations of the earliest
sample may help to trace the possible origin of the local outbreak,
and the sampling organization or sequencing method can help us
to exclude potential artifacts and sequence errors. Another caveat
during network interpretation is that the “variant reversion” could
be mistakenly called in some areas because the neighbor-joining
method tends to force a fully connected network despite missing
samples. In such a case, a base at a specific locus may appear to
be mutated back and forth on two adjacent or nearby edges. The
insufficient sampling of some specific genome types can lead to a
missing node that is required to construct a coherent path of nodes
reflecting the real transmission events. In such a situation, the
algorithm will “enforce” the network construction through a
neighbor node that is the closest to the real node. This problem
may potentially be mitigated by multiple rounds of network
reconstruction.

The increasing amount of genome sequences has surpassed the
capacity of existing analysis tools such as Pegas and POPART. By
optimizing the data analysis process, intermediate data storage
structure, and parallel computing efficiency, VENAS can compute
millions of sequences simultaneously in a reasonable time (Supple-
mentary material and Table S1 online). The accumulation of new
data also enables the comparison of NEVAS networks at different
transmission stages, which may allow us to generate a predictive
model on how the network is changing along the time and thus
to forecast the oncoming trends of transmission. We speculate that
the most valuable information will be the topological change of the
evolution network, which can be simulated with new algorithms.
Such simulation could also be used to identify branches/sub-
branches as the potential initiation site for new VOC.

In conclusion, our platform can handle the massive amount of
viral genomic data and rapidly generate the evolution network
using a highly paralleled computation protocol. The topology-
based community detection and the network disassortativity trim-
ming algorithm also enabled the identification of critical viral
groups that formed a backbone network of virus transmission.
The interactive user interface of VENAS allows us to identify known
branches in the early stage of pandemic and detect additional new
branches and sub-branches that reflect the transmission trends. A
close examination of the latest evolution network shows that many
variants, including VOCs, have arisen independently during trans-
mission, implying that new virulent variants may emerge from
weaker strains again. As a general platform, VENAS can serve as
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a valuable tool for data analysis and visualization that supports
virus tracing and drug development for further pandemics, as well
as for retrospective analysis of other viral pandemics like SARS-CoV
or Influenza (see Supplementary results online).
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