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a b s t r a c t

The regulation of Sertoli cells by some hormones and signaling factors is important for normal sper-
matogenesis. Notch signaling is considered to be necessary for normal spermatogenesis in mouse. In this
study, we revealed two new facts about Sertoli cells by western blotting experiments on different types of
primary cells and microdissected tubules. The first is that Sertoli cells express the Jagged1 ligand in mice
testes. The second is that the expression level of Jagged1 oscillates in the seminiferous epithelial cycle.
Therefore, we inferred that Jagged1 in Sertoli cells contributes to the Notch signaling involved in sper-
matogenesis. Furthermore, we examined the regulation of Jagged1 expression and found that Jagged1
expressionwas suppressed by cAMP signaling and was promoted by TNF-a signaling in Sertoli cells. When
cAMPand TNF-awere simultaneouslyadded to Sertoli cells, Jagged1 expressionwas suppressed. Therefore,
cAMP signaling dominates Jagged1 expression over TNF-a signaling. These results suggest that cAMP
signaling may cause the periodicity of Jagged1 expression in the seminiferous epithelial cycle, and con-
trolling Jagged1 expression by adding TNF-a or cAMP may contribute to normal spermatogenesis in vitro.
© 2016, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Homeostatic and stable spermatogenesis is supported by the
strict regulation of precise proliferation, differentiation, and
meiosis of germ cells [1,2]. In 2011, Sato et al. found that in vitro
organ culture with the gaseliquid interphase method can lead
spermatogonia and germline stem cells to fertile sperm [3,4].
Furthermore, three-dimensional culture methods could recon-
struct testicular cells to the structure of the seminiferous tubule,
and collagen in matrigel promoted reconstruction of testes [5].
These in vitro culture methods might be a prospective application
for regenerative therapy of infertility but could not lead germ cells
to elongated spermatids in the reconstructed testis [5e7]. There-
fore, an unknown factor is necessary for normal spermatogenesis in
a reconstructed testis.

Notch signaling, which is highly conserved from insect to
vertebrate, relates to fate determination, lateral inhibition, and
lating hormone; cAMP, cyclic
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differentiation [8]. In Caenorhabditis elegans, Notch signaling
promotes proliferation and inhibits differentiation of germline
stem cells [9]. In the mammalian testis, localization of Notch
signaling components was reported in several studies [10e14].
Notch1 has been shown to be expressed in undifferentiated
spermatogonia and Sertoli cells. Notch2 and Notch3 are ubiqui-
tously expressed in germ cells, and Jagged1 and Delta-like4 are
expressed in elongated spermatids in adult testes [14]. However,
other studies have reported Notch1 is expressed only in Sertoli
cells [12], and Jagged1 is expressed in Sertoli cells [10,11]. Thus,
the expression profiles of Notch signaling components in testes
are controversial. On the other hand, loss- and gain-of-function
analyses of Notch signaling in mouse testes have been reported
[12,15,16]. Notch signaling in Sertoli cells inactivated by deletion of
the protein O-fucosyltransferase1 showed normal spermatogen-
esis [12], whereas RBPj knockout in Sertoli cells led to abnormal
spermatogenesis and an atrophic tubule [15]. Blocking Notch
signaling in all testicular cells by injection of g-secretase inhibitor
into the tubule induced the collapse of the spermatogenic cycle
and abnormal spermatozoa [17]. These studies suggest that Notch
signaling in mouse testes is necessary for normal spermatogen-
esis. Therefore, we inferred that elucidation of the role of Notch
signaling for spermatogenesis would contribute to the recon-
struction of testes and in vitro spermatogenesis.
sting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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In this study, we analyzed the Jagged1 ligand in mice testes to
identify Notch signaling in spermatogenesis and tried to find the
controlling factor of Jagged1 expression in testes.

2. Methods

2.1. Mice

Male Slc:ICR mice were purchased from Japan SLC, Inc. and
maintained in our animal facility on a 12-h lightedark cycle and
were given access to food (MF; Oriental Yeast Co., Ltd.) andwater ad
libitum. All animal care procedures were carried out according to
the National Research Council's Guide for the Care and Use of
Laboratory Animals.

2.2. Immunohistochemistry

Cryosections were fixed with 4% paraformaldehyde for 5 min
and then blocked with 5% normal horse serum for 1 h at room
temperature. Sections were incubated for 72 h at 4 �C with either
2 mg/ml anti-Jagged1 goat polyclonal antibody (sc-6011; Santa
Cruz) or normal goat IgG diluted in blocking solution: 3% BSA, 0.1%
NaN3 in PBS. Subsequently, sections were washed with PBS and
then incubated for 1 h at room temperature with 7.5 mg/ml bio-
tinylated horse anti-goat IgG antibody (BA-9500; Vector) in
blocking solution followed by Vectastain ABC kit (Vectastain) re-
action and incubation with 3,30-diaminobenzidine tetrahydro-
chloride (DAB; Dojindo). Sections were counterstained slightly
with 25% methyl green.

2.3. Western blotting

Testes from 14-days post partum (dpp) and 60-dpp mouse were
homogenized with RIPA buffer: 50 mM TriseHCl (pH 7.6), 150 mM
NaCl, 1% NP40, 1 mM EDTA (pH8.0), 1 mMNa3VO4, 1 mMNaF, 1 mM
PMSF, 1 mg/ml aprotinin, 1 mg/ml leupeptin, 1 mg/ml pepstatin.
Following 10% SDS-PAGE, proteins were electro-transferred to a
PVDF membrane (Immobilon-P; Millipore). Anti-Jagged1 goat
antibody (sc-6011; Santa Cruz) or anti-actin rabbit antibody
(A2066; Sigma) was used as the primary antibody with AP-
conjugated anti-goat IgG (AP-5000; Vector) or HRP-conjugated
anti-rabbit IgG (NA934; GE Healthcare) as the secondary anti-
body. Lumi-Phos WB (Thermo) and Plus-ECL (Perkin Elmer) were
used to detect target proteins.

For analysis of primary cells and tubule fragments, anti-b-actin
antibody (A5441; Sigma), anti-WT1 antibody (sc-192; Santa Cruz),
TRA98 antibody (73-003; Bio Academia), anti-cytochrome P450
side chain cleavage enzyme (P450scc) antibody (ab1244; Chem-
icon), and anti-Stra8 antibody (ab49602; Abcam) were also used as
the primary antibody (Supplementary Table S1).

2.4. Transillumination-assisted microdissection

Three-month testes without tunica albuginea were loosened in
cold PBS. Seminiferous tubules were categorized by light trans-
mittance to four compartments of pale zone (IXeXI), weak spot
(XIIeI), strong spot (IIeVI), and dark zone (VIIeVIII) [18]. The 30
pieces of 2-mm tubule for each compartment were harvested and
homogenized with RIPA buffer.

2.5. Isolation and culture of primary Sertoli cells

Two-week testes without tunica albuginea were treated with
enzyme solution (1 mg/ml collagenase type I A [Sigma], 0.25 mg/ml
DNase I [DN25; Sigma], and 1 mg/ml hyaluronidase [Sigma] in
Dulbecco modified Eagle medium [DMEM]), for 10 min at 37 �C to
remove interstitial cells. Then tubules were washed with DMEM
followed by re-incubation with the enzyme solution for 10 min at
37 �C. The tubules were cleaved into small pieces by gently pipet-
ting with a blue cut tip (diameter 2e3 mm). The tubule pieces were
cultured on a 0.1% gelatin-coated dish at 37 �C, 5% CO2 with 10%
fetal bovine serum (FBS; Hyclone), 5 mM L(þ)-glutamine (Wako),
1 mM sodium-pyruvate (Wako), 0.1% sodium DL-lactate (Nacalai),
and penicillin and streptomycin in DMEM. Two days after culture,
the cells were subjected to hypoosmotic shock with 10 mM
TriseHCl (pH 7.4) for 10 min at room temperature to remove re-
sidual germ cells. At day 4, the cells were treated with 0.125%
trypsin (Gibco) in PBS and replated as 2.5 � 105 cells/cm2. At day 6,
the mediumwas changed and the following were added: all-trans-
retinoic acid (RA; Wako), dibutyryl cAMP (cAMP) (D0627; Sigma),
forskolin (Sigma), or mouse TNF-a (Roche). Total RNA and cell ly-
sates were harvested after 24 h.

2.6. Isolation of the Leydig cell-rich fraction and primary germ cells

Two-month testes without tunica albuginea were treated with
the enzyme solution to dissociate stromal cells from the tubule. The
supernatant was washed with PBS and harvested as a Leydig cell-
rich fraction. The tubules were re-incubated with the enzyme so-
lution and then digested by 0.25% trypsin for 10 min at 37 �C. The
trypsin reaction was stopped by adding a 10e20% volume of FBS.
The dissociated cells were filtered through a 40-mm cell strainer
(352340; Falcon) and cultured on a 0.1% gelatin-coated dish at
37 �C, 5% CO2 overnight. The next day, the supernatant including
primary germ cells was harvested and dissolved with RIPA buffer.

2.7. Quantitative RT-PCR

Total RNA was isolated from the primary Sertoli cells by using
RNeasy (Qiagen). One microgram total RNAwas reverse transcribed
using AMV Reverse Transcriptase XL (Takara) with Oligo dT primer
(Invitrogen). Quantitative RT-PCR analysis (qRT-PCR) was per-
formed in duplicate using gene-specific primers (Supplementary
Table S2) with Power SYBR Green PCR Master Mix (Thermo) by
the StepOnePlus realtime PCR system (Thermo).

3. Results

3.1. Sertoli cells in mouse testes express Jagged1

To define the contribution of Notch signaling to spermatogen-
esis in mouse, we investigated the localization of Notch signaling
factors in testes. Immunohistochemistry experiments revealed that
Jagged1, one of the Notch ligands, was expressed in Sertoli cells and
was also detected in Leydig cells (Fig. 1A, B). Hasegawa et al. re-
ported that elongated spermatid expressed Jagged1 mRNA by in
situ hybridization [12]; we therefore tried to analyze cell-type
specificity of Jagged1 expression by using several primary culture
cells, such as the Sertoli cell, germ cell, and Leydig cell (Fig. 1E). The
signals of the marker protein, such as WT1 (Sertoli cell marker),
TRA98 (germ cell marker) and P450scc (Leydig cell marker), indi-
cated that each type of cell was harvested. The signal of TRA98 was
also detected in the Leydig cell-rich fraction and indicated that the
fraction included some germ cell contaminants. Full-length Jagged1
protein (150 kDa) was detected in primary Sertoli cells but not in
primary germ cells or Leydig cells. Some extra bands (<75 kDa) of
Jagged1 were also detected in all samples (Fig. S1), but we
considered that they were non-specific signals or might be degra-
dation products. These results suggest that Jagged1 ligand in the
mouse testis is expressed only in Sertoli cells. Subsequently, we



Fig. 1. Localization of the Jagged1 ligand in the mouse testis. AeD) Immunostaining with anti-Jagged1 antibody in a 60-dpp mouse testis, counterstained with methyl green (200�
and 400� magnification). Interstitial cells and Sertoli cells were stained (A, B). Control IgG (C, D). Asterisks mark interstitial cells; arrows mark Jagged1-positive Sertoli cells. E)
Western blotting of cell lysates from 60-dpp whole testes, primary Sertoli cells, primary germ cells, and Leydig cell-rich fraction (n ¼ 3). Jagged1 expression was normalized to b-
actin, and the fold increase is plotted (value of whole testes ¼ 1). Full-length Jagged1 was mainly detected in primary Sertoli cells. WT1, Sertoli cell marker; TRA98, germ cell marker;
P450scc, Leydig cell marker. Asterisk indicates a statistically significant difference (P < 0.05). F) Western blotting of cell lysates from 14-dpp and 60-dpp whole testes (n ¼ 3). Jagged1
expression was normalized to actin and WT1, and fold increase is plotted. Jagged1 expression in Sertoli cells significantly increased during testicular development. Error bars
represent the standard error of the mean.
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analyzed the expression of Jagged1 in developing testes. Jagged1
expression was detected from 14-dpp to adult testis (Fig. 1F). Im-
munostaining of WT1 in developing testes revealed that WT1
expressionwas constant in Sertoli cells throughout aging, from pup
to adult (Fig. S2). The expression level of Jagged1 per Sertoli cell,
which had a value that was normalized by the expression level of
WT1, was significantly higher in adult testes than 14-dpp testes.

3.2. The expression of Jagged1 is controlled by or related to
seminiferous epithelial cyclic regulation

In the adult testis, spermatogenesis shows a wave-like manner
in tubules, which is called the seminiferous epithelial cycle [1]. This
cycle in mouse is divided into 12 stages relating to types of differ-
entiation of germ cells in each section of the tubule. The seminif-
erous epithelial cycle supports stable and continuous
spermatogenesis, suggesting the existence of precise cyclic pro-
grams of gene expression. Therefore, we analyzed the expression
pattern of Jagged1 at each stage of the cycle using
transillumination-assisted microdissection [18]. The protein level
of Jagged1 at stage VIIeVIII, which was Stra8 positive region, was
2.2-fold higher than that of stage IXeXI and XIIeI (Fig. 2). These
results show that the expression of Jagged1 is related to the stage of
the cycle and the possibility that Jagged1 has a role in the cyclic
regulation of spermatogenesis.

3.3. cAMP and TNF-a signaling control the expression of Jagged1 in
Sertoli cells

The regulation of gene expression in Sertoli cells is controlled by
the seminiferous epithelial cycle. It was previously reported that
some signaling factors are secreted in a wave-like manner in the
cycle [19]. For example, a concentration of RA in the tubule in-
creases at stage VIIeVIII according to the activated synthesis of RA.
Meiosis of spermatocyte and the process of undifferentiated sper-
matogonia to differentiated spermatogonia are triggered by RA
signaling at these RA-rich stages [19]. Accordingly, we analyzed
what signaling factor regulates the expression of Jagged1 in Sertoli
cells by the addition of some humoral factors to the primary Sertoli
cells. Contrary to our expectation, Jagged1 mRNA expression was
Fig. 2. Expression of Jagged1 during the seminiferous epithelial cycle. Western blotting of ce
(n ¼ 3). Jagged1 expression was normalized to b-actin and fold change is plotted (value of IX
mean.
not significantly changed by RA signaling (Fig. 3A). Follicle-
stimulating hormone (FSH) secreted from the pituitary stimulates
Sertoli cells to produce the glial cell line-derived neurotrophic
factor (GDNF) [20]. To determine the FSH-signaling effect without
experimental dispersion of the expression level of the FSH receptor
in the primary culture of Sertoli cells, we used cAMP, the second
messenger of FSH signaling [21], as a powerful effector. cAMP
decreased Jagged1 expression by less than 0.4-fold (Fig. 3B), which
was significant, and the time course of inhibition revealed that
Jagged1 expression was suppressed by cAMP for 6 h in the primary
culture condition (Fig. 3C). Furthermore, the addition of forskolin,
an activator of adenylate cyclase, showed the inhibition of Jagged1
expression, indicating that endogenous cAMP also could decrease
Jagged1 expression in Sertoli cells (Fig. 3D). TNF-a, which is
secreted from round spermatids in the mouse testis, is one of the
major factors regulating Sertoli cells. For example, TNF-a signaling
in Sertoli cells promotes secretion of transferrin and participates in
BTB formation [22,23]. Furthermore, TNF-a signaling promoted
Jagged1 expression in vascular endothelial cells [24]. As expected,
Jagged1 expression in Sertoli cells was stimulated to twice that of
the control by the addition of 20 ng/ml TNF-a (Fig. 3E). This TNF-a
signaling increased the mean value of Jagged1 expression approx-
imately fourfold up to 6 h, and thus the peak of induction of Jagged1
by TNF-a might be less than 24 h (Fig. 3F). mRNA analysis showed
the expression level of Jagged1 protein decreased 0.6-fold by cAMP
and increased 2.3-fold by TNF-a (Fig. 3G). These results indicated
that the addition of cAMP or TNF-a can control the expression of
Jagged1 in Sertoli cells in reconstructed testes.
3.4. cAMP signaling is dominant in Jagged1 expression

To determine the dominant signaling factor in Jagged1 expres-
sion, we added both cAMP and TNF-a to Sertoli cells (Fig. 4). We
used 20 ng/ml TNF-a, which was the concentration most effective
at 24 h (Fig. 3E). The Jagged1 mRNA level in Sertoli cells decreased
0.5-fold by the addition of 0.5 mM cAMP alone, increased 2.4-fold
by the addition of 20 ng/ml TNF-a alone, and decreased 0.6-fold
by the addition of both. The expression level of Jagged1 with both
cAMP and TNF-a was approximately equal to that with only cAMP,
ll lysates from tubule fragments obtained by transillumination-assisted microdissection
eXI ¼ 1). Stra8, marker of stage VIIeVIII. Error bars represent the standard error of the



Fig. 3. Expression of Jagged1 in primary Sertoli cells treated with humoral factors A, B, D, E) Primary Sertoli cells were treated with each humoral factor for 24 h, and total RNA was
harvested for qRT-PCR analysis (n ¼ 3). C, F) Primary Sertoli cells were treated with either cAMP (0.5 mM) or TNF-a (20 ng/ml) for 30 min, 6 h and 24 h, and total RNAwas harvested
for qRT-PCR analysis (n ¼ 3). Jagged1 expression was normalized to GAPDH and fold change is plotted. Error bars represent the standard error of the mean (SEM). *P < 0.05,
**P < 0.01 by t-test, compared to control. G) Primary Sertoli cells were treated with either cAMP (0.5 mM) or TNF-a (20 ng/ml) for 24 h, and cell lysates were harvested for western
blotting analysis (n ¼ 3). Jagged1 expression was normalized to b-actin, and fold change is plotted. Error bars represent the SEM.
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suggesting that signaling via cAMP dominated Jagged1 expression
in Sertoli cells over TNF-a signaling.

4. Discussion

In the mammalian testis, various signaling factors are secreted
with periodicity, and control of the periodicity supports normal
spermatogenesis [25]. For example, spermatogenesis in the vitamin
A-deficient mouse collapses by ablation of the seminiferous
epithelial cycle [26]. Thus, we speculate that the reproduction of
the seminiferous epithelial cycle is important for in vitro sper-
matogenesis to be successful.

In this study, western blotting analysis of the different cell types
revealed that Sertoli cells expressed Jagged1 in mouse testes.
Additionally, the expression level of Jagged1 oscillated in the
seminiferous epithelial cycle. Therefore, we considered that this
oscillation might have a role in spermatogenesis. Stage VIIeVIII is
the last stage that spermatozoa contact Sertoli cells, and undiffer-
entiated spermatogonia differentiate to differentiated spermato-
gonia [19]. RA signaling is activated at this stage, but Jagged1



Fig. 4. Expression of Jagged1 in primary Sertoli cells with cAMP and TNF-a. Primary
Sertoli cells were treated with cAMP (0.5 mM) and/or TNF-a (20 ng/ml) for 24 h, and
total RNA was harvested for qRT-PCR analysis (n ¼ 3). Jagged1 expression was
normalized to GAPDH, and fold change is plotted. Error bars represent the SEM.
Different letters indicate a significant difference (P < 0.05) by t-test.
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expression in Sertoli cells was not stimulated by the addition of RA,
suggesting that an unknown factor may induce Jagged1 expression
at stage VIIeVIII. In this study, we found an activator and inhibitor
of Jagged1 expression in Sertoli cells. It is known that Jagged1
expression in vascular endothelial cells is increased by TNF-a
signaling via NFk-B [24], and TNF-a is secreted by round spermatids
in the mouse testis [27,28]. Addition of TNF-a promoted Jagged1
expression in Sertoli cells, but the expression of TNF-a is highest at
stage IXeXII [27]. Therefore, it remains unclear if TNF-a can stim-
ulate Jagged1 expression in Sertoli cells in vivo. In rat testes, the
concentration of cAMP in testicular cells is higher at stage IeVI and
lower at stage VIIeVIII compared to other stages, and this is the
reason that the responsiveness in FSH signaling changes in a stage-
dependent manner [29,30]. Our experiments revealed that
signaling via cAMP downregulated Jagged1 expression in Sertoli
cells. These results suggest that Jagged1 expression increased at
stage VIIeVIII with a low level of cAMP compared to the other
stages. Transcription factor GATA-1 is downregulated by FSH
signaling and cAMP in Sertoli cells [31]. The predicted promoter
region at 3000 bp upstream of Jagged1 has several GATA-1 binding
sites, and there is a possibility that GATA-1 promotes Jagged1
expression in these cells. Id2 transcriptional repressor is induced by
FSH and cAMP signaling in Sertoli cells [32], and the Jagged1 pro-
moter region has several Id2 binding sites as E-box. Inhibition of
Jagged1 expression by cAMP may therefore occur by increasing the
Id2 expression. By adding both cAMP and TNF-a to Sertoli cells, we
showed that cAMP signaling is dominant in the downregulation of
Jagged1 expression. Ouchi et al. reported that cAMP signaling
inhibited TNF-aeinduced IkB-a phosphorylation in human aortic
endothelial cells [33]. Thus, in future studies we need to examine
the Jagged1 gene promoter and the phosphorylation level of IkB-a
in Sertoli cells.

In this study, we detected the Jagged1 protein in primary Sertoli
cells (Fig. 3G), and in a previous study, Jagged1 expressed in Sertoli
cells activated Notch signaling in T cells and promoted the
expression of the target gene Hey1 [10]. We therefore considered
that Jagged1 expressed in Sertoli cells has ligand activity.

Jagged1 periodicity in Sertoli cells may be important for stable
and continuous spermatogenesis. Recently micro-fabrication
technology has constructed a method to add humoral factors at
specific times and in appropriate quantities bymicrofluidic devices.
Using such a device, the differentiation of mouse-induced plurip-
otent stem cells was controlled by the spatiotemporally controlled
delivery of RA and leukemia inhibitory factor [34]. It is expected
that these devices and effective humoral factors will contribute to
mimicking the cyclic-regulated testis in the reconstructed testis
and promote spermatogenesis.
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