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Abstract: The inorganic component of hazelnuts was considered as a possible marker for geographical
allocation and for the assessment of technological impact on their quality. The analyzed samples
were Italian hazelnuts of the cultivar Tonda Gentile Romana and Turkish hazelnuts of the cultivars
Tombul, Palaz and Çakildak. The hazelnuts were subjected to different drying procedures and different
conservative methods. The concentration of 13 elements, namely Ba, Ca, Cu, Fe, K, Mg, Mn, Na,
Ni, P, Sn, Sr and Zn, were quantified by inductively coupled plasma optical emission spectroscopy
(ICP-OES). All the samples were previously digested in a microwave oven. Before proceeding with
the analysis of the samples, the whole procedure was optimized and tested on a certified reference
material. The results show that the inorganic component: (i) can represent a fingerprint, able to
identify the geographical origin of hazelnuts, becoming an important quality marker for consumer
protection; (ii) is strongly influenced by the treatments undergone by the investigated product during
all the processing stages. A pilot study was also carried out on hazelnuts of the cultivar Tonda Gentile
Trilobata Piemontese, directly harvested from the plant during early development to maturity and
analyzed to monitor the element concentration over time.
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1. Introduction

The hazelnut is a fruit widely used in the confectionery industry. It is grown worldwide,
but primarily in Turkey and Italy; Turkey produces 67% of the total, while Italy ranks second with
13% [1]. The remaining 20% of the production takes place in countries such as the USA, Spain,
Azerbaijan, Georgia, and Iran. The United States produces about 90% of their total national amount in
the Willamette Valley (Oregon), where they exclusively grow the Barcelona and Ennis varieties. In Spain,
hazelnuts are grown in Catalonia, and the most widespread cultivar is Negret, which is mainly used by
local industries.

Hazelnut cultivation occupies an important position in Italian agriculture, as Italy produces
different quality cultivars such as the Tonda Gentile Trilobata from Piedmont that gained the Protected
Geographical Indication (PGI) label under the name Nocciola Piemonte in 1996 from the European
Union (EU) [2]. The cultivar Nocciola Romana was awarded the Protected Designation of Origin (PDO)
mark in 2009, which refers in particular to the dried fruit, in shell or shelled forms, belonging to the
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species Corylus avellana, variety Tonda Gentile Romana and Nocchione, grown in the provinces of Rome
and Viterbo.

Nevertheless, in recent years, the production of hazelnuts has also quickly increased in other
countries due to large investments for improving agricultural techniques and the selection of new
cultivars. This situation has led to a competition between Italian hazelnuts and others, since the former
are more expensive, due to their appreciated sensory properties.

Most (90%) of the hazelnuts produced in the world are used in the confectionery industry, so it is
important to find a marker for quality authentication [3].

All aspects of the hazelnut have been studied for years; in particular, important studies were
carried out in order to find a better method for shelling the fruits [4,5], to minimize the loss of material,
for geographical characterization [6,7], and to evaluate the influence of fertilizers [8,9]. Besides,
monitoring the concentrations of aflatoxins, highly toxic secondary metabolites produced by fungi
present in hazelnuts [10], and analyzing the fatty acid composition [11] is essential. Significant works
have been done to evaluate the volatile components present in the aroma of hazelnuts and the influence
of roasting on the quality of the hazelnuts [12–14], while others were focused on authentication studies
on the basis of the content of lanthanides [15].

Hazelnuts were completely ignored in some studies of trace element level [16,17] surveys. In the
last two decades, the situation has gradually improved, with several reports focusing on essential and
trace elements in nuts and seeds becoming available [18,19].

This may reflect the increasing recognition of nuts and seeds as important sources of some essential
elements (e.g., B, Cu, Fe, Mn, Se and Zn) in human nutrition, especially for vegetarians [19,20], as well
as the growing popularity of various healthy diets (including the Mediterranean diet) that rely on
frequent use of these constituents.

Macroelement and microelement contents have been studied in hazelnuts [19,21] and similar
studies have been carried out in pine nuts [22,23], almonds [24] and nuts [9,25–28].

The aim of this work is to monitor the inorganic components in hazelnuts in order to: (i) evaluate
the possibility of using metal composition as a marker of product origin, and ii) to assess the impact
that different treatments (drying, storing, roasting) could have on hazelnut composition.

Different techniques are commonly used to assess hazelnut metal composition (i.e., atomic
absorption spectroscopy (AAS) [27–29], inductively coupled plasma mass spectrometry (ICP-MS) [30,31]
or ICP optical emission spectroscopy (ICP-OES) [19]). Other studies have performed the analysis
of hazelnuts for authentication purposes, using, for example, simple sequence repeats (SSR) [32,33],
near infrared spectroscopy (NIR) [34], two-dimensional gas chromatography fast scanning quadrupole
mass spectrometry [13] (GC–GC-QMS) or liquid chromatography [35] (LC-QqQ-MS/MS), in which
organic substances were determined, and ICP sector field mass spectrometry (ICP-SFMS) [28] and
1H-NMR [36].

In this study, attention was focused on the elements detectable using ICP-OES, namely Ba,
Ca, Cu, Fe, K, Mg, Mn, Na, Ni, P, Sn, Sr and Zn, to identify if their concentration is sufficient to
determine the origin of hazelnuts. Other techniques, such as ICP-MS, permit us to determine macro-
and microelements, rare earth elements, and isotopes, but require longer time, expert personnel and/or
higher cost with respect to ICP-OES.

Hazelnuts belonging to different cultivars, namely Italian hazelnuts from the Lazio region (cultivar:
Tonda Gentile Romana) and Turkish hazelnuts from the Ordu region (cultivars: Tombul, Palaz and Çakildak)
were considered in this work. The choice of these two types of samples was dictated by market needs:
Italian confectionery companies have to supplement local hazelnut production by purchasing foreign
hazelnuts, especially Turkish ones, to satisfy national needs. In these two countries, different drying
procedures were adopted. Samples were provided in order to assess whether the preservation
processes had the same impact on hazelnuts belonging to different cultivars and dried in different
ways. This aspect is very important to guarantee the quality of the final product independently of the
raw material used.
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Moreover, some samples were roasted in a laboratory to determine the effect of this process on the
inorganic component. Roasting is a crucial step in hazelnut processing, since it has positive effects
for food safety (e.g., reduction of allergenicity and aflatoxins, water activity [37,38], improved flavor
and color of kernels, and it leads to a desirable crunchy texture [39]). On the contrary, the roasting
process affects the composition of the raw fruits. Several papers have been published previously about this
aspect, but they are focused on sugars, organic acids, condensed tannins, free phenolic acids and fatty acid
profiles [40,41]. No study about the impact of this step on the hazelnut elemental composition is available.

This study was made possible thanks to the access granted by a local farmer: Italian hazelnuts
from the Piedmont region (cultivar: Tonda Gentile Trilobata Piemontese) were sampled directly from
the plant at different times during the period of ripening of the fruit to study the evolution of the
inorganic elements over time. Moreover, fruits harvested both in the middle of the plantation (Pm)
and on the roadside (Pr) were compared to see if road traffic is able to influence the concentration of
anthropogenic elements typically emitted by road traffic. The study on the Piedmont hazelnut samples
was added here to give a complete picture of all the aspects related to the content of metals and other
trace elements throughout the processing chain.

A chemometric analysis of the experimental results was performed by principal component
analysis (PCA).

2. Materials and Methods

Sample dissolution was performed in polytetrafluoroethylene (PTFE) bombs, with a Milestone
MLS-1200 Mega (Milestone, Sorisole, Italy) microwave laboratory unit.

Sample analyses were carried out with a Perkin Elmer Optima 7000 (Perkin Elmer, Norwalk,
CT, USA) inductively coupled plasma optical emission spectrometer (ICP-OES).

Analytical grade reagents were used throughout the experiments. Standard metal solutions were
prepared from concentrated Merck Titrisol stock solutions (Merck, Darmstadt, Germany).

High purity water (HPW) obtained from a Milli-Q apparatus (Millipore, Burlington, MA, USA)
was used for the preparation of samples as well as standard solutions.

2.1. Samples

2.1.1. Reference Material

Unfortunately, no certified reference materials of nuts are available on the market. In order
to check the accuracy of the experimental procedure and to assess the effect of vegetal matrices on
element determination, the Standard Reference Material (SRM) 1573a of the National Institute of
Standards and Technology (NIST), namely Tomato Leaves, was analyzed. The analyzed elements
were Al (598 ± 12 mg·kg−1), As (0.112 ± 0.004 mg·kg−1), B (33.3 ± 0.7 mg·kg−1), Ba (63 mg·kg−1),
Ca (5.05 ± 0.09%), Cd (1.52 ± 0.04 mg·kg−1), Co (0.57 ± 0.02 mg·kg−1), Cr (1.99 ± 0.06 mg·kg−1),
Cu (0.57 ± 0.02 mg·kg−1), Fe (368 ± 7 mg·kg−1), Hg (0.034 ± 0.004 mg·kg−1), K (2.70 ± 0.05%), Mg
(1.2%), Mn (246 ± 8 mg·kg−1), Na (136 ± 4 mg·kg−1), Ni (1.59 ± 0.07 mg·kg−1), P (0.216 ± 0.004%), Sb
(0.063 ± 0.006 mg·kg−1), Se (0.054 ± 0.003 mg·kg−1), Sr (85 mg·kg−1), V (0.835 ± 0.010 mg·kg−1), and Zn
(30.9 ± 0.7 mg·kg−1).

2.1.2. Main Study

Hazelnuts from Turkey, in particular from the Ordu region, belonging to the cultivars Tombul,
Palaz and Çakildak (designated as O-samples in this work), and from Italy, in particular from the
Lazio region, belonging to the cultivar Tonda Gentile Romana (designated as R-samples in this work),
were considered for the main study of this work. All the samples were provided by a confectionery
company. All samples had the same caliber, that is an average diameter of 13–15 mm.

The samples were subjected to a drying procedure. The hazelnuts from the Ordu region were
purchased from Turkey, so they were dried following the local tradition, i.e., the fruits were sun-dried
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in the field immediately after the harvest, typically at 30–35 ◦C in the local summer climate, for about
three weeks. The hazelnuts from Italy were dried by the producer in artificial driers at different
temperatures: one batch (R-D1) was dried at 35–40 ◦C (to simulate the drying conditions applied to
the Turkish hazelnut), while a second batch (R-D2) was dried at 15–20 ◦C following the procedure
commonly adopted by the Italian farmer.

By the time the hazelnuts arrive at the confectionery company, they have experienced five
different types of storage methods in which atmospheric conditions and temperature were varied:
(i) 3–8 ◦C/humidity: 60–70% (A-Method); (ii) 15–20 ◦C/humidity: 60–70% (B-Method); (iii) 3–8 ◦C/humidity:
air (C-Method); (iv) 15–20 ◦C /vacuum (D-Method); (v) temperatures below zero (E-Method).

The samples were analyzed as received from the farmer (T0) and after one, two and four months
in each type of storage from the company (T1, T2 and T4). The mass of the hazelnuts does not change
during the storage period.

The whole list of considered samples is reported in Table 1.

Table 1. O-samples and R-samples.

R-Samples

Drying 1

R-D1-T0

R-D1-AT1 R-D1-BT1 R-D1-CT1 R-D1-DT1 R-D1-ET1
R-D1-AT2 R-D1-BT2 R-D1-CT2 R-D1-DT2 R-D1-ET2
R-D1-AT4 R-D1-BT4 R-D1-CT4 R-D1-DT4 R-D1-ET4

Drying 2

R-D2-T0

R-D2-AT1 R-D2-BT1 R-D2-CT1 R-D2-DT1 R-D2-ET1
R-D2-AT2 R-D2-BT2 R-D2-CT2 R-D2-DT2 R-D2-ET2
R-D2-AT4 R-D2-BT4 R-D2-CT4 R-D2-DT4 R-D2-ET4

O-Samples
O-T0

O-AT1 O-BT1 O-CT1 O-DT1 O-ET1
O-AT2 O-BT2 O-CT2 O-DT2 O-ET2
O-AT4 O-BT4 O-CT4 O-DT4 O-ET4

R: Romana; O: Ordu; T0, T1, T2, T4: 0, 1, 2, 4 months of storage; A-B-C-D-E: storage methods.

2.1.3. Evaluation of the Roasting Step

The roasting conditions generally used for hazelnuts range from 100 ◦C to 160 ◦C for 10 min to
60 min [42,43]. In this study, some R and O samples were roasted for 15 min at 105 ◦C to evaluate the
effect of this process on the quality of the fruit (Table 2).

Table 2. Samples of roasted hazelnuts.

Roasted Samples

rR-D1-T0

rR-D1-BT4 rR-D1-CT4

rR-D2-T0
rR-D2-BT4 rR-D2-CT4

rO-T0
rO-BT4 rO-CT4

R: Romana; O: Ordu; T0, T1, T2, T4: 0, 1, 2, 4 months of storage; A-B-C-D-E: storage methods; r: roasted.
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All the hazelnuts were chopped before the digestion and analyzed in duplicate.

2.1.4. Pilot Study on the Trend of the Inorganic Content from Early Development to Maturity

A local company (located in the Piedmont region, Italy) allowed us to sample hazelnuts in their
fields. In this case, the fruit belongs to the cultivar Tonda Gentile Trilobata (designated as P-samples
in this study). The hazelnuts were collected monthly during the ripening of the fruit (from June to
September 2017). These samples were collected separately from trees situated in the middle of the
plantation (Pm) and on the roadside (Pr).

P-samples, with the exception of the hazelnuts collected in the first month which had no shell,
were shelled immediately after harvesting. All samples were dried in a laboratory stove for one hour at
60 ◦C, chopped, and then subjected to the same digestion and analysis procedures of the other samples.

2.2. Procedures

For the digestion, aliquots of 0.5 g of each sample were treated with 5 mL of a reaction mixture
composed of HNO3 and H2O2 (4:1), according to the literature [27].

Initially, the SRM sample was used to optimize the whole procedure. Regarding the digestion
step, the addition of a known amount of HPW (1 mL or 3 mL) to each aliquot of SRM in the vessel
before adding the digestion mixture [44] was tested. A known concentration of lutetium (Lu) was also
added to the SRM samples as an internal standard to correct the concentration obtained.

After the heating program (2 min at 250 W; 2 min at 0 W, 6 min at 250 W, 5 min at 400 W, 5 min
at 600 W) and ventilation step (25 min), the resulting solutions were filtered on Whatman Grade 5
cellulose filters and transferred into 50 mL Falcon tubes, where HPW was added to a final volume of
30 mL.

The solutions were analyzed by ICP-OES. The calibration was performed with standard solutions
prepared in aliquots of sample blanks diluted at the same ratios as the sample solutions. Standard
solutions were periodically analyzed and their signals were used to correct the drift of instrumental
sensitivity. The limits of detection (LoD) were estimated as three times the standard deviation of
the blank.

2.3. Chemometric Treatments

Principal component analysis (PCA) was carried out with the aid of the XLSTAT4.4 software
package (Addinsoft, Paris, France), a Microsoft Excel plug-in. Unscrambler X 10.2 (Camo Analytics,
Oslo, Norway) was employed for auto-scaling the dataset and for substituting values below LoDs with
estimated values.

3. Results

3.1. Choice of Experimental Conditions

In order to optimize the procedures used in this study, 0.5 g of SRM 1573a were digested with and
without wetting the sample with 1 mL or 3 mL of HPW before the addition of the HNO3/H2O2 mixture.
Moreover, the possible correction of the final element concentration with the recovery of the internal
standard (Lu) was also tested. Table 3 shows the recoveries obtained in the different experiments.

It is possible to observe that the best results were obtained by wetting the sample with 3 mL
of HPW; no improvement was observed by applying the internal standard correction. Therefore,
each sample was wet with 3 mL of HPW before the digestion and the addition of Lu was not performed.



Int. J. Environ. Res. Public Health 2020, 17, 447 6 of 14

Table 3. Recoveries (%) obtained analyzing Standard Reference Material (SRM) 1573a with
different procedures.

Element
Without Internal Standard Correction With Internal Standard Correction

0 mL 1 mL 3 mL 0 mL 1 mL 3 mL

Al 89.6 90.8 90 54.4 78.3 80.6
Ba 99.3 82.1 84.0 60.2 69.2 75.7
Ca 116 115 111 71.7 113 111
Cd 108 70.3 82.4 65.5 68.5 74.1
Co 122 75.4 79.1 74.1 60.9 71.0
Cr 107 68.3 80.8 64.7 65.6 72.6
Cu 114 90.8 91.2 112 75.8 82.1
Fe 110 86.5 88.4 66.6 72.7 79.6
K 116 112 111 90.1 119 119

Mg 128 97.7 101 69.8 96.4 99.6
Mn 116 90.2 92.3 70.1 75.6 83.1
Ni 109 56.2 66.3 65.9 47.3 59.7
P 118 99.6 101.9 77.6 84.7 91.7
Sr 114 74.8 88.3 70.0 72.8 79.6
V 104 56.1 58.4 63.3 49.0 52.0

Zn 132 78.6 94.5 80.2 75.8 85.1

3.2. Main Study

Table S1 (Supplementary Material) reports the concentrations of Ba, Ca, Cu, Fe, K, Mg, Mn, Na,
Ni, P, Sn, Sr and Zn in the analyzed samples. All of the concentrations are related to the dry weight.
The concentration of Co and Cr was below the LoD (0.08 mg·kg−1 and 0.03 mg·kg−1, respectively) in all
the samples. Firstly, the metal content measured for the O- and R-samples at T0, i.e., after the drying
step and before the storage step, was compared. A significant difference (by ANOVA) between the two
cultivars is observed: Turkish hazelnuts have a higher content of Ba and P, while Romana samples have
higher concentrations of Fe, K, Mn, Na, Sn and Sr. The only element for which the concentrations are
not significantly different is Cu.

By comparing R-samples after the two different drying procedures, it is possible to observe that
R-D2-samples show a higher concentration of Mn and, to a lesser extent, of Fe, Sn and Zn than R-D1,
while R-D1 presents a higher content of all the other elements examined.

By calculating the total amount of elements in the samples, it can also be noted that Romana
hazelnuts contain a higher metal content than Turkish ones. Applying an ANOVA test, no significant
differences were observed between the R-samples dried by the different procedures.

Tables S2–S6 and Tables S7–S16 report the composition of O- and R-samples at different storage
times for each type of storage method. The metal content measured at the corresponding T0 is also
reported to better observe possible variations during the storage time. A good storage procedure
should maintain the characteristics of the fresh hazelnuts, so no variation in term of macro- and
micronutrients is expected.

Figure 1 shows the results obtained for O-samples at the storage time T4, expressed as a percentage
in comparison to the concentration found at T0 (horizontal red line: 100%) in order to compare the
effect of each storage method.

Regarding O-samples, it is possible to see an increase of the metal content over the time for all
the storage methods (with the exception of Fe, Na and Sn for A-Method (3–8 ◦C/humidity: 60–70%)
and Zn for B-Method (15–20 ◦C/humidity: 60–70%). In the case of Ba, Ca, Cu, Mn, Ni, Sn and Sr, it is
possible to observe a marked increase with respect to the initial composition. The explanation for this
behavior is not obvious: a possible contamination of the samples from the packaging adopted during
the storage time may have occurred. Among these elements, Cu, Mn and Ni are well known for their
catalytic effect on the oxidation process, which can cause an oxidative rancidity of the hazelnuts.
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Figure 1. Concentration (%) of each element in the O-samples after four months of storage following
the different methods (A–E), expressed with respect to T0 (100%).

After applying an ANOVA test on the concentration found for O-T4 samples after the different
storage methods, only the concentrations of K, Sn and Zn were not significantly different in comparison
to O-T0, independently of the storage method adopted. The content of other elements varies randomly
depending on the conservative method used.

Regarding the R-samples, Figure 2 shows the concentrations in the T4-specimens, reported as a
percentage in comparison with the corresponding concentration in T0-samples.

The total metal content remains quite constant or seems to decrease over the time.
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Figure 2. Concentration (%) of each element in the R-samples after four months of storage following
the different methods (A–E), expressed with respect to T0 (100%).

In regards to the R-D1-samples, after applying an ANOVA: (i) the concentrations of K, Mg,
Na, P and Sn T4 samples were not significantly different from T0 for all the conservative methods;
(ii) the B-Method (15–20 ◦C/humidity: 60–70%) seems to be the best in order to preserve the inorganic
composition during storage; and (iii) the D-Method appears to be the worst storage procedure, as it
causes the greatest variation in the element concentrations.
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By applying an ANOVA on R-D2-T4 samples, it is possible to see that the concentration of
all elements, with the exception of Ca and Ni, were not significantly different independent of the
conservative method adopted. This behavior could be due to a better stabilization of the hazelnut
dried at a lower temperature compared to the other samples. On the contrary, it is possible to
observe that Ni, a catalyst of the rancidity processes, increases with all methods, except the D-Method
(15–20 ◦C/vacuum).

The A-Method (3–8 ◦C/humidity: 60–70%) seems to be the best, since the concentration of
12 elements in the T4 samples are not significantly different in comparison to D2-T0. It is not possible
to define which is the worse storage procedure, since each element has a characteristic trend.

In any case, at the quantitative level, it is difficult to determine which drying or storage procedure
should be taken as the optimum.

The experimental data obtained in this study were subjected to principal component analysis
(PCA). The biplot obtained by PCA is shown in Figure 3 (PC1 vs. PC2). The first and the second PCs
retain 55.45% and 16.95% of the total variance, respectively.

It is possible to observe a good separation of Italian and Turkish hazelnuts according to their
different inorganic composition: O-samples contain the highest levels of Ba, Ni and P, while R-samples
are characterized by high concentrations of Fe, K, Mg, Mn, Na, Sn and Sr.
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A very interesting result is the good separation of hazelnuts belonging to the same cultivar
(Romana), but subjected to different drying processes. This result shows the importance of this step
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during the shell life of the product, since it can influence the final composition of the hazelnuts.
In particular, using D1 (35–40 ◦C) results in an increase of the concentration of Ca, Mg and Zn and a
decrease of the concentration of Mn, with respect to the use of D2 (15–20 ◦C).

3.3. Roasted Hazelnuts

Tables S17–S19 report the composition of roasted and not roasted samples, stored with method B
and C at T0 and T4 for O- (S17), RD1- (S18) and RD2- (S19) samples. In regard to roasted hazelnuts,
in the case of rO-samples, there is a significant discrepancy between the concentration of K and P
found in roasted and non-roasted samples. It is possible to observe that the concentration of K and Mn
doubles in the roasted samples, while the opposite behavior is observable for Ba and P. The decrease
in the concentration of Ba and P after the roasting process could be explained by a greater affinity
of these elements for the oily phase, which is lost during this treatment. The increase of K and Mn
concentrations is difficult to explain [45], but the same behavior of K was observed by Adelakun et al.
in roasted okra seeds [46]. No differences in the element concentrations were observed among the
samples subjected to the different storage methods. This could indicate that the different conservative
processes do not have any effect on the subsequent roasting. Obviously, this behavior should be
verified by analyzing a higher number of samples. In the case of rR-(D1 and D2)-samples, pre- and
post-roasting concentrations are not significantly different (by ANOVA test). The roasting process is a
very important step in the shelf life of the hazelnuts, since it enhances and confers the organoleptic
properties of the product, but it is also important that the nutritional value of the fresh nuts is not
altered during this step. Romana hazelnuts seem to maintain their original composition better than the
Turkish ones. This behavior seems to be different from that observed for other chemical parameters
(proximate composition, fatty acids, total polyphenols, antioxidant activity, and protein fingerprint by
SDS-PAGE) investigated in samples of Tonda Gentile Trilobata from Italy and from Chile, Tonda di Giffoni
from Italy, and Tombul from Turkey by Locatelli et al. [11]. In their study, no differences were observed
depending on the hazelnut origin.

In this study, the loss of lipid content was not considered: roasting slightly increased the oil
extractability, but this increment was not significant in laboratory tests. As reported from other
researchers [47], the impact of the industrial process would presumably be stronger than that of
experimental laboratory roasting adopted in scientific studies, causing a higher damage of membranes
and/or higher protein denaturation. In any case, the final concentrations refer to the weight of each
sample after roasting to value the variation in the final product.

3.4. Pilot Study

The concentrations measured in P-samples collected monthly from the plant during their ripening
are reported in Table S20 (hazelnuts sampled in the middle of plantation, Pm) and Table S21 (hazelnuts
sampled on the roadside, Pr). No differences can be observed among the trends of the inorganic
content obtained for Pm and Pr samples. We applied an ANOVA to our data that shows that the
hazelnuts sampled on the roadside in the first month contain a significantly higher concentration of
eight elements than those found in Pm samples. This difference was not observed in the hazelnuts
sampled during the following months. This behavior reflects the fact that during the first month,
the fruit does not possess a shell and is therefore more influenced by the dust composition. In any case,
the proximity of the plant to the road does not seem to affect the inorganic composition of the final
product. The road near the hazelnut plants is affected only by light traffic, so the input of metals from
traffic is low. We conclude that the metals contained in hazelnuts are mainly derived from the soil.

Figure 4a,b show the trends of macro- and microelements, respectively, for hazelnuts sampled on
the roadside. From the first to the second sampling, the concentrations of all the analytes increase.
After the second month, it is possible to observe a decrease in element concentrations, probably caused
by a loss of water and the formation of the shell; then, the inorganic content remains quite constant.
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This behavior is in agreement with the results reported by Seyan et al. [48]. The concentrations of Co
and Cr remain unvaried throughout all time points.
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during the development of plants in hazelnuts sampled monthly on the roadside.

A comparison among P-samples and the other cultivars is difficult, since the former were
analyzed immediately after the harvest, while O- and R-samples were subjected to drying. The element
concentrations found in P-samples harvested at four months was comparable with the concentrations
of R-samples, since all Piedmont hazelnuts contain a high level of Fe, K, Mn, Na, Sn and Sr. P-samples
are also characterized by high levels of Cu and Ni and by a detectable concentration of Co and Cr.
These metals (in particular Ni and Co) probably have geogenic origin, since they derive from the
composition of the ultramafic soils widespread in Piedmont [49]. Figure S1 shows the biplot obtained
by PCA in which four-month P-samples were added to the dataset of the other cultivars. The first and
the second PCs retain 49.64% and 22.29% of the total variance, respectively. Obviously, the number of
P-samples should be increased to be representative, but from this preliminary treatment, is possible to
observe a good separation of not only Italian and Turkish hazelnuts, but also of hazelnuts belonging to
different Italian cultivars. Moreover, is possible to see that R-samples are grouped together (D1 and
D2), showing that the elemental composition could be a good fingerprint of each cultivar even after
industrial treatment. This confirmed the results reported by Locatelli et al. [11] for other analytes;
even if the different processes modify the chemical profile of hazelnuts, this preliminary study suggests
that the identification of their origin is still possible.
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4. Conclusions

This study has shown how hazelnuts belonging to different cultivars have a well-defined
composition from the point of view of inorganic elements. In particular, the samples belonging to
Romana cultivars and coming from the Ordu region differ mainly in the concentration of macroelements.
The Romana hazelnuts are richer in Ca, Fe, K, Mn, Na, Sn, Sr than the Turkish ones, which have higher
concentrations of other elements (mainly P and Ba).

Moreover, the treatment and processes involved during the storage and shelf life of the hazelnuts
influence the composition of the fruit. In regard to drying processes, it is difficult to assess their specific
effect since the three processes (one for O-hazelnuts and two for R-hazelnuts) examined are different
and they were applied to hazelnuts belonging to two different cultivars. In any case, the applied
temperature and the duration of this step seem to cause a modification of the hazelnut composition
during the storage time. Indeed, it is possible to observe that, regardless of the adopted storage method,
the Romana hazelnuts dried using the D1 method retain their original concentration of K, Mg, Na,
P and Sn over time independently of the method adopted. Drying at a lower temperature (D2) in
combination with the A-Method seems to be the best, since the hazelnuts appear to better preserve
their nutritional power and quality. Unfortunately, after storage, D2 samples show generally higher
concentrations of Ni, a catalyst of the self-oxidative process of the hazelnut, which causes rancidity.

Through the chemometric treatment of the data, a good separation between Ordu and Romana
samples was obtained according to their different inorganic composition. The element concentrations
depend on the type of cultivar and the environmental conditions (such as soil, water and temperature).
Moreover, it is interesting to observe that Romana hazelnuts are grouped on the basis of the
drying procedure adopted. No separation was observed among the samples subjected to different
storage methods.

In regard to the effect of the roasting process, Romana hazelnuts seem to maintain their original
composition better than Turkish ones. This behavior seems to be different from that observed for
other chemical parameters, for which no differences were observed in samples pre- and post-roasting
depending on the hazelnut’s origin.

Regarding the pilot study carried out on Piedmont hazelnuts, it was possible to appreciate a
common trend of the concentration of the inorganic component during their growth: most elements
increased during the first months of development, then decreased and finally remained approximately
constant until complete maturation. Piedmont hazelnuts have a high K content and a composition
similar to that of the other Italian cultivars considered in this study. No influence from vehicular traffic
was observed, since no differences between the composition of hazelnuts sampled from plants located
in the middle of the field and plants located near to the roadside were observed.

In conclusion, the inorganic component detectable with ICP-OES can be considered a good
marker for the recognition of the origin and quality of hazelnuts. Moreover, even if the different
processes modify the inorganic profile of hazelnuts, this preliminary study suggests that the statistical
identification of the cultivar is still possible. The metal content has to be monitored to evaluate loss
of nutrients and, on the contrary, possible contamination during all the steps of the shelf life of the
product; that is, from the beginning (environment conditions in which the hazelnuts are grown),
during the process (to monitor the effect of the different treatments and manipulations), and at the end
(in the final product).

Future work will include: (i) the analysis of hazelnuts of the same cultivar grown in different
areas to assess the impact of soil composition, the climate, proximity to the sea and various agricultural
techniques on the inorganic composition; (ii) the analysis of hazelnuts of different cultivars grown in
the same area and sampled in the same year to evaluate the different element absorption capacity of
each cultivar; (iii) the study of the effect of roasting step conditions (time, temperature) on the element
profile of hazelnuts belonging to different cultivars.
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and T4; Table S20: Concentration of elements (mg·kg−1) in Pm samples; Table S21: Concentration of elements
(mg·kg−1) in Pr samples; Figure S1: Biplot obtained by PCA (PC1 vs. PC2) including hazelnuts from Piedmont in
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9. Kafaoğlu, B.; Fisher, A.; Hill, S.; Kara, J. Chemometric evaluation of trace metal concentrations in some nuts
and seeds. Food Addit. Contam. Part A 2014, 31, 1529–1538. [CrossRef]

10. Prelle, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Aflatoxin monitoring in Italian hazelnut products by
LC-MS. Food Addit. Contam. Part B 2012, 5, 279–285. [CrossRef]

11. Locatelli, M.; Coisson, J.D.; Travaglia, F.; Bordiga, M.; Arlorio, M. Impact of Roasting on Identification of
Hazelnut (Corylus avellana L.) Origin: A Chemometric Approach. J. Agric. Food Chem. 2015, 63, 7294–7303.
[CrossRef]

http://www.mdpi.com/1660-4601/17/2/447/s1
www.fao.org/faostat
http://dx.doi.org/10.1021/acs.jafc.6b04433
http://www.ncbi.nlm.nih.gov/pubmed/27933993
http://dx.doi.org/10.1016/j.jfoodeng.2013.09.027
http://dx.doi.org/10.1016/j.biosystemseng.2014.10.002
http://dx.doi.org/10.1016/j.foodchem.2013.10.001
http://dx.doi.org/10.1002/jsfa.6911
http://dx.doi.org/10.1080/19440049.2014.947331
http://dx.doi.org/10.1080/19393210.2012.711371
http://dx.doi.org/10.1021/acs.jafc.5b03201


Int. J. Environ. Res. Public Health 2020, 17, 447 13 of 14

12. Burdack-Freitag, A.; Schieberle, P. Changes in the Key Odorants of Italian Hazelnuts (Coryllus avellana L. Var.
Tonda Romana) Induced by Roasting. J. Agric. Food Chem. 2010, 58, 6351–6359. [CrossRef] [PubMed]

13. Cordero, C.; Liberto, E.; Bicchi, C.; Rubiolo, P.; Schieberleb, P.; Reichenbachc, S.E.; Tao, Q. Profiling
food volatiles by comprehensive two-dimensional gas chromatography coupled with mass spectrometry:
Advanced fingerprinting approaches for comparative analysis of the volatile fraction of roasted hazelnuts
(Corylus avellana L.) from different origins. J. Chromatogr. A 2010, 1217, 5848–5858. [PubMed]

14. Marzocchi, S.; Pasini, F.; Verardo, V.; Ciemniewska-Zytkiewicz, H.; Caboni, M.F.; Romani, S. Effects of
different roasting conditions on physical-chemical properties of Polish hazelnuts (Corylus avellana L. Var.
Katalonski). LWT Food Sci. Technol. 2017, 77, 440–448. [CrossRef]

15. Oddone, M.; Aceto, M.; Baldizzone, M.; Musso, D.; Osella, D. Authentication and Traceability Study of
Hazelnuts from Piedmont, Italy. J. Agric. Food Chem. 2009, 57, 3404–3408. [CrossRef] [PubMed]

16. Santos, E.E.; Lauria, D.C.; Porto da Silveira, C.L. Assessment of daily intake of trace elements due to
consumption of foodstuffs by adult inhabitants of Rio de Janeiro city. Sci. Total Environ. 2004, 327, 69–79.
[CrossRef] [PubMed]

17. Lombardi-Bocca, G.; Aguzzi, A.; Cappelloni, M.; Di Lullo, G.; Lucarini, M. Total-diet study: Dietary intakes
of macro elements and trace elements in Italy. Br. J. Nutr. 2003, 90, 1117–1121. [CrossRef]

18. Pereira-Lorenzo, S.; Ramos-Cabrer, A.M.; Diaz-Hernandez, M.B.; Ciordia-Ara, M.; Rioz-Mesa, D. Chemical
composition of chestnut cultivars from Spain. Sci. Hortic. 2006, 107, 306–314. [CrossRef]

19. Momen, A.A.; Zachariadis, G.A.; Anthemidis, A.N.; Stratis, J.A. Use of fractional factorial design for
optimization of digestion procedures followed by multi-element determination of essential and non-essential
elements in nuts using ICP-OES technique. Talanta 2007, 71, 443–451. [CrossRef]

20. Bond, B.; Fernandez, D.R.; VanderJagt, D.J.; Williams, M.; Huang, Y.S.; Ghuang, L.T.; Millson, M.; Andrews, R.;
Glew, R.H. Fatty acid, amino acid and trace mineral analysis of three complimentary foods from Jos, Nigeria.
J. Food Comp. Anal. 2005, 18, 675–690. [CrossRef]

21. Cevik, U.; Celik, N.; Celik, A.; Damla, N.; Coskuncelebi, K. Radioactivity and heavy metal levels in hazelnut
growing in the Eastern Black Sea Region of Turkey. Food Chem. Toxicol. 2009, 47, 2351–2355. [CrossRef]

22. Gomez-Ariza, J.L.; Arias-Borrego, A.; Garcıa-Barrera, T. Multielemental fractionation in pine nuts (Pinus
pinea) from different geographic origins by size-exclusion chromatography with UV and inductively coupled
plasma mass spectrometry detection. J. Chromatogr. A 2006, 1121, 191–199. [CrossRef]

23. Gomez-Ariza, J.L.; Arias-Borrego, A.; Garcıa-Barrera, T. Combined use of total metal content and size
fractionation of metal biomolecules to determine the provenance of pine nuts (Pinus pinea). Anal. Bioanal.
Chem. 2007, 388, 1295–1302. [CrossRef] [PubMed]

24. Prats-Moya, S.; Grane’-Teruel, N.; Berenguer-Navarro, V.; Luisa Martin-Carratala, M. Inductively Coupled
Plasma application for the classification of 19 almond cultivars using inorganic element composition. J. Agric.
Food Chem. 1997, 45, 2093–2097. [CrossRef]

25. Rodushkina, I.; Engströma, E.; Sörlinb, D.; Baxterb, D. Levels of inorganic constituents in raw nuts and seeds
on the Swedish market. Sci. Total Environ. 2008, 392, 290–304. [CrossRef] [PubMed]
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