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A B S T R A C T   

Progress in the identification of core multi-protein modules within JAK/STAT pathway has enabled researchers to develop a better understanding of the linchpin role 
of deregulated signaling cascade in carcinogenesis and metastasis. More excitingly, complex interplay between JAK/STAT pathway and non-coding RNAs has been 
shown to reprogramme the outcome of signaling cascade and modulate immunological responses within tumor microenvironment. Wealth of information has 
comprehensively illustrated that most of this complexity regulates the re-shaping of the immunological responses. Increasingly sophisticated mechanistic insights 
have illuminated fundamental role of STAT-signaling in polarization of macrophages to M2 phenotype that promotes disease aggressiveness. Overall, JAK/STAT 
signaling drives different stages of cancer ranging from cancer metastasis to the reshaping of the tumor microenvironment. JAK/STAT signaling has also been found 
to play role in the regulation of infiltration and activity of natural killer cells and CD4/CD8 cells by PD-L1/PD-1 signaling. In this review, we have attempted to set 
spotlight on regulation of JAK/STAT pathway by microRNAs, long non-coding RNAs and circular RNAs in primary tumors and metastasizing tumors. Therefore, 
existing knowledge gaps need to be addressed to propel this fledgling field of research to the forefront and bring lncRNAs and circRNAs to the frontline of clinical 
practice. Leveraging the growing momentum will enable interdisciplinary researchers to gain transition from segmented view to a fairly detailed conceptual 
continuum.   

1. Introduction 

Cancer is a multifaceted and genomically complex disease. It has 
now been convincingly revealed that wide ranging mechanisms partic
ularly, genetic/epigenetic mutations, resistance against different ther
apeutics and loss of apoptosis efficiently promoted the onset and 
progression of cancer. Data obtained through high-throughput tech
nologies has not only sharpened the resolution of signaling landscapes 
but also highlighted spatio-temporally controlled nature of the cellular 
pathways. Increasingly it is being realized that dysregulations of spatio- 
temporally controlled intracellular signaling cascades are central drivers 
of cancer progression. Signaling cascades modulate different molecular 
activities through multiple effectors and also by crosstalks with other 
transduction cascades. JAK/STAT mediated signaling has gained 

considerable appreciation [1]. Rapidly emerging experimental evidence 
has started to shed light on the principal role of JAK/STAT signaling in 
regulation of carcinogenesis and tumor microenvironment. 

High-throughput experimental studies have facilitated a compre
hensive characterization of the components and pathogenesis of JAK- 
STAT pathway in different cancers. These mechanisms are relevant in 
a particular context and the interaction networks are large and complex 
[2,3]. A sophisticated understanding of JAK-STAT cascade has provided 
mechanistic insights into the intracellular signaling stimulated by the 
cytokines. Upon the binding of extracellular ligands to the native re
ceptor, Janus kinases (JAKs) initiate tyrosine phosphorylation of the 
receptors and trigger the recruitment of STAT proteins [4–6]. Conse
quently, phosphorylated-STATs undergo dimerization and accumulate 
in the nucleus to regulate specific transcriptional gene networks. 
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Once viewed simplistically as an intermediate between DNA and 
protein, a renaissance in RNA structure and functions has paradigmat
ically shifted our understanding about the central role of non-coding 
RNAs in carcinogenesis and metastasis. Although characteristically 
unique features of the biogenesis of miRNA and functions were revealed 
early on, recent years have mechanistically unraveled fundamental in
formation related to the molecular and structural dynamics of core 
miRNA machinery [7–9]. More importantly, modern research has illu
minated how miRNA substrates and targets are selected from the tran
scriptome and how lncRNAs and circRNAs interact with miRNAs for the 
regulation of cell signaling pathways. 

Central role of JAK/STAT signaling has been comprehensively 
investigated in cancer progression, epithelial-to-mesenchymal transition 
and how metastatically competent cancer cells invade and form sec
ondary tumors in distant organs. However, discovery of non-coding 
RNAs has revolutionized our understanding about interplay between 
non-coding RNAs and JAK/STAT pathway in molecular oncology. These 
interactions seem to be more sophisticated than previously surmised and 
mechanistically modulate cancer progression, infiltration of natural 
killer cells and CD4+/CD8+ in tumor microenvironment as well as 
tumor-associated macrophages. Moreover, how cancer cells evade 
apoptotic cell death by inducing exhaustion of T cells is also a 

fascinating facet of the interplay between non-coding RNAs and JAK/ 
STAT pathway. Furthermore, non-coding RNAs have also been shown to 
promote immunosuppressive microenvironment by polarization of 
macrophages principally through activation of STAT pathway. There
fore, in this review, we have put together different proof-of-concept 
studies related to interplay between non-coding RNAS and JAK/STAT 
pathway for the regulation of carcinogenesis, how cancer cells evade 
apoptotic death and how tumor microenvironment is shifted from 
immunostimulatory to immunosuppressive state for the progression of 
cancer. 

2. Regulation of JAK/STAT pathway by long non-coding RNAs 

Genome-wide sequencing has paved the way for the discovery of 
thousands of long non-coding RNA (lncRNA) loci in the human genome 
[10–13]. LncRNA complexes formed by various molecular interactions 
exert robust gene regulatory effects. Competing endogenous RNAs 
(ceRNAs) have been reported to demonstrate unique ability to bind 
competitively with microRNAs (miRNAs) and sequester/sponge miR
NAs from their target transcripts consequently interfering with the in
hibition or degradation of target transcripts induced by miRNAs. In the 
upcoming section, we have provided mechanistic information about 

Fig. 1. STAT1-controlled lncRNAs promoted tumorigenesis mainly through upregulation of oncogenes.  

Fig. 2. (A–D) STAT1 stimulates TINCR. Importantly, TINCR works with DNMT1 and epigenetically represses miR-199a-5p. TINCR also interferes with miR-199a-5p- 
mediated targeting of USP20. Consequently, USP20 deubiquitinates PD-L1. (E) TPT1-AS1 recruits STAT1 to transcriptionally repress APC (Adenomatous polyposis 
coli). (F) lncNBAT1 interacts with STAT1 to prevent its enrichment at the promoter region of APOBEC3A. 
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lncRNA-mediated regulation of JAK/STAT pathway. 

3. Transcriptional regulation of oncogenic lncRNAs by STAT1 

STAT1 has been reported to transcriptionally activate MEOX2-AS1 
(Fig. 1). VDAC1 allows the passage of nucleotides, metabolites and 
ions across the outer mitochondrial membrane. Mechanistically, 
MEOX2-AS1 sponges miR-143-3p and potentiates the expression of 
VDAC1. Experimental mice subcutaneously injected with MEOX2-AS1- 
silenced-HeLa cells presented evident regression of the tumor growth 
[14]. 

STAT1 transcriptionally upregulates ZFPM2-AS1 in thyroid cancer 
cells (Fig. 1). Importantly, ZFPM2-AS1 interfered with miR-515-5p- 
mediated targeting of TUSC3 in 8505C and SW579 cells. miR-515-5p 
suppressed proliferation and invasive properties of thyroid cancer cells 
by inhibition of TUSC3 [15]. 

STAT1 transcriptionally stimulates DLEU2 in gastric cancer cells. 
DLEU2 inhibited miR-23b-3p-mediated targeting of NOTCH2 and acti
vated NOTCH signaling pathway [16]. 

STAT1 also activated NOTCH pathway by transcriptional upregula
tion of LINC01806. Importantly, LINC01806 also acted as a sponge for 
miR-4428 and interfered with miR-4428-mediated targeting of 
NOTCH2. There was an evident regression of the tumors developed from 
LINC01806-silenced NSCLC cells. However, acceleration in tumor 
growth was noted when NSCLC cells were co-transfected with miR-4428 
antagomirs or overexpression of NOTCH2 [17]. 

Transcriptional upregulation of LINC00504 is also controlled by 
STAT1. TAF15 functions as an RNA-binding protein and stabilizes 
mRNAs. LINC00504-mediated TAF15 induced stability of CPEB2. 
Expression levels of CPEB2 mRNA were found to be reduced in 
LINC00504 knockdown or TAF15 depleted breast cancer cells treated 
with actinomycin D. Collectively, these findings indicated that stability 
of CPEB2 was evidently reduced upon the depletion of LINC00504 or 
TAF15 [18]. 

TINCR (Tissue differentiation inducing non-protein coding RNA), a 
long non-coding RNA recruited DNMT1 and promoted epigenetic inac
tivation of miR-199a-5p. TINCR served as a molecular sponge for miR- 
199a-5p and stimulated the expression of USP20 (Ubiquitin-Specific 
Protease 20). USP20 removes ubiquitin peptides from PD-L1 and en
hances its stability (Fig. 2). STAT1 stimulates the expression of TINCR in 
IFNγ-treated cancer cells [19]. 

STAT1 stimulates ZFPM2-AS1 (ZFPM2 antisense RNA-1) in HCC 
cells. ZFPM2-AS1 efficiently inhibits miR-653-mediated targeting of 
GOLM1 (Golgi Membrane Protein 1) (Fig. 1). ZFPM2-AS1- depletion 
caused remarkable shrinkage of the tumors in mice subcutaneously 

implanted with ZFPM2-AS1-silenced-HepG2 cells [20]. 
STAT1 activated LINC01160 and potently enhanced malignancy 

phenotype of nasopharyngeal carcinoma cells [21]. 
STAT1 transcriptionally activates ARRDC1-AS1 (ARRDC1 antisense 

RNA 1) and promotes carcinogenesis. ARRDC1-AS1 acted as a sponge for 
miR-432-5p and relieved inhibitory effects of miR-432-5p on PRMT5. 
ARRDC1-AS1 knockdown severely impaired the migratory and invasive 
abilities of U251 and LN229 cells [22]. 

Wnt/β-catenin pathway pays role in carcinogenesis [23,24]. STAT1 
mediated upregulation of lncRNAs efficiently promoted Wnt/β-Catenin 
signaling in ovarian cancer and glioma [25,26]. STAT1 transcriptionally 
upregulates LINC00467 in lung cancer cells. LINC00467 works syn
chronously with EZH2 and epigenetically inactivates Dickkopf-1 
(DKK1). DKK1 is an inhibitor of Wnt signaling pathway and sup
presses cancer progression. However, LINC00467 promotes Wnt/β-ca
tenin signaling and fuels carcinogenesis [27]. 

4. Interaction of STAT1 with lncRNAs in transcriptional 
regulation of target gene networks 

TPT1-AS1 recruits STAT1 to transcriptionally repress APC (Adeno
matous polyposis coli) (Fig. 2). APC has the ability to reduce cancer 
stemness of colorectal cancer stem cells. However, STAT1-mediated 
transcriptional repression of APC potently enhanced the stemness of 
colorectal cancer stem cells by the activation of Wnt/β-catenin [28]. 

lncNBAT1 interacts with STAT1 to prevent its enrichment at the 
promoter region of APOBEC3A (Apolipoprotein B mRNA editing enzyme 
catalytic subunit-3A) thus inhibiting the expression of APOBEC3A 
(Fig. 2). Downregulation of APOBEC3A efficiently induced resistance 
against methotrexate in DLBCL cells. There was a considerable increase 
in the methotrexate sensitivity and tumor shrinkage in mice inoculated 
with lncNBAT1-knockdown HBX-expressing SUDHL-4 cells [29]. 

RUNX1-IT1, an oncogenic lncRNA is involved in cancer progression 
[30]. Nucleosome remodeling and histone deacetylase (NuRD) complex 
is involved in the regulation of gene expression. GPX1 (Glutathione 
Peroxidase 1) is negatively regulated by STAT1. STAT1 works with 
RUNX1-IT1/NuRD complex and represses the expression of GPX1. 
Decrease in the levels of GPX1 leads to an increase in ROS levels to 
further activate NF-κB pathway. Use of entinostat (HDAC1 inhibitor) 
and antisense oligonucleotides against RUNX1-IT1 synergistically 
reduced the metastatic nodules in the abdomens of mice implanted with 
OVCA429 cells [31]. 

Fig. 3. (A) METTL14 promotes the binding of METTL3 to IFNB1. METTL3/METTL14 regulates m6A modifications. However, DDX3X and ALKBH5 work syn
chronously and demethylate IFNB1. RFPL1S-202 interacts with DDX3X and impairs ALKBH5-mediated demethylation of IFNB1. (B) AIRN stabilizes STAT1 by in
hibition of CUL4A-mediated degradation of STAT1. (C) LINC00669 inhibits SOCS1-mediated STAT1. 
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5. N6-methyladenosine (m6A) of LncRNAs and regulation of 
JAK/STAT signaling 

N6-methyladenosine (m6A) is the most common mRNA modifica
tion. The discovery of m6A, a predominantly internal epigenetic modi
fication of mRNAs, heralded the breakthroughs in the field of epi- 
transcriptomics. Studies have shown that deletion of the m6A ‘writer’ 
METTL3 or ‘reader’ YTHDF2 resulted in a significant increase in the 
stability of mRNA transcript. RFPL1S-202 has been shown to interact 
with DDX3X protein. DDX3X interacted with m6A RNA demethylase 
ALKBH5 and subsequently caused the removal of the m6A modification 
(Fig. 3). ALKBH5 depletion reduced the production of nascent IFNB1 
mRNA while depletion of m6A writer METTL14 exerted opposite effects. 
m6A levels of IFNB1 were found to be greatly increased in DDX3X- 
silenced SKOV3 cells. Secretion of IFNβ was also noticed to be 
decreased significantly in DDX3X-silenced SKOV3 cells [32]. 
RFPL1S-202 inhibited the metastasis by reducing the levels of p-STAT1 
and IFN inducible genes. 

Intraperitoneal injections of lipopolysaccharides enhanced tumor 
growth in orthotopic liver cancer models. Expression levels of PD-1 and 
PD-L1 were noted to be upregulated in hepatoma tissues of mice injected 
with lipopolysaccharides [33]. PD-L1 is expressed on the surface of 
tumor cells and tumor-associated-macrophages. PD-L1 binds to PD-1 on 
activated cytotoxic T lymphocytes and inhibits the activation of T cells. 
In METTL3/14 target mRNAs and lncRNAs with HuR-binding sites, 
when an m6A base is positioned in closer position to the HuR-binding 
site, m6A promotes the binding of ELAVL1/HuR to the mRNA or 
lncRNA. Growing evidence suggested that METTL3 played a central role 
in introducing m6A onto nascent transcripts co-transcriptionally, while 
METTL14 supported the binding of METTL3 to the target mRNAs. 
METTL14 overexpression caused a significant rise in the levels of PD-L1 
in Huh7 cells. m6A methylation is introduced by methyltransferases and 
ELAVL1/HuR stabilizes m6A-containing lncRNAs. ELAVL1/HuR pro
vides stability to MIR155HG. MIR155HG interfered with 
miR-223-mediated inhibition of STAT1. Consequently, STAT1 moves 
into the nucleus and stimulates the expression of PD-L1 [33]. 

5.1. LncRNAs mediate stability of oncogenic STAT1 

CUL4A (Cullin 4A) is an E3 ubiquitin ligase. CUL4A ubiquitinated 
STAT1 and tagged it for degradation. LncRNA AIRN interfered with 
CUL4A-mediated ubiquitination of STAT1 in HCC cells (Fig. 3). Tumor 
growth was found to be significantly reduced in mice inoculated sub
cutaneously with AIRN-silenced-HepG2 cells [34]. 

SOCS1 triggers ubiquitin-proteasome-mediated degradation of 
STAT1. LINC00669 stabilizes STAT1 by blockade of SOCS1 mediated 
ubiquitination and degradation (Fig. 3). Importantly, accelerated 
degradation of STAT1 was noted in LINC00669-depleted cells. Tumor 
growth regression reported in mice xenografted with LINC00669- 
deficient CNE-2 cells was reversed completely in the recipient experi
mental mice injected with SOCS1 and LINC00669 double knockdown 
cells [35]. 

PMSB8-AS1 is involved in the progression of cancer [36]. 
PMSB8-AS1 interfered with miR-382-3p-mediated targeting of STAT1. 
Evidence suggests that STAT1 transcriptionally upregulates PD-L1. 
PSMB8-AS1 significantly promoted the apoptotic death of CD8+ T 
cells and decreased the activity of CD8+ T cells [37]. 

PTPN11 is a ubiquitous protein tyrosine phosphatase that de
phosphorylates different proteins in cell signaling cascades. PRPF19 
(Pre-mRNA-processing factor 19), a U-box-containing E3 ubiquitin 
ligase forms a complex with its specific substrates for ubiquitination. 
LINC00673 promotes the association between PRPF19 and PTPN11 and 
enhances PRPF19-mediated ubiquitination and degradation of PTPN11. 
LINC00673 overexpression increases the levels of p-STAT1, as well as 
STAT1-dependent increase in the levels of interferon-response genes. 
However, ectopic expression of PTPN11 severely abrogated STAT1- 

mediated upregulation of target genes. Growth rates of tumor xeno
grafts were found to be considerably reduced in mice inoculated with 
LINC00673-overexpressing-BXPC-3 and CFPAC-1 cells [38]. 

6. Double-edge role of STAT1 signaling in the regulation of 
immunosuppressive tumor microenvironment 

Evidence suggests that different oncogenic lncRNAs are involved in 
the transformation of macrophages into M2-phenotype by inactivation 
of STAT1-driven signaling. 

PVT1, an oncogenic lncRNA efficiently induces immunosuppressive 
microenvironment. PVT1 transcriptionally downregulates STAT1 but 
simultaneously enhances the expression of CX3CL1 in U87 and U251 
glioblastoma cells. CX3CL1 induced transformation of macrophages into 
M2 phenotype [39]. Pharmacological targeting of PVT1 will be helpful 
in inhibition of M2 macrophages in the immunosuppressive 
microenvironment. 

LncRNA-HOXC-AS2 is also involved in the transformation of mac
rophages to M2 phenotype. HOXC-AS2 interacts with STAT1 and im
pairs STAT1 mediated conversion of M2 macrophages to M1 phenotype. 
SOCS1 is a negative regulator of STAT1 signaling. SOCS1 is expressed in 
HOXC-AS2-expressing macrophages. However, there is a decline in the 
levels of SOCS1 in HOXC-AS2-silenced macrophages [40]. 

It is important to mention that apart from unique ability of STAT1 
signaling in the inhibition of polarization of macrophages to M2 
phenotype, certain clues have emerged which highlight central role of 
STAT1 in polarization of macrophages to M2 phenotype. 

Studies have shown that different types of cells are present within the 
tumor microenvironment. These include the antitumor CTLs and TH1 
cells and the pro-tumor type 2 helper T (TH2) and regulatory T (Treg) 
cells. CTLs and TH1 cells are more sensitive to tumor-mediated AICD 
(activation induced cell death) as compared to TH2 and Treg cells. 
Evident increase in susceptibility of CTLs and TH1 cells to undergo AICD 
is mainly because of overexpression of NKILA (NFκB-interacting 
lncRNAs). STAT1 plays oncogenic role and simulates the expression of 
NKILA. Therefore, NKILA silencing in CTLs or TH1 cells protects them 
from AICD and increases their accumulation in tumor tissues in immu
nocompromised mice [41]. 

7. Interplay between lncRNAs and STAT2 promotes 
carcinogenesis 

STAT2 has an oncogenic role in different cancers. As there is limited 
evidence about the interplay between STAT2 and lncRNAs, we have 
presented an overview of oncogenic role of lncRNAs and STAT2 in 
different cancers. 

DLX6-AS1 sponges away miR-506-3p and potentiates the expression 
of STAT2. There is a considerable retrogression of the tumor mass in 
mice subcutaneously inoculated with DLX6-AS1-silenced-SK-N-SH cells 
[42]. 

STAT2 transcriptionally upregulates linc02231 and promotes cancer 
progression. Linc02231 interferes with miR-939-5p-mediated targeting 
of hnRNPA1. Mechanistically, hnRNPA1 prevents the maturation of 
ANGPTL4 (angiopoietin-like protein 4) in colorectal cancer cells. There 
was a significant shrinkage in the transplanted tumor tissues after 
linc02231 knockdown [43]. 

8. Regulation of STAT3-driven signaling by LncRNAs 

B cells are antigen-presenting cells and play significant role in tumor 
microenvironment. B cells have been found to frequently overexpress 
PD-L1. HOTAIR was found to be enriched in the exosomes secreted by 
colorectal cancer cells. HOTAIR was transported to the B cells through 
exosomal uptake. HOTAIR upregulates PD-L1 expression in B cells 
mainly through inhibition of ubiquitin-mediated degradation of PKM2. 
PKM2 increases STAT3-mediated transcriptional activation of PD-L1. 
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There is an evident increment in the tumor-infiltrating PD-L1+ B cells in 
xenografted mice [44]. HOTAIR-overexpressing PD-L1+ B cells effi
ciently induce exhaustion of CD8+ T cells and promote tumor progres
sion. Overall, STAT3-mediated upregulation of PD-L1 in B cells is 
necessary for the inactivation and exhaustion of CD8+ T cells. 

AC093818.1 is involved in transcriptional upregulation of PDK1 by 
directing the recruitment of transcriptional factors. AC093818.1 binds 
to transcriptional factors STAT3 and SP1 and promotes transcriptional 
activation of PDK1.There was a significant increase in the levels of 
vimentin, MMP-2, and MMP-9 in the liver and lung tissues of experi
mental mice implanted with AC093818.1-overexpressing-MKN28 cells 
[45]. 

NCAPD3 is one of the non-SMC regulatory subunits of Condensin II 
and promotes the progression of prostate cancer. Levels of STAT3 and 
E2F1 were found to be enhanced in NCAPD3-expressing prostate cancer 
cells. STAT3 and E2F1 stimulate the expression of EZH2 whereas, STAT3 
transcriptionally activates MALAT1 in prostate cancer cells. NCAPD3 
overexpression fuels the growth of prostate cancer cells, while NCAPD3 
knockdown impairs the proliferation and invasion of prostate cancer 
cells [46]. 

MALAT1 works synchronously with EZH2 and induces trimethyla
tion on histone H3 lysine27 (H3K27me3) for transcriptional repression 
of VHL. Importantly, levels of EZH2 and H3K27me3 were noticed to be 
suppressed in MALAT1-silenced HNSCC cells. Moreover, levels of 
functionally active STAT3 and AKT were found to be enhanced in EZH2- 
expressing cancer cells. VHL targeted β-catenin and NF-κB for degra
dation. Intratumoral injections of MALAT1 siRNAs efficiently induces 
regression of the tumors in mice inoculated with SCC15 cells. Further
more, targeted inhibition of MALAT1 markedly impaired the lymph 
node metastases of xenografts. Subsequently, intratumorally injected 
siMALAT1 severely suppressed the levels of MALAT1, EZH2, p-AKT and 
p-STAT3 in SCC15 xenografts [47]. Leucine-rich pentatricopeptide 
repeat-containing (LRPPRC), an RNA-binding protein has been found to 
be frequently overexpressed in many tumors. DANCR efficiently stabi
lizes IL-11, CCND1 and PLAU mRNAs in an LRPPRC-dependent manner. 
Levels of p-JAK2 and p-STAT3 were reported to be suppressed in 
DANCR-knockdown cancer cells, whereas these levels were reported to 
be increased in DANCR-overexpressing cancer cells. Additionally, 
LRPPRC knockdown abrogated STAT3-driven downstream pathway 
activated by overexpression of DANCR in bladder cancer cells. Essen
tially, the volume of popliteal lymph nodes was palpably smaller in 
DANCR-silenced- rodent models but significantly larger in size in 
DANCR-overexpressing rodent models [48]. Collectively, these findings 
indicated that DANCR potently enhanced the stability of oncogenes 
mainly through LRPPRC. Moreover, DANCR activated JAK2/STAT3 
pathway for the stimulation of MMP9. Therefore, DANCR induced 
activation of different pathways for progression of cancer. 

TINCR simulates the expression of EGFR by acting as a ceRNA to 
sponge miR-503-5p. TINCR also works synchronously with DNMT1 and 
epigenetically inactivates miR-503-5p. Furthermore, TINCR activated 
JAK2/STAT3 pathway in breast cancer cells. STAT3 thus transcrip
tionally upregulates TINCR and promotes breast cancer. Use of EGFR- 
inhibitor (gefitinib) combinatorially and synergistically impaired 
tumor growth in mice inoculated with TINCR knockdown-4T1 cancer 
cells [49]. 

9. STAT3 regulates the expression of tumor suppressor and 
oncogenic lncRNAs 

There is a gradual increase in our understanding about STAT3- 
regulated lncRNAs and how these lncRNAs further modulate target 
genes by working with epigenetics-associated machinery as well as 
serving as sponges for miRNAs. 

GAS5, an lncRNA is transcriptionally upregulated by STAT3. PDCD4 
(Programmed Cell Death 4) is negatively regulated by miR-21 in cervical 
cancer cells. GAS5 impairs miR-21-mediated targeting of PDCD4. 

Tumors derived from GAS5 overexpressing-SiHa cells were smaller in 
size and importantly cisplatin administration further reduced the tumor 
volume [50]. 

STAT3-induced upregulation of lncRNA CASC11 promotes the 
migration, invasion and metastasis of hepatocellular carcinoma cells. 
CASC11 works synchronously with EZH2 and epigenetically represses 
PTEN in HCC cells. As PTEN negatively regulates PI3K/AKT signaling in 
HCC cells, therefore downregulation of PTEN leads to activation of 
PI3K/AKT signaling [51]. 

STAT3 transcriptionally activates HOXD-AS1. HOXD-AS1 knock
down significantly inhibited migratory and invasive properties of HCC 
cells. HOXD-AS1 blocks miR-130a-3p-mediated targeting of SOX4 in 
HCC cells. Consequently, SOX4 triggers the expression of EZH2 and 
MMP2. There was a considerable reduction in the number of metastatic 
lung nodules in mice inoculated with HOXD-AS1-knockdown Huh7 cells 
[52]. 

10. LncRNAs activate STAT3 signaling and induce polarization 
of M2 macrophages 

linc00514 overexpressing breast cancer cells induced an increase in 
the levels of CD163 and CD206 in THP-1 derived macrophages. 
linc00514 promotes phosphorylation of STAT3 and consequently, 
STAT3 mediates upregulation of Jagged1. Essentially, Jagged1 is a 
ligand for Notch receptor mediated signaling. Moreover, Notch 
signaling has been shown to stimulate the expression of interleukin-6. 
Accordingly, it was shown that activation of Notch signaling induced 
an increase in the secretion of interleukin 4 and interleukin-6 from 
breast cancer cells [53]. Collectively, these findings clearly suggested 
that linc00514 overexpressing breast cancer cells not only gained 
metastasizing potential but also induced polarization of macrophages to 
M2 phenotype. 

KLHDC7B-DT, another long non-coding RNA has been shown to 
trigger the expression and secretion of interleukin-6. Thus, interleukin-6 
interacts with its receptor and induces intracellular activation of STAT3 
signaling in pancreatic cancer cells. Moreover, interleukin-6 also acti
vates STAT3 signaling in macrophages and induces M2 polarization 
[54]. 

Exosomes are highly efficient delivery vesicles. Exosomes are loaded 
with different proteins and non-coding RNAs and demonstrated extra- 
ordinary ability to transform recipient cells [55,56]. Exosomes 
secreted by cancer cells are loaded with lncRNAs. These exosomes are 
taken up by macrophages and payload is transferred to the 
macrophages. 

HEIH, an oncogenic lncRNA is rich in exosomes secreted by HCC 
cells. HEIH-loaded exosomes are taken up by macrophages. HEIH acts as 
a sponge and interferes with miR-98-5p-mediated targeting of STAT3. 
Resultantly, HEIH mediated increase in STAT3 is necessary for the po
larization of macrophages to M2 phenotype [57]. 

Exosomes secreted by clear cell renal cell carcinoma (ccRCC) are rich 
in AP000439.2 exosomes loaded with AP000439.2 are taken up by 
macrophages. AP000439.2 interacts with STAT3 in the nucleus and 
activates it. Additionally, NF-κB pathway was also found to be activated 
in AP000439.2-overexpressing macrophages. AP000439.2-depleted 
exosomes reduced tumor growth primarily through repolarization of 
macrophages from M2 to M1 phenotype [58]. LncARSR-loaded exo
somes secreted by RCC cells induced M2 phenotype. miR-34/miR-449 
mediated targeting of STAT3 prevented polarization of macrophages. 
However, LncARSR interferes with miR-34/miR-449-mediated targeting 
of STAT3 in macrophages and induces polarization of macrophages to 
M2 phenotype [59]. PTPRD (Protein Tyrosine Phosphatase Receptor 
type-D) induce de-phosphorylation of STAT3 in macrophages. 
miR-19b-3p-loaded exosomes are taken up by macrophages and induce 
polarization. miR-19b-3p directly targets PTPRD and triggers the acti
vation of STAT3. Functionally active STAT3 stimulates the expression of 
LINC00273. Moreover, LINC00273-loaded exosomes secreted by 
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macrophages are taken up by lung cancer cells. In lung cancer cells, 
LINC00273 promotes NEDD4-mediated ubiquitination and degradation 
of LATS2. Loss of LATS2 prevents YAP phosphorylation and degrada
tion. Therefore, YAP accumulates in the nucleus and transcriptionally 
upregulates RBMX. RBMX is involved in the exosomal packaging of 
miR-19b-3p into LUAD cell-derived exosomes [60]. 

As c-Myc transcriptionally upregulates interleukin-6 in gastric can
cer cells, LOC339059 structurally interacts with c-Myc and down
regulates interleukin-6. Decrease in the levels of interleukin-6 also 
exerts inhibitory effects on interleukin-mediated JAK/STAT3 signaling 
and consequent suppression of PD-L1. Moreover, polarization of mac
rophages into M2 phenotype was also effectively reduced [61]. 

Exosomes secreted by pancreatic cancer cells also induce polariza
tion of macrophages to M2 phenotype. FGD5-AS1 promotes invasion 
and metastasizing properties of pancreatic cancer cells when co-cultured 
with macrophages [62]. 

11. Regulation of oncogenic STAT5 by LncRNAs 

In this section, we have summarized how tumor suppressor and 
oncogenic lncRNAs regulate the oncogenic activity of STAT3. 

Oncogenic LncRNAs: SALIS (Suppression of Apoptosis by 
LINC01186 Interacting with STAT5A) is an oncogenic lncRNA. SALIS 
interacted with STAT5a and caused transcriptional repression of 
caspase-7 and IGFBP3. SALIS overexpression considerably promoted 
tumor growth and triggered the formation of palpable tumor xenografts 
[63]. 

TLX1NB (T cell leukemia homeobox 1 neighbor) also promoted 
colorectal cancer. TLX1NB overexpression enhanced the phosphoryla
tion of STAT5A but TLX1NB knockdown suppressed the phosphoryla
tion of STAT5A. Moreover, the inhibition of STAT5A phosphorylation 
led to reversal of TLX1NB overexpression-induced increase in the 
invasive and migratory properties of HCT116 cells. There was an evident 
reduction in pulmonary metastatic nodules in experimental mice 
injected with TLX1NB-silenced-SW620 cells. Levels of p-STAT5A were 
found to be suppressed in the metastatic nodules from mice injected with 
TLX1NB-silenced-SW620 cells [64]. 

lncRNA PVT1 stabilizes STAT5B by suppression of the ubiquitination 
and enhances STAT5B-mediated transcriptional gene networks during 
carcinogenesis. In the nucleus, STAT5B transcriptionally activates 
lncRNA PVT1 and promotes tumor growth [65]. 

STAT5A transcriptionally upregulates LINC01198. Moreover, 
LINC01198 interacted with DGCR8 and stabilized DGCR8. Moreover, 
DGCR8 produces an oncogenic miRNA profile that promotes prolifera
tion of glioma cells [66]. 

LINC01410 is an oncogenic lncRNA and physically interacts with 

STAT5 in gallbladder cancer cells. STAT5 activates oncogenic ErbB 
signaling cascade. There is a considerable increase in the metastatic 
nodules on the surface of livers and lungs of mice intrasplenically 
injected with LINC01410 over-expressing GBC-SD cells [67]. 

Tumor suppressor LncRNAs: Imatinib induced apoptotic death in 
lncRNA-IUR1-expressing-K562 cells. LncRNA-IUR1 inhibits STAT5- 
mediated transcriptional activation of GATA3. Furthermore, GATA3 
promotes transformation of leukemic cells by driving MYC activity. 
There was a notable increase in the tumor development in mice inocu
lated with lncRNA-IUR1 knockdown-cells. Depletion of murine lncRNA- 
IUR1 in ABL-transformed cells promoted the leukemogenesis in exper
imental models [68]. 

WDFY3-AS2 interfered with miR-2355-5p-mediated targeting of 
SOCS2. Importantly, SOCS2 inactivated JAK2/STAT5 signalling 
pathway and suppressed the proliferation and invasive potential of 
EC9706 and TE1 cells [69]. 

12. Oncogenic lncRNAs activate STAT6 signaling and reshape 
tumor microenvironment by polarization of macrophages 

STAT6 stimulates the expression of SOX21-AS1 and SOX21. Essen
tially, SOX21-AS1 interferes with miR-576-5p-mediated targeting of 
SOX21 and promotes pancreatic cancer. USP10 is a deubiquitinase and 
potently deubiquitinates different proteins. SOX21-AS1 works syn
chronously with USP10 and stabilizes SOX21 by deubiquitination. There 
is a remarkable impairment in the growth rate of the tumor mass in mice 
subcutaneously inoculated with SOX21-AS1-silenced-PANC-1 and 
SW1990 cancer cells [70]. 

Exosomal secretions from cancer cells promoted the polarization of 
M2-macrophages. LINC00313-loaded exosomes secreted by cancer cells 
are taken up by macrophages. LINC00313 potentiates the expression of 
STAT6 mainly through the blockade of miR-135a-3p-mediated targeting 
of STAT6 (Fig. 4). LINC00313 knockdown caused an increase in the 
levels of M1 markers (iNOS and CD86) and decreased the levels of M2 
markers (CD206 and CD163). The number of CD206+, CD163+ M2 cells 
was found to be reduced in LINC00313 knockdown cells. Intra-tumoral 
injections of GW4869 (pharmacological inhibitor of exosomal release) 
efficiently impaired tumor growth. Importantly, LINC00313 over
expression stimulated tumorigenesis, while LINC00313 knockdown 
suppressed tumor growth [71]. 

LncRNA-SNHG1 has a central role in the polarization of M2 macro
phages. Intriguingly, STAT6 signaling centrally steers the polarization of 
macrophages to M2 phenotype. Phosphorylated levels of STAT6 were 
found to be reduced in SNHG1-silenced cells (Fig. 4). Inhibition of 
lncRNA-SNHG1 led to significant reduction in the number of F4/ 
80+CD206+ macrophages. Furthermore, silencing of lncRNA-SNHG1 in 

Fig. 4. Oncogenic lncRNAs promote the polarization of M2-macrophages. LINC00313 interfered with miR-135a-3p-mediated targeting of STAT6. Moreover, SNHG1 
and CRNDE promote STAT6 activation. 
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the macrophages inhibited pro-angiogenic and pro-tumorigenic effects 
of M2-like polarized macrophages [72]. 

CRNDE overexpression induces an increase in the level of CD163, 
while downregulation of CRNDE causes significant reduction in the 
levels of CD163. JAK1/STAT6 signaling induces M2 polarization of 
macrophages. Notably, CRNDE overexpression enhances the levels of 
JAK1 and STAT6 and promotes the phosphorylation of STAT6 (Fig. 4). 
Moreover, levels of angiogenesis-related proteins (VEGFR2, NOTCH1 
and Dll4) were also noticed to be upregulated in HUVECs co-cultured 
with CRNDE-overexpressing macrophages [73]. Collectively, these 
findings indicated that CRNDE not only promoted M2 polarization but 
also stimulated the proliferation of a network of tumor blood vessels in 
tumor-bearing mice. Moreover, lncRNA-MM2P also promotes 
macrophage-mediated tumorigenesis, tumor growth and tumor angio
genesis. Knockdown of lncRNA-MM2P inhibited STAT6-induced 
signaling and suppressed polarization of macrophages to M2 pheno
type [74]. 

13. Interplay between JAK/STAT signaling and circular RNAs 

With the rapid breakthroughs in RNA sequencing technologies and 
bioinformatics, the true abundance of circRNAs was discovered. In 
2012, an unexpectedly high frequency of human genes was reported to 
express “scrambled exons” resulting in circular RNA isoforms [75–86]. 

14. Regulation of STAT1-mediated control of PD-L1/PD-1 
signaling 

Cancer cells treacherously escape T-cell-directed cytotoxicities by 
manipulating the inhibitory programmed cell-death protein 1 (PD-1)/ 
programmed cell death 1 ligand 1 (PD-L1) immune checkpoints. 
Importantly, therapeutic antibodies that have been designed against PD- 
1/PD-L1 axis induce clinically durable responses against different types 
of cancers. Pioneering studies have improved our understanding about 
the mechanisms regulating the expression of PD-L1/PD-1 at the tran
scriptional, post-transcriptional, translational and post-translational 
levels in cancers. Therefore, antagonistic antibodies designed against 
inhibitory immune-checkpoint receptor PD-1 or its ligand PD-L1 are 
currently being used for the treatment of different cancer types and 
multipronged approaches will synergistically and substantially improve 
the survival of cancer patients. 

IFNγ induces the expression of PD-L1 in HNSCC. Importantly, ac
tivities of JAK2 and STAT1 were noted to be enhanced in IFNγ-treated 
cancer cells. Moreover, circ_0000052 impaired miR-382-3p-mediated 
targeting of PD-L1. Essentially, PD-L1 was decreased significantly in 
miR-382-3p-overexpressing cancer cells and circ_0000052 depleted 
cancer cells [87]. 

15. Regulation of oncogenic STAT1 by circular RNAs 

Exosomes derived from cancer cells are rich in non-coding RNAs. 
Ovarian cancer-derived exosomes potently promoted the angiogenesis 
in HUVECs. Exosomes derived from SKOV3 and OVCAR3 cancer cells 
efficiently enhanced VEGFA expression and angiogenesis. Exosomes rich 
in circNFIX levels were taken up by HUVECs and consequently stimu
lated the levels of TRIM44, p-JAK, and p-STAT1. miR-518a-3p directly 
targeted TRIM44 but circNFIX impaired the tumor suppressive effects of 
miR-518a-3p. Importantly, TRIM44 overexpression increased the levels 
of JAK/STAT and VEGFA whereas, inactivation of JAK/STAT pathway 
led to suppression of VEGFA [88]. 

circRPPH1 acted as an oncogene and inhibited miR-512-5p- 
mediated targeting of STAT1. Tumor growth was found to be consid
erably enhanced in mice xenografted with circRPPH1-overexpressing- 
MDA-MB-231 cancer cells [89]. 

miR-195-5p impeded growth of the tumor mass in animal models, 
whereas upregulation of circRNA NRIP1 effectively promoted 

tumorigenesis in xenografted mice. CircRNA NRIP1 activated JAK/STAT 
pathway by interfering with miR-195-5p-targeting activity in papillary 
thyroid carcinoma cells and tumor tissues. Importantly, levels of p-JAK2 
and p-STAT1 were noted to be markedly suppressed in miR-195-5p 
overexpressing papillary thyroid carcinoma cells and tumor xenografts 
[90]. 

16. Tumor suppressive role of STAT1 

LSECtin (Liver and lymph node sinusoidal endothelial cell C-type 
lectin) is a 40 kDa type II transmembrane protein. Infiltration of gastric 
cancer cells occurs through surrounding tissues to lymphatic vessels and 
reach the lymph nodes during lymphatic metastasis. LSECtin expressed 
on the surface of lymphatic sinus endothelial cells (LSECs) promotes 
metastasis of GC cells. Migration of gastric cancer cells was inhibited by 
LSECtin-blocking antibodies. FN1 (Fibronectin 1) and CHD4 (Chromo
domain Helicase DNA Binding Protein 4) have tumor promoting prop
erties. LSECtin triggered the malignant and lymphatic metastases of 
gastric cancer cells through upregulation of FN1 and CHD4 by inter
fering with circFBXL4-mediated sequestration of miR-146a-5p. Conse
quently, blockade of circFBXL4-mediated sponging effects on miR-146a- 
5p-led to reduction in the levels of STAT1 and subsequent upregulation 
of FN1 and CHD4 (Fig. 5) [91]. Collectively, these findings indicated 
that migration and invasion of gastric cancer cells mediated by LSECtin 
was impaired significantly by overexpression of circFBXL4 or 
miR-146a-5p depletion. Tumor suppressive circFBXL4 interferes with 
miR-146a-5p-mediated targeting of STAT1. Consequently, STAT1 
moves into the nucleus and transcriptionally represses FN1 and CHD4. 

17. Circular RNAs work with STAT2 and promote carcinogenesis 

circCAPRIN1 interacted with STAT2 and transcriptionally upregu
lated acetyl-CoA carboxylase 1 (ACC1) expression (Fig. 5). circCAPRIN1 
overexpression resulted in enhanced production of the lipid droplets. 
circCAPRIN1 knockdown impaired the metastasizing properties of 
colorectal cancer cells [92]. 

Fig. 5. (A–B) LSECtin reduces the levels of STAT1. CircFBXL4 interfered with 
miR-146a-5p-mediated targeting of STAT1. LSECtin reduced the levels of 
CircFBXL4 and STAT1. STAT1 suppression led to an increase in the levels of 
FN1 and CHD4. (C) circCAPRIN1 interacts with STAT2 and transcriptionally 
upregulates ACC1. 
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18. Regulation of oncogenic STAT3 by circular RNAs 

CircRPPH1 interfered with miR-296-5p-mediated targeting of STAT3 
and promoted the proliferation and invasion of bladder cancer cells. 
Interaction between circRPPH1 and FUS promoted the nuclear accu
mulation of p-STAT3. There was a significant reduction in the tumor 
mass and pulmonary metastasis in different animal models injected with 
CircRPPH1-silenced bladder cancer cells [93]. 

CircABCA5 not only interacts with SPI1 for the maintenance of its 
stability but also promotes its nuclear translocation. SPI1 knockdown 
severely abolished circABCA5-induced malignancy of gastric cancer 
cells. SPI1 transcriptionally upregulated IL6 and activated IL6/JAK2/ 
STAT3 pathway in gastric cancer cells.EIF4A3 overexpression upregu
lated circABCA5 expression, while EIF4A3 knockdown downregulated 
circABCA5 expression. Half-life of circABCA5 was significantly extended 
after EIF4A3 overexpression. Importantly, tumors derived from 
circABCA5-overexpressing MKN-45 cancer cells had a higher volume 
and weight, while circABCA5-knockdown SGC7901 cancer cells 
demonstrated remarkably reduced xenograft tumor volume and weight 
[94]. 

circFCHO2 promoted the activation of JAK1/STAT3 pathway by 
interfering with miR-194-5p-mediated targeting of JAK1. Pulmonary 
metastatic nodules were found to be remarkably reduced in the lung 
tissues of mice injected with circFCHO2-silenced cancer cells. Moreover, 
lymphatic metastasis was also reported to be suppressed in mice injected 
with circFCHO2-silenced cancer cells [95]. 

CircAHNAK inhibited miR-28-mediated targeting of EIF2B5 
(Eukaryotic translation initiation factor 2B). Consequently, EIF2B5 
inactivated JAK2/STAT3 pathway. On the contrary, EIF2B5 depletion 
promotes EMT and activation of JAK2/STAT3 pathway. Mice inoculated 
with CircAHNAK-silenced cancer cells had the largest tumor sizes and 
heaviest tumor weights. However, overexpression of circAHNAK 
retarded tumor growth [96]. 

Exosomes derived from renal cell carcinoma cells are rich in circ
SAFB2. These exosomes are taken up by macrophages. Exosomally 
transmitted circSAFB2 re-shaped signaling landscape in macrophages 
via regulation of miR-620/JAK1/STAT3 axis. miR-620 is a tumor sup
pressor and inhibits the expression of JAK1. Exosomally transferred 
circSAFB2 induced polarization of M2-macrophages by blockade of 
miRNA-620-mediated targeting of JAK1. JAK1/STAT3 signaling was 
increased in circSAFB2-overexpressing macrophages. Essentially, co- 
culture of ACHN cells with macrophages treated with circSAFB2- 
silenced exosomes demonstrated significant reduction in the metasta
sizing ability of cancer cells. ACHN cells co-injected with the macro
phages pre-treated with circSAFB2-silenced exosomes and miRNA-620 
inhibitors displayed evident increase in the metastatic spread [97]. 

Knockdown of Circ_0005320 resulted in inactivation of p-JAK2 and 
p-STAT3. However, Circ_0005320 knockdown mediated inactivation of 
JAK2/STAT3 pathway was re-activated by the introduction of miR-486- 
3p inhibitors or miR-637 inhibitors in SCC25 and CAL27 cells. 
Circ_0005320 knockdown caused significant shrinkage in the volume 
and weight of the tumor mass. Levels of circ_0005320 were reduced, 
while the levels of miR-637 and miR-486-3p were increased in the tumor 
tissues of mice inoculated with circ_0005320-silenced cancer cells [98]. 

circNOLC1 potentiates STAT3 expression by blockade of miR-365a- 
3p-mediated targeting of STAT3. STAT3 transcriptionally upregulated 
circNOLC1 and promoted carcinogenesis. Propofol inhibited STAT3- 
mediated upregulation of circNOLC1. miR-365a-3p mimics repressed 
sphere forming abilities of MDA-MB-231 and MDA-MB-468 cancer cells 
[99]. 

Cancer-associated fibroblasts (CAFs) actively contribute to malig
nant changes in the stromal microenvironment primarily through 
extensive secretions of extracellular matrix around tumor cells as well as 
production of the trophic factors thus promoting formation of the pro- 
tumorigenic niches. Sibrotuzumab (a humanized monoclonal anti
body) previously attracted the attention of researchers because of its 

ability to effectively target cancer-associated fibroblasts in colorectal 
cancer patients. However, it is relevant to mention that the unfavorable 
findings of a clinical trial (phase II) of sibrotuzumab led to the termi
nation of further analysis associated with this inhibitor. It was noted that 
normal tissue-associated fibroblasts (NFs) transduced with CircCUL2 
caused significant increase in the proliferation and invasive abilities of 
MiaPaCa-2 and PANC-1 cells [100]. Findings suggested that 
CircCUL2-expressing NFs demonstrated CAF pro-tumorigenic proper
ties, but circCUL2-silenced CAFs failed to exert pro-tumorigenic effects. 
There was an evident increase in p-STAT3 levels in MiaPaCa-2 and 
PANC-1 cells treated with conditioned media from 
circCUL2-expressing-NFs. Treatment of conditioned media from 
circCUL2-expressing-NFs with neutralizing antibodies against 
interleukin-6 severely abolished the pro-tumorigenic features of 
circCUL2-expressing-NFs. Higher metastatic incidence and pulmonary 
metastatic foci were present in mice co-injected with 
circCUL2-expressing NFs and pancreatic cancer cells. Notably, addition 
of a neutralizing antibody against inteleukin-6 to the co-culture systems 
of circCUL2-expressing NFs and pancreatic cancer cells restricted met
astatic spread. Co-injections of MiaPaCa-2 or PANC-1 cells with 
circCUL2-expressing-NFs into the pancreas of rodent models were used 
for the analysis of metastasizing properties. Data indicated that 
circCUL2-transduced NFs potently enhanced the tumorigenesis. More
over, higher abdominal metastasis rates were observed in mice 
co-injected with circCUL2-expressing NFs and pancreatic cancer cells, 
while treatment with anti-IL6 antibodies induced significant regression 
of the growth of tumor mass as well as abdominal metastasis. CircCUL2 
inhibited miR-203a-3p-mediated targeting of MyD88. CircCUL2 over
expression or miRNA-203a-3p inhibition robustly augmented MyD88 
and its downstream effectors NF-κB in NFs. Inhibition of MyD88 robustly 
reversed circCUL2 overexpression-induced increase in the secretion of 
interleukin-6 from NFs, whereas MyD88 overexpression led to reversal 
of circCUL2 inhibition-mediated decline in the secretion of interleukin-6 
from CAFs [100]. 

Detailed mechanistic insights suggested that circFAT1 interacted 
with STAT3 in the cytoplasm and prevented SHP1-induced dephos
phorylation of STAT3. STAT3 formed heterodimers with STAT1 and 
prevented the homodimerization of STAT1 and subsequent STAT1- 
mediated transcriptional regulation of target gene networks. CXCL9 
and CXCL10 promote the accumulation of CD8+ T lymphocytes within 
tumor tissues. Overall, knockdown of circFAT1 and STAT3 potently 
enhanced the binding of STAT1 to the promoter regions of CXCL9 and 
CXCL10. CircFAT1 inhibition and anti-PD1 strongly promoted the 
accumulation of a high frequency of CD8+ T cells into the tumor 
microenvironment. Notably, Cytotoxic CD8+ T cells generated Gran
zyme B to kill tumor cells. CircFAT1 inhibition and anti-PD1 also 
recruited more Granzyme B expressing CD8+ T cells into tumor tissues. 
Importantly, tumor growth was reduced in tongues of immunocompe
tent C57BL/6J mice orthotopically transplanted with CircFAT1- 
silenced-MOC1 cells [101]. 

Xenotropic and polytropic retrovirus receptor 1 (XPR1) played cen
tral role in the activation of JAK/STAT pathway. circGNB1 blocked miR- 
515-5p and miR-582-3p-mediated inhibition of XPR1. XPR1 knockdown 
led to reduction in the levels of Interleukin-6, p-JAK2 and p-STAT3 in 
GSC27 and U87 cells. IGF2BP3 binds to and maintains the stability of 
circGNB1 in GSCs. Importantly, half-life of circGNB1 was found to be 
drastically shortened in IGF2BP3 knockdown GSCs [102]. 

Biogenesis of circARFGEF2 is considerably activated by alternative 
splicing factor QKI-5 in KRASG12D pancreatic ductal adenocarcinoma 
cells, which recruits U2AF35 to promote spliceosomal assembly. Binding 
of QKI-5 to the QKI binding motifs and neighboring reverse complement 
sequences in intron 3 and 6 of ARFGEF2 pre-mRNA facilitated the 
biogenesis of circARFGEF2. Depletion of U2AF35 markedly hampered 
QKI-5-induced biogenesis of circARFGEF2. CRISPR/Cas9-mediated 
knockout of intron 3 and intron 6 in ARFGEF2 pre-mRNA severely 
hampered QKI-5-driven biogenesis of circARFGEF2. QKI-5 
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overexpression led to a significant increase in the lymph node metastasis 
of KRASG12D PDAC cells, while circARFGEF2 inhibition remarkably 
reduced these effects. Moreover, circARFGEF2 inhibition significantly 
reduced the microlymphatic vessel density induced by QKI-5 over
expression. Additionally, QKI-5 greatly enhanced the metastatic spread 
of cancer cells to peripancreatic lymph nodes and increased the number 
of metastatic lymph nodes in orthotopically xenografted PDAC models. 
CircARFGEF2 interfered with miR-1205-mediated targeting of JAK2. 
CircARFGEF2 overexpression robustly supported the metastases of 
popliteal lymph nodes and increased the microlymphatic vessel den
sities, while inactivation of JAK2/STAT3 cascade reversed these effects. 
CircARFGEF2 promoted lymphangiogenesis and metastasis in KRASG12D 

PDAC mainly through JAK2-STAT3 cascade [103]. 
circPAPD4 is a tumor suppressive circular RNA. ADAR1 (Adenosine 

deaminase acting on RNA) binds to the flanking regions of circPAPD4 in 
breast cancer cells and reduces its expression. ADAR1 knockdown causes 
an increase in the levels of circPAPD4. circPAPD4 inhibited miR-1269a- 
mediated targeting of CREBZF. CREBZF inhibited STAT3 dimerization 
and consequent STAT3-mediated transcriptional upregulation of 
ADAR1. Systemically administered CREBZF-mRNA-nanoparticles effi
ciently enhanced the expression of CREBZF and circPAPD4, reduced 
ADAR1 levels and significantly impaired the proliferation of CREBZF- 
null MCF-7 cancer cells [104]. 

Circ-HSP90A recruited USP30 for the de-ubiquitination and stability 
of HSP90A protein. There was an evident increase in STAT3-driven 
cascade in HSP90-overexpressing cancer cells. Circ-HSP90A triggered 
apoptotic death of CD8+ T cells through PD-L1. circ-HSP90A interferes 
with miR-424-5p-mediated targeting of PD-L1. Co-culture of circ- 
HSP90A-depleted cancer cells and CD8+ T cells caused notable decline 
in apoptotic death of CD8+ T cells [105]. 

CCCTC binding factor (CTCF) has been reported to transcriptionally 
upregulate CircSPARC. Importantly, CircSPARC promoted the activa
tion of JAK2 by increasing the expression of JAK2. CircSPARC interfered 
with miR-485-3p-mediated targeting of JAK2. CircSPARC interacted 
with FUS and promoted nuclear accumulation of STAT3. FUS knock
down led to suppression of nuclear transportation of STAT3 in 
circSPARC-overexpressing CRC cells. Importantly, there was a notable 
reduction in the number of metastatic foci on the surface of the lungs in 
rodent models injected with circSPARC-silenced-HCT116 cells [106]. 

circ-E2F3, an oncogenic circRNA inhibits miR-296-5p-mediated 
targeting of STAT3 in cervical cancer cells. Nuclear levels of STAT3 
were found to be enhanced in circ-E2F3-overexpressing-cancer cells. 
STAT3 induced transcriptional upregulation of cyclin D1 in cancer cells. 
Tumor growth rates were noted to be markedly hampered in the 
experimental mice inoculated with Circ-E2F3-silenced-CaSki cells 
[107]. 

SIRT1, an NAD + -dependent deacetylase interacted with STAT3 in 
cancer cells. However, circPTPN22 induced dissociation of STAT3 and 
SIRT1. CircPTPN22 knockdown greatly enhanced the interaction be
tween STAT3 and SIRT1. There was a substantial increment in the 
infiltration of CD8+ cytotoxic T cells in the tumor tissues as well as CD4+

T helper cells, γδT cells and natural killer cells in circPTPN22-silenced- 
group. Tumor progression was noted to be severely impaired in mice 
xenografted with CircPTPN22-silenced-BxPC-3 cancer cells [108]. 

CircATP5B blocked miR-185-5p-mediated targeting of HOXB5 in 
glioma stem cells. Expression of circATP5B was noted to be increased in 
SRSF1-overexpressing glioblastoma cells. HOXB5 transcriptionally 
upregulated the expression of SRSF1 (Serine and arginine rich splicing 
factor-1). HOXB5 also transcriptionally activated interleukin-6 in glio
blastoma cells. Interleukin-6 triggered activation of JAK2/STAT3 
pathway. There was a significant regression of the tumor mass in cir
cATP5B knockdown group, miR-185-5p mimics group, and circATP5B 
knockdown combined with SRSF1-overexpressing groups. Whereas, 
weight of the tumor mass was noted to be increased in HOXB5- 
overexpressing groups, SRSF1 overexpressing-groups, circATP5B 
knockdown combined with HOXB5-overexpressing groups as well as 

miR-185-5p mimics combined with HOXB5-overexpressing groups 
[109]. 

circHIF1A not only increased NFIB expression via posttranscriptional 
regulation but also promoted nuclear translocation of NFIB. CircHIF1A 
interfered with miR-149-5p-mediated inhibition of NFIB. Importantly, 
NFIB activated AKT/STAT3 pathway in breast cancer cells. NFIB tran
scriptionally upregulates FUS in cancer cells. FUS binding region has 
been identified in 5′ end flanking region of intron of circHIF1A and 
consequently FUS efficiently promoted the biogenesis of circHIF1A. 
There is an increment in the tumor mass and metastasizing potential of 
cancer cells in mice injected with circHIF1A-overexpressing-MDA-MB- 
231 cancer cells [110]. 

CircRNA GGNBP2 principally derived from the GGNBP2 gene is 
upregulated by interleukin-6 [111]. DHX9 (DExH-Box Helicase 9) has a 
central role in the biogenesis and stability of cGGNBP2. cGGNBP2 en
codes a 184 amino acid protein. Levels of cGGNBP2-184aa were found 
to be enhanced in cGGNBP2-overexpressing cells. Ectopic expression of 
cGGNBP2-184aa considerably promoted the phosphorylation at 
Tyrosine-705 of STAT3. There was a significant increase in nuclear 
accumulation of p-STAT3 (Tyrosine-705) in cGGNBP2-184aa-over
expressing cells. cGGNBP2-184aa knockdown resulted in the inhibition 
of IL-6-induced activation of JAK-STAT pathway. DNA binding domain 
of STAT3 interacts with cGGNBP2-184aa. cGGNBP2-184aa over
expression caused remarkable increase in intrahepatic metastases. 
Administration of STAT3 inhibitors abolished the role of 
cGGNBP2-184aa in the progression of intrahepatic cholangiocarcinoma. 
There was a rapid acceleration in tumor growth after administration of 
interleukin-6, however, treatment with interleukin-6 neutralizing anti
bodies led to regression of the tumors. Essentially, tumor growth was 
inhibited significantly by silencing of cGGNBP2 while overexpression of 
cGGNBP2 triggered acceleration in growth of the tumors. Notably, fewer 
intrahepatic metastatic foci were observed in the experimental mice 
orthotopically transplanted with cGGNBP2 knockdown cells into the left 
lobes of the liver. Whereas, overexpression of cGGNBP2 efficiently 
promoted intrahepatic metastasis. Likewise, loss of cGGNBP2 severely 
reduced the formation of pulmonary metastases, whereas ectopic 
expression of cGGNBP2 promoted pulmonary metastasis. Overall, 
cGGNBP2 encoded cGGNBP2-184aa facilitated intrahepatic chol
angiocarcinoma [111]. 

Circ_0043800 (circ-STAT3) interfered with miR-29a/b/c-3p- 
mediated targeting of GLI2 and STAT3. GLI2 transcriptionally upregu
lates STAT3 and circ-STAT3. There was an evident regression of the 
tumor in mice xenografted with circ-STAT3-silenced-HB cells [112]. 

WDR5 is a core subunit of the human MLL1-4 histone H3K4 meth
yltransferase complexes. WDR5 and EP300/P300 (Histone acetyl
transferase p300) bind to the promoter region of circSOD2. WDR5 
enhanced H3K4me3 levels and p300 enhanced H3K27ac at the promoter 
region of circSOD2. circSOD2 inhibits miR-502-5p-mediated targeting 
of DNMT3a. DNMA3a increased promoter DNA methylation and 
epigenetically inactivated SOCS3. Epigenetic repression of SOCS3 led to 
an increase in the activation of JAK2/STAT3 pathway. Consequently, 
STAT3 transcriptionally upregulates circSOD2 and promotes carcino
genesis [113]. 

Circ-LRIG3 forms ternary complexes with STAT3 and EZH2 and 
promotes EZH2-mediated methylation of STAT3. Importantly, methyl
ation of STAT3 further promoted phosphorylation of STAT3. Over
expression of circ-LRIG3 increased methylation and phosphorylation of 
STAT3, but these effects were almost blocked completely in cells treated 
with EZH2 siRNAs or selective EZH2 inhibitors. Furthermore, STAT3 
transcriptionally upregulates Circ-LRIG3. Tumors derived from circ- 
LRIG3-overexpressing cancer cells were heavier in weight and larger 
in volume. Overexpression of circ-LRIG3 substantially enhanced the 
number of pulmonary metastatic nodules in experimental mice injected 
with circ-LRIG3-overexpressing HepG2 cells. However, treatment with 
STAT3 inhibitor (C188-9) interfered with circ-LRIG3 overexpression- 
mediated increase in the multiplicity of lung metastatic nodules [114]. 
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Warburg effect (aerobic glycolysis) is a hallmark characteristic of 
cancer cells, in which they consume a large amount of glucose and 
promote aerobic glycolysis. HK2 is a central regulator in the Warburg 
effect and plays a key role in aerobic glycolysis. circCUL3 interfered with 
miR-515-5p-mediated targeting of STAT3. Furthermore, STAT3 tran
scriptionally stimulates the levels of hexokinase 2 (HK2). Tumors 
derived from circCUL3-silenced-SGC-7901 cell lines were smaller in size 
and the levels of STAT3 were found to be markedly reduced [115]. 

18.1. STAT5 

circCDYL stimulates the expression of tumor suppressor PTEN 
mainly through inhibition of miR-105-5p-mediated targeting of PTEN. 
Resultantly, PTEN inactivates PI3K/AKT and JAK/STAT signaling cas
cades in colon cancer cells [116]. 

SOCS2 negatively regulates JAK2/STAT5 signaling in breast cancer 
cells. CircNOL10 acts as a molecular sponge for miR-767-5p and po
tentiates the expression of SOCS2. Tumors developed from CircNOL10- 
overexpressing-BT-549 cells were smaller in size [117]. 

miR-373 is regulated by ZIP4 primarily through a zinc-dependent 
transcriptional factor CREB. PHLPP2 induces dephosphorylation of 
CREB (Fig. 6). Moreover, PHLPP2 also inhibits AKT-mediated phos
phorylation of STAT5. CircANAPC7-interfered with miR-373-mediated 
targeting of PHLPP2 (Fig. 6). CircANAPC7 overexpression significantly 
inhibited tumor growth in orthotopic xenograft rodent models [118]. 

circ_0086722 drives prostate cancer progression by blockade of miR- 
339-5p-mediated targeting of STAT5A. These findings indicated that 
miR-339-5p served as a tumor suppressor and inhibited prostate cancer 
progression [119]. 

circRNA ZNF292 promoted the activation of p-STAT3 and p-STAT5 
in Huh-7 cells. Inhibition of circRNA ZNF292 induced apoptosis in HCC 
cells [120]. 

CircRNA transcriptome analysis holds great promise for refinement 
of our mechanistic understanding related to highly sophisticated com
plex biological systems, undoubtedly facilitating therapeutics for the 
prevention of carcinogenesis and metastasis. 

19. Concluding remarks 

In past few decades, molecular biologists and clinicians have 

characterized the cellular, molecular and immunological heterogene
ities of different cancers. This landscape is sequentially changing with an 
increasingly sophisticated appreciation of heterogeneity that pharma
ceutical targeting of JAK/STAT pathway will be advantageous in 
effective cancer therapy. Regulation of JAK/STAT pathway by non- 
coding RNAs has been shown to play a central role in reshaping the 
tumor microenvironment. This review gives a mechanistic overview of 
the interplay between non-coding RNAs and JAK/STAT pathway during 
different stages of cancer. LncRNAs regulated JAK/STAT pathway by 
different mechanisms and these interactions played a dominant role in 
the polarization of macrophages to M2 phenotype. Different STAT 
proteins have also been shown to control the expression of wide ranging 
lncRNAs. STAT signaling has also been shown to activate PD-L1/PD-1 
signaling and consequent loss of the activity of natural killer cells and 
CD4+/CD8+ T cells. Hence, oncogenic activities of STAT proteins can 
be pharmaceutically targeted for the inhibition of carcinogenesis and 
metastasis in tumor-bearing mice. Furthermore, targeting of oncogenic 
lncRNAs and circRNAs can be valuable for activation of antitumor 
immunological responses within tumor microenvironment. 
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Fig. 6. ZIP4 is a plasma membrane transporter. ZIP4 activates zinc-dependent transcriptional factor CREB and stimulates CREB-mediated upregulation of miR-373. 
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A.A. Farooqi et al.                                                                                                                                                                                                                              



Non-coding RNA Research 9 (2024) 1009–1022

1019

Declaration of competing interest 

The Authors declare that they do not have any conflict of interest. 

References 

[1] S. Wilmes, M. Hafer, J. Vuorio, J.A. Tucker, H. Winkelmann, S. Löchte, T. 
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