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Introduction

Aortic dissection (AD), characterized by tears in the aortic 
wall, is one of the most detrimental cardiovascular diseases. 
Based on the Stanford classification method, type A aortic 
dissection (AAD) involves the ascending aorta, while type B 
aortic dissection involves the descending aorta. AAD carries 
a high risk of mortality and morbidity (1). Epidemiological 
studies have shown that the death rate of untreated patients 
with AAD is 50% (36–72%) within 48 hours (2). Despite 
continuous advances in diagnostic methods, operative 
techniques, and perioperative care, AAD remains a major 

unresolved cardiovascular surgical challenge (3). A further 
understanding of the potential regulatory pathways and 
mechanisms of AAD may provide new insights into 
therapeutic strategies.

Previous studies have found unique microRNAs 
(miRNAs) and genes that may underlie the pathogenesis of 
AAD. Several miRNA-gene interactions and mechanisms 
in the development of AAD through combining miRNA 
and messenger RNA (mRNA) microarrays have been 
demonstrated with in vitro validation (4). MiRNA-320 
was found to downregulate the expression of matrix 
metalloprotein by macrophages in AD patients (5). 
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Although there are an increasing number of AAD related 
transcriptome profiles, there is no current comprehensive 
bioinformatics analysis to summarize the existing data.

Therefore, after searching for AAD gene expression 
datasets in the public database: Gene Expression Omnibus 
(GEO), and ArrayExpress, two microarray datasets were 
included in our study. Weighted gene co‑expression 
network analysis (WGCNA) was used to construct a co-
expression network, and the highly preserved modules with 
genes from the two datasets were selected. The MetaDE 
method in R language, which can conduct 12 primary meta-
analysis methods (6), was implemented for identifying the 
differentially expressed genes (DEGs). After overlapping 
these significant consistency genes and the DEGs, we 
then further selected the differentially expressed miRNAs 
(DEmiRNAs). Subsequently, the interactions among the 
DEGs and DEmiRNAs were predicted and followed this 
with functional analysis of the genes. The in‑depth analysis 
conducted in this study may provide novel insights into 
the pathogenesis of AAD, along with new biomarkers and 
therapeutic targets for human AAD. We present the following 
article in accordance with the MDAR reporting checklist 
(available at http://dx.doi.org/10.21037/jtd-20-1337).

Methods

Microarray data

This work used the public microarray data and does not 
include any human tissue. The ethical approval was not 
necessarily required.

We searched for the microarray data of AAD patients in 
the National Center for Biotechnology Information (NCBI) 
GEO (http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress 
(https://www.ebi.ac.uk/arrayexpress/). The inclusion criteria 
were as follows: (I) samples in the dataset were collected 
from the aorta; (II) the samples included AAD patients and 
healthy controls; (III) the dataset was based on human gene 
expression profiles. Two datasets, GSE98770 (n=11; DA, 6; 
control, 5), and GSE52093 (n=12; DA, 7; control, 5) that 
met the criteria were included in the present study.

For preprocessing of raw data, both datasets were 
downloaded from the NCBI GEO website and subsequently 
preprocessed using R software. The annotation and clinical 
traits information were downloaded using GEOquery 
package (7).

For the specific data preprocessing of GSE52093, 
we used the Illumina HumanHT-12 V4.0 platform, 

retrained the probes with detection P value less than 0.05 
in more than 6 samples, and normalized by the oligo  
package (8). We preprocessed the GSE98770 gene and 
miRNA expression profile using the method for Agilent data 
in the limma package (9). After excluding the probes that are 
unable to be annotated, we combined the probes annotated 
with the same genes using the median method. Then, 
GSE52093 gene expression data was log2‑transformed to 
achieve an approximate healthy distribution.

WGCNA construction and module selection process

WGCNA package (10) was required for the co-expression 
network construction. Firstly, we selected 5000 common 
genes with the most variance in both the GSE52093 and 
GSE98770 gene expression datasets. After evaluating 
the correlations between the two datasets using the 
verboseScatterplot function, we calculated the soft 
threshold value based on a scale-free topology criterion in 
GSE52093 (scale-free R2 =0.9). The weighted adjacency 
matrix was constructed using the soft-thresholding power. 
Relationships between one gene and all the other genes in 
the analysis were incorporated, and the adjacency matrix 
was transformed into the topological matrix (TOM). 
Subsequently, a hierarchical clustering analysis (6) of genes 
was performed using 1‑TOM as the distance measure. 
To acquire a small number of large modules, modules 
were detected using a dynamic tree cut algorithm with a 
minimum module size of 50 and a minimum cut height 
of 0.99. Furthermore, module preservation between the 
two datasets was measured using the specific function of 
the WGCNA software package (10). After the clinical 
information was imported into the co-expression network, 
the module eigengene (ME) was calculated. ME is 
representative of the gene expression profiles in a module, 
illustrating the average expression level of genes in the 
module. The module could serve as a candidate if it had a 
high correlation value between ME valve and the clinical 
trait (10). We measured the correlation between the 
modules and clinical traits of samples such as gender and 
AAD by Pearson’s correlation analysis. Only the modules 
with both high preservation and high correlation were 
exported for further analysis.

Identification of DEGs and miRNAs (DEmiRNAs)

DEGs in the selected modules between AAD and 
healthy samples were screened in both datasets using 

https://www.ebi.ac.uk/arrayexpress/
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the MetaDE package (11), which can utilize multi-core 
parallel processing for fast computation while generating 
informative outputs and visualization plots. We compared 
four meta methods [maxP, Fisher, roP, and adaptively 
weighted, (AW)] and chose the one that had the most DEGs 
identified. The threshold for DEGs was set as P<0.01 and 
the false detection rate was set as <0.01 (11). Principal 
component analysis (PCA) was performed for the miRNAs 
using factoextra package (12) before the DEmiRNAs 
were identified using Limma R package (9) between AAD 
and healthy samples. Correction for multiple testing was 
performed with the Benjamini-Hochberg (BH) method. 
DEmiRNAs were selected if the P value is less than 0.05. and 
heatmaps were generated using the pheatmap package (13).

Gene set enrichment analysis (GSEA) and gene set 
variation analysis (GSVA) on the selected modules

The GSEA desktop application was downloaded from 
GSEA website (http://software.broadinstitute.org/gsea/
index.jsp) (14) and was used to associate the potential 
gene signature sets by comparing the AAD to the healthy 
samples. The expression profile of DEGs in selected 
modules of GSE52093 was exported and analyzed with 
version 4.0.3 of GSEA. The normalized enrichment 
score (NES) is the primary statistic for examining gene 
set enrichment results, and the nominal P value estimates 
the statistical significance of the enrichment score and 
therefore a gene set with nominal P≤0.05 was considered 
to be significantly enriched. We also used the GSVA in the 
R package GSVA (15) to explore variation in higher-order 
molecular traits. GSVA defines a set of synthetic traits based 
on a list of gene ontology (GO) terms. We chose the “h.all.
v7.0.symbols.gmt” gene sets downloaded from “Molecular 
Signatures Database” as our terms. Each gene set’s value 
represents the extent to which genes labeled with a specific 
term tend to be up- or downregulated in that sample, with 
measurement being taken using a Kolmogorov–Smirnov-
like random walk statistic. Coordinated regulation of 
genes in the same pathway or involved in similar processes 
is evidence for changes in the activity of specific cellular 
functions.

The construction of the DEmiRNA-DEG network

We predicted the DEmiRNA-DEG interactions using 
miRTarVis+ v.0.8.11 (http://sehilyi.com/mirtarvisplus/) (16) 

which implemented prediction algorithms based on both 
sequence and expression profile data and supports the 
two most cited sequence-based miRNA target prediction 
algorithms, TargetScan (17) and microRNA.org (18). After 
loading the expression profile of the DEGs of the selected 
modules and DEmiRNAs online, we obtained the common 
DEmiRNA-DEG interactions using both TargetScan 
and microRNA.org algorithms. The predicted genes 
were imported into STRING 11.0 (https://string‑db.
org/) to construct a protein‑protein interaction (PPI) 
network. Both the PPI and DEmiRNA-DEG interactions 
were downloaded and visualized in Cytoscape. 3.7.2  
software (19). We implemented the yFiles Layout 
Algorithms app (https://www.yworks.com/products/
yfiles-layout-algorithms-for-cytoscape) to construct a 
circular layout. In the network, a node represents a gene 
or a miRNA; the undirected link between two nodes is 
an edge, denoting the interaction. The degree of a node 
corresponds to the number of gene to gene or gene to 
miRNA interactions in the network.

Function annotation and pathway enrichment analysis

To elucidate the possible biological roles of the selected 
genes, GO functional and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses 
were performed using the clusterprofiler package (20). 
We focused on the GO terms biological process (BP). We 
analyzed the results with the Benjamini-Hochberg’s false 
discovery rate (FDR) correction, with the P=0.05 set as 
the significant difference threshold indicating a significant 
difference for GO terms. The results for KEGG pathway 
analysis were obtained with STRING 11.0 (https://
string‑db.org/).

Results

Preprocessing and clinical traits of included datasets

As illustrated in Figure 1, we downloaded and normalized 
the gene expression data using the aforementioned 
method. The expression profiles after normalization 
were demonstrated in Figure S1. We summarized the 
clinical traits of clustered samples as dendrograms  
(Figure 2A,B). Male patients constituted most of our study, 
and the GSM1259277 sample in GSE52093 was excluded 
from further analysis as an outlier. The median age for 
GSE98770 was 53, however GSE52093 was lacking such 

http://sehilyi.com/mirtarvisplus/
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information.

Identification of highly preserved WGCNA modules

Using WGCNA analysis processing, our study attempted 
to identify co‑expression modules with high preservation in 
the GSE52093 and GSE98770 and strong AAD association. 
First, we assessed the correlation of average gene expression 
and overall connectivity between the two datasets. The 
correlation coefficients of genes were 0.56 with P values 
<1×10−200 and the connectivity was 0.099 with P value 
2.3×10−12 (Figure S2), which suggests that our datasets were 
suitable for further analysis. Then, we set the parameter 
“deepSplit” =0 to achieve a small number of large modules 
(Figure S3). In the GSE52093 dataset, 11 modules are 
identified as the training set and were reconstructed as 
a validation set in the GSE98770 dataset (Figure 2C,D). 

These modules are illustrated in the branches of the 
dendrogram with unique colors (Figure 2C,D). We plotted 
the multi‑dimensional scaling (MDS) and heatmap of 
expression data based on modules in the GSE52093 dataset, 
demonstrating that each module has unique expression 
patterns (Figures S4,S5). In 5 of the 11 modules, only the 
blue and yellow modules were well preserved, with Z‑scores 
>10 and including 787 genes (Table 1). The correlation 
analysis also revealed that blue and yellow modules were 
highly correlated with disease state with r=0.91 and −0.63, 
respectively, and both P values =0 (Table 1). Thus, the blue 
and yellow modules were selected for further analysis.

Screening for DEGs in blue and yellow modules and 
DEmiRNAs

After comparing the four statistical methods, we chose 

Microarray data downloading and preprocessing

DEGs in blue and yellow modules

Highly conservative modules

G5E52093 mRNA G5E98770 mRNA G5E98770 miRNA

WGCNA analysis Demeta analysis

DEGs

DEmiRNAS

miRVisTar+

DEGs analysis GO analysis PPI analysis
DEmiRNA-DEGs 

lntera ctions

Figure 1 Flow chart diagram for analysis process. WGCNA, weighted gene co‑expression network analysis; DEGs, differentially expressed 
genes; DEmiRNAs, differentially expressed miRNAs; GO, Gene Ontology; GSEA, gene set enrichment analysis; PPI, protein-protein 
interaction.
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Figure 2 Dendrogram and clustering for genes and samples in two datasets. (A,B) The disease state, gender, and age state for samples. (C,D) 
The clustering of genes based on 11 modules.

Sample dendrogram and clinical trait of GSE52093

Gene dendrogram and module colors GSE52093 Gene dendrogram and module colors GSE98770

Sample dendrogram and clinical trait of GSE98770
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Table 1 The preservation and correlation with disease for each module

Modules Module size Z score Correlation with disease state P value

Yellow 226 19.87 −0.63 0

Blue 585 18.43 0.91 0

Green 213 9.75 0.17 4×10−30

Black 138 7.77 −0.88 0

Turquoise 1,727 7.72 −0.78 0

Red 182 7.51 0.41 6×10−183

Magenta 94 7.35 −0.14 3×10−22

Brown 249 6.65 0.84 0

Purple 78 2.68 −0.20 6×10−41

Pink 102 2.64 0.71 0

Grey 833 2.30 0.84 0
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Fisher’s  method to identify the DEGs. Of DEGs  
(Figure S6), 139 genes were in the yellow module, and 
356 were in the blue module (Figure 3A). For miRNAs, 
we found a good distinguished miRNA expression pattern 
between the AAD and the healthy samples based on PCA 
analysis (Figure S7). We identified 46 DEmiRNAs and two 
heatmaps for these DEGs and these DEmiRNAs are visible 
in Figure 3B,C,D.

GSEA and GSVA

To further clarify the possible mechanisms of related DEGs 
in the blue and yellow modules, we performed GSEA 
analysis. As shown in the Table 2, for the AAD phenotype, 
GSEA analysis suggested that the genes in the blue module 
were enriched in gene sets such as GSE3982 Cent Memory 
CD4 T cell vs. Th1 DN, breast cancer basal up, GO 
negative regulation of hydrolase activity, TNF response 
not via p38 and GO DNA repair. Meanwhile, the yellow 

module was enriched in GO epithelium development, 
regulation of anatomical structure morphogenesis, GO 
regulation of vasculature development, GO negative 
regulation of response to stimulus and regulation of 
vasculature development, although some of the nominal P 
values suggested the enrichments were insignificant. Using 
GSVA, we considered the varying expression levels of these 
DEGs and found their biological roles in several other 
gene sets to be significant (P<0.001) (Figure 4). The up-
regulated gene sets in the AAD samples included hypoxia, 
G2M checkpoint, PI3K/AKT motor signaling, and reactive 
oxygen species pathway. Meanwhile, the notch and KARS 
signaling pathways were down-regulated in AAD samples.

Construction of DEmiRNA-DEGs network

We uploaded the expression profile of the DEGs in the blue 
and yellow modules and DEmiRNAs to the miRTarVis+ 
website, and set it so that only the opposite direction 

Figure 3 Heatmaps for genes and miRNAs. (A) Corresponding DEGs number for each module. (B) Heatmap of DEGs in GSE52093. 
(C) Heatmap of DEGs in GSE98770. (D) Heatmap of DEmiRNAs in GSE98770. DEGs, differentially expressed genes; DEmiRNAs, 
differentially expressed miRNAs; AAD, Stanford type A dissection.
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between DEmiRNAs and DEGs to be presented. In 
microRNA.org and TargetScan database, 320 and 39 pairs 
of interactions were respectively detected. There were 25 
common pairs of DEmiRNA-DEGs and 13 pairs of DEGs 
identified. The comprehensive interactions between 6 
DEmiRNAs and 23 DEGs are illustrated in Figure 5. The 
genes in the blue module, which were outlined as a diamond 

and consistently upregulated, while the genes in the yellow 
module, which were rectangles, were down-regulated. 
Interestingly, the opposite expression level of hsa-miR-
199b-5p and hsa-miR-199a-5p were identified. Meanwhile, 
the has-miR-199b-5p was the most connected miRNA (7 
degrees) while IGF-1, TEK, KIT, and hsa-miR-152 all 
interacted with 6 other nodes.

Table 2 The results of gene set enrichment analysis (GSEA)

Module Name Size ES NES Nominal P value

Blue GSE3982 cent memory CD4 T cell vs. Th1 DN 17 0.65 1.54 0.00

Blue SMID breast cancer basal up 41 0.54 1.45 0.01

Blue GO negative regulation of hydrolase activity 16 0.57 1.54 0.01

Blue PHONG TNF response not via p38 23 0.53 1.30 0.04

Blue GO DNA repair 23 0.60 1.39 0.15

Yellow GO epithelium development 15 0.39 1.09 0.40

Yellow GO regulation of anatomical structure morphogenesis 22 0.30 1.02 0.41

Yellow GO regulation of vasculature development 15 0.31 0.95 0.48

Yellow GO negative regulation of response to stimulus 25 0.28 0.93 0.51

Yellow GO negative regulation of signaling 19 0.30 0.90 0.57

GO, Gene Otology; ES, enrichment score; NES, normalized enrichment score; TNF, tumor necrosis factor.

Figure 4 Heatmap of GSVA result. AAD, Stanford type A dissection; GSVA, gene set variation analysis; DEGs, differentially expressed 
genes.
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Function annotation and pathway enrichment analysis

In our study, GO analysis was used to perform the biological 
process analysis of the DEGs. As shown in Table 3, DEGs 
are highly enriched in biological processes such as epithelial 
cell proliferation, and positive regulation of vasculature 
development. We also performed KEGG pathways analysis, 
which found hypoxia-inducible factor 1 (HIF1) pathway to 
be highly enriched (Table 4). Pathways such as breast cancer, 
Rap1 signaling pathway, and Ras signaling pathway were 
also enriched.

Discussion

Our study attempted to investigate the underlying 
pathogenic mechanisms of AAD by way of a comprehensive 
analysis of two GEO datasets, which contained AAD 
samples and healthy samples. In the WGCNA analysis, 
we identified two modules with high preservation in both 
datasets. Furthermore, our team identified the DEmiRNAs 
and DEGs in these two modules. By the expression of 
DEGs, we gained a comprehensive result showing the 
pathways they are involved in using GSEA and GSVA. An 
interaction network was constructed with 6 DEmiRNAs 
and 23 DEGs and functions of DEGs were annotated. 

Notably, the DEGs were highly concentrated in biological 
processes like regulation of vasculature development, 
positive regulation of vasculature development, and the 
HIF1 signaling pathway.

Interestingly, we found that in the regulatory network, 
the 23 DEGs in different modules had a distinctive 
expression profile, with up-regulated expression in the 
blue module and down-regulated expression in the yellow 
module. This result was partly expected since WGCNA 
analysis clusters the genes with similar expression profiles 
into one module. Nonetheless, regarding to the GSEA 
analysis, the blue module was highly enriched in the TNF 
response not via the p38 gene set, which suggests that the 
genes whose expression was altered in Calu-6 cells (lung 
cancer) by TNF-α were not affected by p38 inhibitor 
LY479754 (21). This gene set was generated from a study 
that asserted that despite p38 mitogen-activated protein 
kinase (MAPK) being activated after TNF-α stimulation, 
resulting in G2 DNA damage checkpoint-mediated cell 
cycle arrest, its activity is not necessary for the activation 
or maintenance of the G2 DNA damage checkpoint after 
inhibition. These pathways vary significantly in GSVA 
results with respect to the G2M checkpoint, TNF-α 
signaling via nuclear factor κB (NFκB), and DNA repair 
gene sets up-regulated in AAD samples compared with 
healthy samples. In other words, the function of the blue 
module highly correlates to the upregulation of cell cycle 
arrest through a pathway other than via MAPK. A similar 
mechanism was discovered by Rajan  et al. (22), who showed 
that NFκB, but not p38 MAPK, is required for TNF-α-
induced expression of cell adhesion molecules in endothelial 
cells (22).

On the other hand, the yellow module highly correlated 
with the negative regulation of vasculature development, 
which might be the consequence of the cell cycle arrest due 
to the blue module function. Previous studies have shown 
that the inhibitory effect of the Notch signaling cascade 
in endothelial cells induces differentiation-associated 
growth arrest through both MAPK and PI3K/Akt  
pathways (23), and is involved in angiogenesis and 
vasculature development (24,25). In tumor cells, activation 
of the PI3K/AKT pathway can also increase vascular 
endothelial growth factor secretion through HIF1 and affect 
vascular development (24). Meanwhile, the Notch is now 
considered to be a crucial player in vascular homeostasis and 
inflammatory response (26). Taking the function analysis for 
the two highly preserved modules together, we can surmise 
that inflammatory reaction and hypoxia caused DNA repair 

Figure 5 DEGs and DEmiRNAs interactions illustration. The 
genes in the blue module and yellow module are diamond and 
rectangles, respectively. The upregulated nodes are colored in red 
and down-regulated in blue. The outline of each nodes represents 
the P value, and a darker color represents smaller value. DEGs, 
differentially expressed genes; DEmiRNAs, differentially expressed 
miRNAs.
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underlying the mechanism of AAD. Insights into how the 
Notch impacts vascular biology would be crucial for the 
design of therapeutic strategies for AAD.

It is acknowledged that vascular smooth muscle cells 
(VSMCs) act as a key member in the media of the human 
aorta, and which have two kinds of cell phenotypes, 
including contractile and synthetic status. In aortic 
dissection, contractile VSMCs can become synthetic 
VSMCs, which can trigger a cascade of events and induce 
dissection. Previous research has shown that, through the 

PI3K/AKT signaling pathway, increased expression of 
HIF1A in the media of the thoracic aortic dissection tissues, 
as compared with normal aortic tissues, associates with 
human aortic smooth muscle cell phenotype switch (27). 
Recently, macrophage reprogramming was proven to take 
part in the aggravation of aortic dissection by activating 
the HIF1A-related pathway (28). In our results, the HIF1 
pathway is highlighted in the network of DEGs with the 
enrichment of HIF1A, IGF1, and TEK.

Angiopoietin-1 receptor (TEK/Tie-2) is a tyrosine-

Table 4 KEGG pathway enrichment analysis of DEGs which interacted with DEmiRNAs

ID Term description
Observed gene 

count
Background gene 

count
False discovery rate Genes

hsa04066 HIF1 signaling pathway 4 98 0.00036 HIF1A/IGF1/TEK

hsa05224 Breast cancer 3 147 0.0219 HEY1/IGF1/KIT

hsa04015 Rap1 signaling pathway 3 203 0.0365 IGF1/KIT/TEK

hsa04014 Ras signaling pathway 3 228 0.0379 IGF1/KIT/TEK

hsa05200 Pathways in cancer 4 515 0.0379 HEY1/HIF1A/IGF1

hsa05230 Central carbon metabolism in cancer 2 65 0.0379 HIF1A/KIT

hsa04010 MAPK signaling pathway 3 293 0.0435 IGF1/KIT/TEK

hsa04640 Hematopoietic cell lineage 2 94 0.0443 KIT/TFRC

KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; DEmiRNAs, differentially expressed miRNAs.

Table 3 GO function analysis of DEGs which interacted with DEmiRNAs

ID Description P value P adjust q value Genes

GO:1901342 Regulation of vasculature development 5.05E−07 0.000744 0.000418 HIF1A/KIT/EFNB2/PTPRM/TEK/
ANGPTL4/HEY1

GO:1904018 Positive regulation of vasculature 
development

7.68E−06 0.003383 0.001901 HIF1A/KIT/EFNB2/TEK/ANGPTL4

GO:0050673 Epithelial cell proliferation 9.31E−06 0.003383 0.001901 HIF1A/KIT/EFNB2/IGF1/PTPRM/TEK

GO:0035909 Aorta morphogenesis 9.39E−06 0.003383 0.001901 SOX4/EFNB2/HEY1

GO:1903580 Positive regulation of ATP metabolic process 1.66E−05 0.003383 0.001901 BEND3/HIF1A/IGF1

GO:0003206 Cardiac chamber morphogenesis 1.70E−05 0.003383 0.001901 HIF1A/SOX4/TEK/HEY1

GO:0001822 Kidney development 1.78E−05 0.003383 0.001901 C1GALT1/SOX4/EFNB2/TEK/PODXL

GO:0001501 Skeletal system development 1.84E−05 0.003383 0.001901 HIF1A/SOX4/KIT/IGF1/TEK/
CSGALNACT1

GO:0072001 Renal system development 2.29E−05 0.003758 0.002112 C1GALT1/SOX4/EFNB2/TEK/PODXL

GO:0045981 Positive regulation of nucleotide  
metabolic process

2.86E−05 0.003827 0.002151 BEND3/HIF1A/IGF1

GO, Gene Ontology; DEGs, differentially expressed genes; DEmiRNAs, differentially expressed miRNAs.
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protein kinase that acts as a cell-surface receptor for 
angiopoietin-1 (ANG1), angiopoietin-2 (ANG2) and 
angiopoietin-4 (ANG4) which regulates angiogenesis, 
endothelial cell survival and maintenance of vascular 
quiescence. One study investigated the molecular basis by 
which HIF1 mediates the angiogenic response to hypoxia; it 
was concluded that ANG4 can function similarly to ANG1 
and acts as a substitute for ANG1 to participate in hypoxia-
induced angiogenesis (29). Importantly, activation of the 
angiopoietin/Tie-2 system may impact the ability of HIF1A 
to induce hypervascularity without excessive permeability. 
However, a more recent study (30) revealed that the 
genetic deletion of HIF2A but not HIF1A could harm 
the microvascular integrity in airways through endothelial 
angiopoietin-1/TIE2 signaling and Notch activity. The 
mechanisms of aortic dissection might correlate with novel 
interactions between angiopoietins, TEK receptors, and 
HIFs.

Noticeably, in our network, insulin-like growth factor 1 
(IGF1), mast/stem cell growth factor receptor Kit (KIT), 
and TEK are present in several important pathways, such 
as the PI3K/AKT pathway, Rap1 signaling pathway, Ras 
signaling pathway, and the MAPK signaling pathway. 
A study by Weeks et al. has shown that IGF1/PI3K/
Akt signaling pathway was activated by the exercise-
induced cardiac hypertrophy and protection (31). In 
their experiment, mice with elevated IGF1/PI3K/Akt 
signaling displayed cardiac protection in settings of dilated 
cardiomyopathy, myocardial infarction, and pressure 
overload, whereas mice with reduced IGF1/PI3K/Akt 
signaling were more susceptible to pathological remodeling. 
However, in an earlier study (32), the elevated expression of 
IGF1 was speculated to correct the contractile defect due 
to the MYH11 mutation as a compensatory action of the 
aortic SMCs, leading to increased vascular volume in the 
vasa vasorum and AAD. A more thorough understanding 
of the role that IGF1 plays in the pathogenesis of AAD and 
vasculature development might help clinicians to reveal the 
key pathways and modulation patterns.

I n  t e r m s  o f  t h e  D E m i R N A s ,  m i R - 1 9 9 b - 5 p 
(MIMAT0000263) is a hot node with seven interactions. 
Sun et al. (33) reviewed the regulatory role of microRNAs 
in angiogenesis-related diseases and found miR-199b-5p 
could manage angiogenesis by targeting NAD-dependent 
protein deacetylase sirtuin-1 (SIRT1). It is classified with 
miRNAs that are modulated by pro- or antiangiogenic 
factors or hypoxia. In other studies (34), focusing on human 
intracranial aneurysms, the interaction of miR-199b-5p and 

HIF1A contributes to the response to oxidative stress. The 
role of miR-199b-5p in AAD has not yet been fully clarified. 
Another regulator of interest is miR-152 (MIMAT0026479) 
due to its association with KIT, TEK, and IGF1. However, 
only Liu et al. (35) found miR-199b-5p to be down-
regulated in a rat model of abdominal aortic aneurysms. 
The possible effect that miR-152 makes together with KIT, 
TEK and IGF1 would be an intriguing topic to research in 
greater-depth. Moreover, a decreased level of miR-134-5p 
(MIMAT0000447) has already been proven to inhibit the 
VSMC phenotypic switch and migration in thoracic aortic 
dissection (36). Our study provides another perspective 
in which miR-134-5p might be a mediator in the AAD 
pathological process.

Our study had some limitations that should be addressed. 
Firstly, all the microarray datasets were obtained from pure 
public data and some inevitable biases, such as gender and 
age differences were present. Additionally, only a small 
number of datasets were analyzed in this study. Furtherly, 
genes altered with AAD need further examination to 
determine if overexpression/knockdown of such genes plays 
a significant role in AAD in vivo, which can also inspire new 
therapy potentially.

Conclusions

In summary, our study yielded a comprehensive interactive 
network of miRNAs and genes which tend to play an 
important role in the pathogenesis of AAD. The HIF 
pathway was highly enriched. Genes such as IGF1, TEK, 
KIT, and HIF1A, and miRNAs like miR-199b-5p could be 
promising targets for further analysis.
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Supplementary

Figure S1 Box plot of expression profile of genes and miRNAs after normalization.  
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Figure S2 Expression and connectivity correlation plot for GSE98770 and GSE52093.
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Gene clustering and different deepsplit method
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Figure S3 Deepsplit method options and gene clustering profile.  
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Figure S4 Multi‑dimensional scaling plot for expression data based on modules in the GSE52093. The expression profiles of modules are 
different from each other.



Figure S5 Heatmap for expression data based on modules in the GSE52093.

Figure S6 Detection competency curves of individual and integrated analysis.
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Figure S7 Principal component analysis (PCA) plot based on the expression of miRNAs in GSE98770.

PCA plot for miRNA expression
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