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Abstract: Although the dopamine D2 receptor (DRD2) has been a main target of antipsychotic
pharmacotherapy for the treatment of schizophrenia, the standard treatment does not offer sufficient
relief of symptoms to 20%–30% of patients suffering from this disorder. Moreover, over 80% of
patients experience relapsed psychotic episodes within five years following treatment initiation.
These data strongly suggest that the continuous blockade of DRD2 by antipsychotic(s) could
eventually fail to control the psychosis in some point during long-term treatment, even if such
treatment has successfully provided symptomatic improvement for the first-episode psychosis,
or stability for the subsequent chronic stage. Dopamine supersensitivity psychosis (DSP) is
historically known as a by-product of antipsychotic treatment in the manner of tardive dyskinesia
or transient rebound psychosis. Numerous data in psychopharmacological studies suggest that
the up-regulation of DRD2, caused by antipsychotic(s), is likely the mechanism underlying the
development of the dopamine supersensitivity state. However, regardless of evolving notions of
dopamine signaling, particularly dopamine release, signal transduction, and receptor recycling,
most of this research has been conducted and discussed from the standpoint of disease etiology
or action mechanism of the antipsychotic, not of DSP. Hence, the mechanism of the DRD2
up-regulation or mechanism evoking clinical DSP, both of which are caused by pharmacotherapy,
remains unknown. Once patients experience a DSP episode, they become increasingly difficult to
treat. Light was recently shed on a new aspect of DSP as a treatment-resistant factor. Clarification of
the detailed mechanism of DSP is therefore crucial, and a preventive treatment strategy for DSP or
treatment-resistant schizophrenia is urgently needed.
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1. Introduction

Schizophrenia is a serious mental disorder that generally occurs in young people from late
adolescence to early adulthood and profoundly burdens patients throughout their lives. Since the
1950s, antipsychotics have been a mainstay in treating this disorder. The beneficial effects of these
agents, however, are generally restricted. This is true even though the type of agents with the
common action mechanism of the blockade of the dopamine D2 receptor (DRD2), which is the action
mechanism common to this type of agents, ameliorates symptoms in most patients. Since functional
recovery has been recognized as a main treatment goal for all patients suffering this disorder, greater
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attention has been paid to relief of negative symptoms or cognitive impairments. Thus, recently,
the development of novel agent targeting receptors other than DRD2 has been viewed as crucial.
However, it is still necessary to block DRD2 when treating this disorder, since both first-episode
and relapsed psychosis generally appears with positive symptoms in most patients, and physicians
must address such situations with antipsychotics. On the other hand, it has been reported that the
blockade of DRD2 is directly involved in several distressful adverse events, including extrapyramidal
symptom, hyperprolactinemia, cognitive dysfunction, and dysphoria. “Appropriate” blocking level
of DRD2 on the part of every antipsychotic is therefore imperative to physicians. Maintaining such
a blockade, however, is a very difficult task, given that the natural clinical course is quite complex,
varying from patient to patient.

Dopamine supersensitivity psychosis (DSP) is both an old and new concept in schizophrenia.
Although tardive dyskinesia (TD), a classical neurological sign of DSP, is generally recognized to be
a result of continuous pharmacotherapy, DSP related to other symptomatology, such as a withdrawal
psychotic episode or developed tolerance to the effects of antipsychotic(s), do not simply indicate
a side effect in pharmacology. However, the appearance of DSP has a definite negative impact
on long-term prognosis. Thus, clarifying the mechanisms of DSP development and establishing
preventive strategies for it have become an increasingly important subject.

This review will touch first on the clinical concept of treatment-resistant schizophrenia (TRS)
and DSP. Next, we will focus on possible mechanisms of DSP, particularly from the perspective
of the up-regulation and presumed accompanying impairment of cycling of DRD2 caused by
antipsychotics. To discuss these issues, we will summarize various datasets of DRD2 itself, as
well as several receptor-interacting proteins such as G protein-coupled receptor kinase (GRK),
β-arrestin, dopamine-and cyclic adenosine monophosphate (cAMP)-regulated phosphoprotein of
32 kDa (DARPP-32), protein kinase v-akt murine thymoma viral oncogene homolog AKT, glycogen
synthase kinase-3 (GSK-3), and clathrin, tracing these from the basic and clinical research fields
relevant to schizophrenia and the actions of antipsychotics. This will allow us to discuss a possible
mechanism for the development of refractory schizophrenia.

2. Clinical Concept of Dopamine Supersensitivity Psychosis

2.1. Dopamine Supersensitivity Psychosis in the Course of Schizophrenia

Antipsychotics act mainly on the DRD2 in brains of patients with schizophrenia, and provide
symptomatic relief, particularly for positive symptoms [1]. However, while 20%–30% of patients can
attain remission [2,3], from one-fifth to one-half of patients eventually develop a treatment-resistant
state [4].

The clinical course of schizophrenia generally varies from patient to patient. Numerous
parameters predictive of prognosis have been examined from multiple viewpoints: male gender [5],
younger disease onset [6], presence of family history of psychiatric disease [7], longer duration of
untreated psychosis [8,9], and lower premorbid social function [10]. There is, however, no single
factor that completely predicts the prognosis of patients with different etiologies. It seems that several
clinical factors could affect the disease’s severity or course and contribute to the development of
treatment-resistance, with interaction between individual factors.

Several studies have reported that 12%–15% of patients show little response to initial
pharmacotherapy for their first psychotic episodes [11–13]. This is clearly a lower percentage
of “non-responders” than that of treatment-resistant patients after long-term treatment. These
ratios imply that some portion of patients respond well to pharmacotherapy in the early stage but
become poor responders to subsequent treatment. It is therefore suggested that responsiveness to
antipsychotics could alter over the clinical course or with continuous treatment.

Cases where psychotic symptoms worsened immediately upon cessation of treatment and
thereafter required gradually higher dosage of drugs to control psychosis were reported in the late
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1970s [14–16]. It was suggested that the clinical phenomena of increasing severity of psychosis
was supersensitivity psychosis, which could latently develop during pharmacotherapy and be
covertly masked with antipsychotics but overtly appear upon dose reduction or discontinuation
of treatment [17]. This concept, recently relabeled DSP [18], includes several clinical elements:
(1) withdrawal or rebound psychosis: relapsed psychotic episode appears immediately after
treatment cessation, reduced dosage or change of antipsychotic [19]; (2) developed tolerance to
antipsychotic effect: higher dosage of antipsychotic(s) are needed to control the psychosis, or perhaps
not even high-dosage treatment can control the psychosis [20]; (3) TD: a classical neurological sign
of dopamine (DA) supersensitivity, which occurs in the nigrostriatum pathway of dopaminergic
neurons; and (4) increasing vulnerability to stress [21]; (5) DA partial agonist-induced exacerbation:
administration of DRD2 partial agonist, aripiprazole, exacerbates or relapses psychosis [22]. It has
been established that the blockade of DRD2 in post-synaptic neurons by antipsychotics plays an
essential role in controlling psychosis, and presumed that the supersensitivity of the receptors caused
by the antipsychotic blockade concurrently underlies the development of DSP. Therefore, DSP can
appear in a number of clinical manners, not in a single symptom domain, and can manifest symptoms
similar to the original psychotic symptoms.

Few data exist on the occurrence ratio of any specific antipsychotic. Several reports and studies
suggested that agents with a short half-life or lower binding affinity to DRD2 were potentially related
to the occurrence of DSP [23,24]; this might be interpretable as such agent types succumbing to
endogenous DA. Iyo et al. argued that agents with a longer half-life should be applied to treat patients
who have already developed DSP, and actually demonstrated that this type of agent (i.e., a long-acting
injectable form) was effective for such patients [25].

2.2. Dopamine Supersensitivity Psychosis in Treatment-Resistant Schizophrenia

DSP, particularly withdrawal psychosis, has sometimes been viewed only as a transient relapse,
like “hump psychosis” [26], related to dose reduction or switching of antipsychotic. However, it is
increasingly being shown that DSP could be linked to etiology in treatment-resistant schizophrenia.
Several earlier retrospective studies reported that only a few patients (4.5%–22%) experienced
such an episode in the course of their treatment [27,28]. It could be more difficult for patients
with TD to recover from psychotic relapse than for those without TD, indicating a readiness for
treatment-resistance [29]. Furthermore, there was little data on developed tolerance to the effects
of antipsychotics.

Chouinard and Chouinard estimated that half of TRS cases could be etiologically related to
DSP, based on the relatively high ratio of TD reported in numerous clinical trials with conventional
antipsychotics [30]. We recently evaluated the frequency ratio of any DSP episode for 147 TRS
patients through interviews and clinical records [31]. The results revealed that 72% of the patients had
experienced an episode of withdrawal psychosis, developed a tolerance to an antipsychotic, or had
TD over the course of their treatment histories of over 20 years. The large differences in the frequency
ratio of DSP episodes in other studies might be attributable to their methodologies, particularly in
selecting relevant episodes. It also suggests that the appearance of DSP could vary depending on
patients’ severity and treatment state. In addition, our survey showed that the ratio of withdrawal
psychosis, developed tolerance to antipsychotic and TD was 41.5%, 55.7% and 44.3%, respectively,
indicating that DSP types were distributed with similar ratios. These results suggest that DSP could
manifest diverse symptoms to varying degrees.

Although these notions suggest that DSP plays some contributing role in the development
of TRS, it seems to be difficult to measure the degree of its effect with any objective parameter,
such as effect size. This is because many other clinical factors, including gender, family history of
psychiatric disease, age at onset, duration of untreated psychosis, and substance abuse, as well as the
interaction of these factors, have also been traditionally raised as contributors to TRS. Additionally,
it is sometimes impossible to distinguish a rebound psychosis as DSP rather than as general true
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relapse episodes, which could occur in up to 50% or more of patients mainly due to noncompliance or
rejection of treatment [32]. As a matter of fact, data of relapse rates in schizophrenia might include the
significant amount of rebound psychosis, which it would be strictly appropriate to judge as DSP [33].

Contrary to the number of case reports and clinical surveys on DSP, control-designed studies on
specific types of agent are rare [19]. In addition, there has never been a study directly measuring
in vivo DRD2 within a patient’s brain during a DSP episode. DSP, therefore, has not yet been
demonstrated clinically in humans. Furthermore, it is unknown whether rebound psychosis of DSP
and true relapse share any common pathway to the development of TRS at the biological level. Hence
to clarify the etiology of recurrent psychosis, it might be important to explore these two phenomena
separately as strictly as possible.

3. Biological Background of Dopamine Supersensitivity Psychosis

3.1. Dopamine D2 Receptor

3.1.1. Up-Regulation of Dopamine D2 Receptor in Animal Models and Patients with Schizophrenia

DRD2 is distributed at high levels in the striatum, nucleus accumbens and olfactory tubercle, as
well as in the dopaminergic neurons in the mesolimbic pathway projecting from the ventral tegmental
area to nucleus accumbens, which is closely related to positive symptoms in schizophrenia. All
antipsychotics are recognized to have ameliorating effects on positive symptoms via their blockades
of post-synaptic DRD2 [1].

A number of basic studies have demonstrated that a blockade of DRD2 by antipsychotics, typical
and atypical, leads to a compensatory increase in DRD2 densities [34–39], and this phenomenon
is presumed to be, at least partly, related to the development of the DA supersensitivity clinically
observed as DSP in patients with schizophrenia. Interestingly, there are some reports that DRD2
densities in rats barely increase during administration of antipsychotics, but gradually increase over
a week after cessation [37,38]. According to the clinical findings, these results might elucidate
the mechanism of rebound psychosis. On the other hand, Seeman and colleagues demonstrated
that although amphetamine-sensitized rats underwent very little change in absolute DRD2 density,
they exhibited greater dopaminergic hyperlocomotion on the behavioral level. It is possible for
DRD2 to have a high affinity (D2High) or low affinity (D2Low) for DA. Seeman et al. explained the
observed phenomenon as an almost 4-fold D2High increase in amphetamine-sensitized rats compared
to controls [40]. Additionally, Seeman et al. reported that subchronic antipsychotic administration of
an appropriate dose occupied up to 70% of the striatum DRD2 and induced an approximate doubling
of D2High [41]. Therefore, Seeman considered that the mechanism of DSP is essentially associated not
with total DRD2 but with D2High.

Similarly, postmortem studies of patients’ brains revealed that the DRD2 density was elevated
only about 1.4-fold in the striatum of patients with schizophrenia, compared to controls with no
psychiatric disorders [42], although such studies generally included patients experiencing a variety
of antipsychotic treatments. To date, there has never been a study focusing on the direct effects
of a specific class of the agent on DRD2 density. Thus, it is impossible to evaluate the state of
supersensitivity of DRD2, or the degree of DSP, from data only of the density of DRD2 in postmortem
brain studies.

The Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography
(SPECT) research fields of DRD2 measurement in in vivo human brains are also inherent to
overcoming the difficulties in interpreting the direct effect of antipsychotics on receptor density
with results showing the binding potential of radioligands. While several studies have shown that
DRD2 density in patients under chronic antipsychotic treatment tended to be higher than that of
drug-naïve patients [43], this was not the case in all studies [44,45]. When these similar studies
are considered together, it is estimated that the increase rate of DRD2 availability in the striatum
is relatively small (mean of 5.8%–12%) [46,47] or moderate [48,49]. These human neuroimaging data
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seem to be relatively consistent with the overall data in other research fields like animal models and
postmortem studies.

There have been several PET studies focusing on measurement of the D2High state in
schizophrenia. The 11C-(+)-4-propyl-9-hydroxynaphthoxazine (11C-(+)-PHNO) tracer used in these
studies binds both the DRD2 and DRD3, with a higher affinity for D2High or DRD3. Graff-Guerrero
et al. [50] reported that their finding was no increase in D2High or DRD3 in any brain region of the
patient group compared to the healthy control group. However, the researchers suggested an inaction
mechanism of antipsychotics on DRD3 in the globus pallidus might be important [51]. Several PET
studies on the modulation of DA depletion by α-methyl-para-tyrosine (α-MPT) or amphetamine
showed higher DRD2 availability at baseline in patients compared to controls, suggesting increased
DA signal transduction [52–54]. Additionally, TRS patients were shown to have lower capacity
of DA synthesis by the measured uptake of 18F-dihydroxyphenylalanine (DOPA) compared to
both treatment-responsive patients and healthy controls [55]. This suggests some disruptions in
presynaptic dopaminergic neurons as the essential pathophysiology of refractory symptoms. PET
studies with more sophisticated techniques, or for more clinically homogeneous samples, could
provide more detailed insight into presynaptic alterations, including the synthesis and release of DA,
in addition to or instead of postsynaptic DRD2 alterations. However, given that previous studies on
the frequency of DSP among patients indicated that these episodes were not observed in all patients,
it is possible that such PET/SPECT studies provide results biased toward stable subjects, excluding
patients with DSP.

3.1.2. Effects of Genetic Polymorphisms of Dopamine D2 Receptor

Numerous studies have suggested that several genetic polymorphisms of DRD2 are related to
the receptor density in human brains. Taq I A (rs1800497: C>T) is one of the most extensive targets
in this research field. Taq I A exists in the ankyrin repeat and kinase domain containing 1 (ANKK1)
gene, which is located approximately 10 kb downstream of the DRD2 gene [56]. The frequency
of a minor allele having a T substitution, called the A1 allele, is 20%–44%, depending on ethnicity,
whereas the major allele having a C allele is called the A2 allele. In healthy human subjects with A1
allele, the DRD2 density was reported to be lower than that of subjects without this allele in several
PET studies [57,58]; however, postmortem studies showed the reverse [59,60]. ´141 C¨ Ins/Del
(rs1799732), located at the 51-promotor region of DRD2, is another important functional genetic
polymorphism [61]. The minor allele (deleting C substitution) significantly differs in frequency
among ethnicities, with a range of 10%–50%. Whereas the Del carrier shows a lower expressed level of
the receptor in cultured cells [61], an in vivo PET study demonstrated contrasting results; the Ins/Ins
carrier showed lower DRD2 density [58].

Furthermore, it was reported that these polymorphisms are related to responsiveness to
antipsychotic treatment in patients with schizophrenia. As regards Taq I A, homozygous A2/A2
(A1(´)) carriers showed poorer response compared to A1/A2 carriers [62]. Regarding ´141 C,
Del carriers responded poorly to treatment [63,64]. A meta-analysis demonstrated that Del carriers
had poorer responses than subjects with the Ins/Ins homozygous genotype, whereas Taq I A
genotypes did not differ in antipsychotic responsiveness between A1/A1 and A2 carriers [65]. When
analyzed together with both polymorphisms, subjects with A1(´) +Del alleles could be the poorest
genotypes [66,67]. Taken together with previous intensive studies on several SNPs (single nucleotide
polymorphisms) on DRD2 gene, the results of the Del allele of ´141 C would be highly consistent
in terms of the poor response to antipsychotic. Several cultured cell and in vivo PET studies have
suggested that the SNP could affect the expression level of DRD2, although not necessarily in the
same direction. Therefore, it remains to be clarified as to whether the aberrant expressed level of
DRD2 is actually observed within brains of patients who are Del carriers, particularly under the
administration of antipsychotics. The question of whether the Del allele, potentially related to poor
response, is further related to DSP remains unresolved.
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3.2. Downstream of the Dopamine D2 Receptor

3.2.1. Dopamine D2 Receptor Signaling

DRD2 belongs to the G protein-coupled receptors (GPCRs) superfamily, which consists of the
most diverse subgroups among proteins involved in transmembrane signaling. G proteins are
generally composed of three types of subunits (α, β, and γ). After the agonists bind to DRD2, two
different signals occur, i.e., early and late signals [68] (Figures 1 and 2). In the early phase, the binding
of the agonist to DRD2 induces the activation of G proteins. The α subunit then changes its guanosine
diphosphate (GDP) to guanosine triphosphate (GTP), and is dissociated from the βγ-complex.
The α subunit with GTP inhibits activity of adenylate cyclase (AC) and provokes an acute and
evanescent change in the phosphorylation of protein kinase A (PKA), which targets dopamine-and
cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and others. On the other hand, in the late
phase, following the activation of DRD2 by the agonist, G protein-coupled receptor kinase 6 (GRK6)
phosphorylates the receptors, and then β-arrestin 2 (ARRB2) binds to the phosphorylated receptors
and prevents further G protein activation. After this process, the DRD2 binding to ARRB2 promotes
the formation of ARRB2/protein phosphatase 2 (PP2A)/protein kinase v-akt murine thymoma viral
oncogene homolog (AKT) complex, resulting in the deactivation of AKT and subsequent stimulation
of glycogen synthase kinase-3 (GSK-3) signaling [69]. This signal is more moderate and longer lasting
than the early signal. In addition, DRD2 is internalized from the cell membrane, and experiences
clathrin-mediated endocytosis (CME). Finally, the internalized receptors recycle back to the cell
surface or degrade [70–73].
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Figure 1. Dopamine D2 receptor (DRD2) early signaling. The stimulation of DRD2 by agonists
induces early and late signals. In the early phase, acute and evanescent G protein-mediated signaling
occurs. This signaling is amplified at several stages of the cascade. As a result, the function of
phosphorylation of protein kinase A (PKA) and DARPP-32 is suppressed, and PP1 is activated.
The heavy up-pointing red arrows indicate functional facilitation, and the heavy down-pointing
blue arrows indicate functional suppression. The thin red arrows indicate activation and the thin
blue arrows indicate inactivation. The black arrows represent either activation or inhibition of each
specific substrate. The yellow arrow with red frame border indicates DRD2 early signaling. The
α, β and γ indicate each subunit of G proteins. The yellow α represents guanosine triphosphate
(GTP) type, while the purple one represents guanosine diphosphate (GDP) type. Abbreviations:
AC, adenylate cyclase; DA, dopamine; DARPP-32, dopamine- and cyclic adenosine monophosphate
(cAMP)-regulated phosphoprotein of 32 kDa; DRD2, dopamine D2 receptor; PKA, protein kinase A;
PP1, protein phosphatase 1.
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stimulated DRD2, and then ARRB2 binds to the phosphorylated receptors and prevents further
G protein activation. Subsequently, the DRD2 binding to the ARRB2 promote the formation of
the ARRB2/PP2A/AKT complex, resulting in the deactivation of AKT and stimulation of GSK-3
signaling. This G protein-independent signal is more moderate and longer lasting than the early
signal. On the other hand, DRD2 is internalized from the cell membrane and experiences CME.
Finally, the internalized receptors recycle back to the cell surface or degrade. The straight black
arrows indicate the process to form the AKT/PP2A/ARRB2 complex or internalization of DRD2. The
arcate black arrow indicates recycling or degeneration of DRD2. The up-pointing red arrows indicate
functional facilitation, and the down-pointing blue arrows indicate functional suppression. The blue
T-arrows indicate inhibition and the dashed T-arrows indicate disinhibition. The short yellow arrow
with red frame border and long one indicate early signal and late signal, respectively. Abbreviations:
AKT, protein kinase v-akt murine thymoma viral oncogene homolog; AP2, adaptor protein; ARRB2,
β-arrestin 2; CME, clathrin-mediated endocytosis; DA, dopamine; DRD2, Dopamine D2 receptor;
GSK-3, glycogen synthase kinase-3; GRK6, G protein-coupled receptor kinase-6.

3.2.2. Dopamine- and Cyclic Adenosine Monophosphate (cAMP)-Regulated Phosphoprotein of
32 kDa (DARPP-32)

DARPP-32 acts as an inhibitor of protein phosphatase-1 (PP-1) in the early phase of DA
signaling [74]. It also serves as a molecular integrator of dopaminergic and glutaminergic
signaling [75]. Following phosphorylation at threonine (Thr) 34 of DARPP-32 by PKA, the
phosphorylated DARPP-32 inhibits PP-1 [74], while dopamine D2-class signaling dephosphorylates
DARPP-32 through inhibition of PKA and activation of calcium/calmodulin-dependent protein
phosphatase [76]. It is widely expressed throughout many brain areas, particularly in the caudate
nucleus, putamen, nucleus accumbens, and cerebellar cortex of the primate [77,78].

With regard to animal studies, DARPP-32 knockout (KO) mice did not show
D-amphetamine-disrupted prepulse inhibition [79]. They also exhibited response deficits to
moderate doses of cocaine [80]. Therefore, it is conceivable that these mice exhibited little response
to DA. Previous basic studies on DARPP-32 strongly suggested that this molecule has an intimate
involvement in DA signaling.
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DARPP-32 has two major splice variants, i.e., the full-length protein isoform (FL-DARPP-32)
and a truncated isoform (t-DARPP-32) [81]. Interestingly, t-DARPP-32 lacks the NH2-terminal of the
Thr34 phosphorylation site. PKA could not phosphorylate t-DARPP-32, and thus t-DARPP-32 could
fail to work the dopaminergic signaling pathway normally. Kunii et al. reported that t-DARPP-32
expression was higher in the postmortem striatum of patients with schizophrenia [82]. On the other
hand, it has been reported that there were no significant differences in four SNP distributions of
DARPP-32 between Japanese patients with schizophrenia and control groups [83].

Although previous studies have suggested that DARPP-32 is related to schizophrenia, whether
its role is essentially involved in the disease etiology remains unclear. Since DARPP-32 plays a
crucial role in the early dopamine signal, its role in the action mechanism of antipsychotics must
be clarified in further studies, and its involvement in developing the DA supersensitivity state might
be considered.

3.2.3. G Protein-Coupled Receptor Kinase 6 (GRK6)

The function of GRKs is generally to phosphorylate the activated GPCRs and desensitize it.
Seven isoforms have been identified in the GRK family [84]. Of these, GRK6 is widely expressed
throughout the brain; its expression level is particularly high in the striatum, much higher than
those in other regions [85,86]. GRK6 is located predominantly in dopaminergic neurons [86] and
functionally phosphorylates DRD2.

Given GRK6 is functionally indispensable for DRD2 internalization by ARRB2, malfunction of
GRK6 may induce DRD2 up-regulation or even DSP. In fact, GRK6-KO mice exhibit a significantly
increased locomotor response to psychostimulants such as cocaine and amphetamine [86,87].
Furthermore, overexpression of GRK6 in rats and macaques promoted the internalization of
DRD2 and improved L-DOPA-induced dyskinesia, possibly by preventing an excessive G-protein
signal [88]. GRK6 could thus play a possible role in the development of DA supersensitivity.

There have been two studies of the genetic association of GRK6 in patients with schizophrenia.
The first reported no significant difference in any SNP distributions between case and control
groups [89]. The second study, focused on DSP itself, showed no significant differences between cases
and controls, or between patients with or without a history of DSP [90]. Some studies have reported
that GRK6 expression level did not differ in the postmortem cortex in patients with schizophrenia,
compared to control subjects without psychiatric disease [91,92]. To date, however, there have been
no studies measuring GRK6 expression level for specific subjects with DSP.

In short, from animal studies it is considered that GRK6 is likely related to the formation of DA
supersensitivity, but data for human or actual patients are quite scarce.

3.2.4. β-Arrestin 2 (ARRB2)

ARRBs consist of ARRB1 and ARRB2. Although ARRB1 is a major subtype in the rat
brain, ARRB2 has an approximately 6-fold greater affinity than ARRB1 for clathrin, which is
involved in the internalization of receptors to endosomes [93]. ARRB2 not only internalizes
DRD2 phosphorylated by GRK6 but activates G protein-independent cellular signaling mediated
by the AKT/PP2A/ARRB2 complex, resulting in slower and longer-lasting signaling than G
protein-mediated early signaling [72,94–97]. In addition, it has been reported that that the absence of
ARRB2 not only promotes G protein-mediated early signaling, but actually disrupts the interaction
of AKT with PP2A (i.e., G protein-independent signaling). Moreover, ARRB2-biased partial DRD2
agonists have been shown to inhibit phencyclidine-induced hyperlocomotion in wild-type mice, and
this effect is lost in ARRB2-KO mice [98]. These findings indicate that ARRB2 signaling may play an
important role in the DRD2-mediated effects of antipsychotics [98].

There are only two studies about the genetic association between ARRB2 and schizophrenia. The
first reported no significant difference between patients with schizophrenia and controls [99], while
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the second examined the association between rs1045280 and TD induced by antipsychotics in patients
with schizophrenia, whereby the T allele in rs1045280 was a risk allele for TD [100].

Seeman recently suggested that GRK6 and ARRB2 could regulate DRD2 in a state of low-affinity
for DA (D2low) [101]. We also demonstrated that striatal ARRB2 in DSP model rats tended to
decrease, and the ratio of GRK6/ARRB2 in DSP model rats was significantly higher than that in
controls [102]. These results indicate that the GRK6/ARRB2 system was altered and could not
perform DRD2 internalization normally in DSP rats. Given that ARRB2 is involved not only in DRD2
in internalization but also in the DRD2-mediated effects of antipsychotics, it is thus possible that
the alteration of the GRK6/ARRB2 system has an impact on the pathogenesis of DSP. However, the
relationship between the GRK6/ARRB2 system and actual patients with DSP is less well understood.
Thus, further detailed research is necessary.

3.2.5. Protein Kinase v-akt Murine Thymoma Viral Oncogene Homolog (AKT)

AKT serves many functions, such as protein synthesis, cell survival, cell proliferation,
and glucose metabolism. It consists of three isoforms (AKT1, AKT2 and AKT3). Following
dephosphorylation of AKT by DA stimulation, AKT activity decreases and GSK-3 is activated [69].

AKT1-KO mice exhibited enhanced psychotomimetic response to amphetamine and
ketamine [103,104]. Additionally, female AKT-KO mice were insensitive to clozapine, and their
PPI deficits were partially ameliorated by inhibitor of GSK-3 which lies downstream of AKT [105].
Interestingly, lithium inhibited the formation of ARRB2/PP2A/AKT, leading to augmented AKT
activity. Lithium thus reduced G protein-independent cellular signaling by inhibition of GSK-3β [69].
Consequently, lithium may inhibit dopaminergic behavior by inhibiting GSK-3β. It follows that AKT
regulates GSK-3-mediated G protein-independent signaling. Therefore, depressed AKT function may
cause DA supersensitivity state.

A number of studies have reported a genetic association between AKT1 and
schizophrenia [100,106–109]; other studies failed to support these results. A meta-analysis of
AKT1 has demonstrated that rs2494732 (A>G) located at 31-UTR of the AKT1 gene was significantly
associated with schizophrenia [110]. Importantly, rs2494732 has an effect on the progression of
psychotic disorders caused by cannabis [111,112]. Moreover, it has been shown that the expressed
protein levels of AKT1 significantly decreased in the postmortem frontal cortex and hippocampus of
patients with schizophrenia compared to controls [103].

These findings imply that impaired AKT1 activity may be involved in development
of schizophrenia, and could be a potential therapeutic target, since AKT1 regulates G
protein-independent signaling of DRD2 [113].

3.2.6. Glycogen Synthase Kinase-3 (GSK-3)

GSK-3 is multifunctional serine/threonine kinase, and plays important roles in cell proliferation,
apoptosis, and development. GSK-3 consists of two isoforms, GSK-3α and GSK-3β. GSK-3 is highly
abundant in the brain [114,115]. As described above, DRD2 stimulation by DA inhibits AKT, which
suppresses GSK-3β activity and thus makes GSK-3β more active [68,69].

Dominant negative GSK-3 transgenic mice exhibited depression of DRD2-mediated function in
the striatum [116]. In addition, GSK-3β inhibitors attenuated psychotomimetic effects induced by
ketamine [117]. On the other hand, GSK-3β overexpression in mice showed an electroretinogram
anomaly similar to the finding in subjects with high genetic risk for schizophrenia [118].
Moreover, prenatal polyriboinosinic-polyribocytidilic acid-induced neuropsychiatric disease model
mice exhibited reduction of AKT and increase of GSK-3β in the medial prefrontal cortex [119]. In
light of pharmacotherapy, a high dose of haloperidol or risperidone induced increase in GSK-3
of the rat striatum, and this finding was suggested as a therapeutic effect [120]. However, given
that the excessive blockade of DRD2 induced DA supersensitivity in the rats, and that GSK-3β
inhibitors attenuated the psychotomimetic effects induced by ketamine [117], the increase of GSK-3
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could instead be a by-product of treatment with antipsychotics, conceivably implying one of the
pathogenic mechanisms of DSP. Taken together, GSK-3 plays a central role in G protein-independent
DRD2 signaling. Considering the compensatory increase of GSK-3 after administration of high dose
antipsychotics, up-regulation of GSK-3 signaling may be responsible mechanism of DSP. In fact,
convergent evidence indicates that the ARRB2/AKT/GSK-3 signaling pathway plays a crucial role in
the regulation of DA mediated responses [68,121–124].

Some studies have demonstrated an association between GSK-3β polymorphisms and diagnosis
of schizophrenia [125–127]. Furthermore, a systematic meta-analysis showed that rs334558,
functional polymorphism in the GSK-3β promotor region, is associated with incidence of
schizophrenia, and suggested that this SNP might be used for differential diagnosis between
schizophrenia and bipolar disorder [128]. Kozlovsky et al. reported that both protein and mRNA
of GSK-3β were decreased by approximately 40% in the postmortem frontal cortex of patients
with schizophrenia relative to patients with bipolar or unipolar mood disorders and normal
controls [129,130]. However, data in the postmortem striatum is lacking.

As presented above, it is estimated that GSK-3 has tremendous significance in the DSP
mechanism. Therefore, it is strongly hoped that more studies of this molecule combined with detailed
clinical parameters on symptomatology or pharmacotherapy will proceed.

3.2.7. Clathrin

DRD2 internalization is regulated by CME [131] as other receptors such as
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA), and γ-aminobutyric acid
A (GABA(A)) are regulated by this mechanism [132,133]. Therefore, alteration of clathrin-interacting
proteins (e.g., adaptor protein 2, Stonin 2, Epsin 4 and others) could also be involved in the
pathophysiology of schizophrenia [73]. However, whether CME relates to the DA superesensitivity
state or not is less well understood.

3.3. Other Pathways in the Process of Tardive Dyskinesia (TD) Development

Although it has been established that DRD2 supersensitivity acquired by use of antipsychotics
was related to the occurrence of TD, other neuronal damage caused by antipsychotics has also
been considered. Antipsychotics are transmitted through the membrane of nigral neurons and
accumulate in a complex form with neuromelanin within the cells. This phenomenon could promote
the denervation of dopaminergic neurons and the up-regulation of DRD2. It is possible that
metoclopramide causes these processes more readily than other antipsychotics, which is consistent
with the high frequency of TD in humans by metoclopramide administration [134–136].

3.4. Hypothesis of Dopamine Supersensitivity Psychosis (DSP) Mechanism

As we reviewed the relevant research on DRD2 and its interacting molecules for this paper, we
found few studies that addressed the question of why antipsychotics could cause an up-regulation
of DRD2 or whether the up-regulation of DRD2 actually underlies DSP. Nevertheless, we are
particularly focused on these molecules, and now present a theory on the mechanisms of DSP.

The chronic excess blockade of DRD2 by antipsychotics induces a vicarious increase in DRD2
densities or in the proportion of D2High, probably due to alteration of the GRK6/ARRB2 system in
patients with DSP. When the up-regulated DRD2 or D2High receives endogenous DA, amplification
of G protein-mediated early signaling in the downstream of DRD2 occurs at several stages of
the cascade, which probably augment the signaling in a synergistic manner. In addition, DRD2
densities could gradually increase, even after cessation of antipsychotics, in an animal model [37,38].
Therefore, the medication nonadherence observed frequently in patients could affect DRD2 itself
and the subsequent signaling more significantly than expected; in patients with DSP, a reduction
or discontinuation of antipsychotics might induce a larger increase in available DRD2 for DA
binding [18], and furthermore promote DA signaling compared with those without DSP. By the same
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token, this DSP process could be also more affected by the elimination half-life of antipsychotics,
since DRD2 under agents with a short half-life are more easily available to endogenous DA.
Consequently, DSP episodes, especially rebound psychosis, could present with unstable symptoms of
disease (Figure 3). Furthermore, given that the GRK6/ARRB2 system is involved not only in DRD2
internalization but also in the DRD2-mediated effects of antipsychotics, DRD2-mediated effects of
antipsychotics could wane. Therefore, a higher dosage of antipsychotics would be needed to control
psychosis in patients with DSP, which is compatible with the clinical phenomenon of developed
tolerance to antipsychotic effect. On the other hand, GSK-3, which plays an intensive role in
DA signaling, maybe experience compensatory up-regulation under antipsychotic medications like
those of DSP patients. This molecule or pathway might be related to the occurrence of psychotic
relapses that appear immediately after treatment cessation or minor stress, since GSK-3 up-regulation
potentiates ARRB2/AKT/GSK-3 DA signaling. Taken together, these compensatory up-regulations
of DA signals could be fully responsible for the pathogenesis of DSP, although the precise cause of
DSP has not yet been fully elucidated (Figure 4).
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Figure 3. Effect of antipsychotic brain level on dopamine supersensitivity psychosis (DSP). If we set
the condition that four DRD2 is the optimal number to maintain appropriate signaling, 80% occupancy
of DRD2 in the up-regulated state is an adequate blockade. However, it could induce EPS in the
standard state for excessive blockade. In the same way, 60% occupancy in up-regulated state could
provoke psychosis relative to the adequate blockade in the standard state. Therefore, patients with
DSP may be more affected by a reduction or elimination half-life of antipsychotics. The number of
DRD2 in the area framed with the black box is optimal one and that with the red box is excessive
available one which could induce psychotic symptom. The white circles indicate available DRD2
and the blue circles indicate DRD2 occupied by antipsychotics. Abbreviation, DRD2, dopamine D2
receptor; EPS, extrapyramidal symptom.
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Figure 4. Hypothesis of DSP mechanism. Chronic excess blockade of DRD2 by antipsychotics induces
vicarious increase in DRD2 densities. Following DRD2 up-regulation, G protein-mediated early
signaling is enhanced. On the other hand, the alteration of the GRK6/ARRB2 system could induce
tolerance to the antipsychotic effect. Moreover, GSK-3 also experiences compensatory up-regulation.
Therefore, both early and late DRD2 signaling becomes strong, ultimately resulting in DSP. The red
arrows indicate activation and the blue arrows indicate inactivation. The dashed T-arrows indicate
disinhibition. The heavy yellow arrow with red frame border represents enhanced signal. The black
arrow indicates the several processes to form the AKT/PP2A/ARRB2 complex. Abbreviations: AC,
adenylate cyclase; AKT, protein kinase v-akt murine thymoma viral oncogene homolog; AP2, adaptor
protein; ARRB2, β-arrestin 2; CME, clathrin-mediated endocytosis; DA, dopamine; DRD2, Dopamine
D2 receptor; GSK-3, glycogen synthase kinase-3; GRK6, G protein-coupled receptor kinase-6.

4. Conclusions

Although DSP or the DA supersensitivity state has been examined with a separate focus on
withdrawal psychosis, relapsed episode, or TD in symptomatology and pharmacology research
areas, data concerning the ultimate effect of DSP on long-term prognosis in patients experiencing
DSP episodes remains scarce. However, the accumulating literature on this topic strongly
supports a contributing role of DSP to treatment-resistance or refractoriness. A large part of
pharmacogenomic research examines the genetic polymorphism of DRD2 and its responsiveness
to treatment, demonstrating a significant strong relationship between them. Concurrently, DRD2
polymorphism is related to the expressed level of the receptor, and hence, it is possible that the
polymorphism underlies the development of DA supersensitivity state or DSP. On the other hand,
regarding the signal transduction downstream to DRD2, numerous studies suggest that molecules
relevant to doperminergic signals are somehow involved in disease etiology or the action mechanism
of antipsychotic(s). However, the roles of these proteins in DRD2 expression under administration
of antipsychotics—their roles in developing DSP—have been little explored, and the essential
etiology of DSP remains unknown. Since it is clinically considered that development of DSP is
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profoundly related to treatment-resistance, the mechanism of the DA supersensitivity state affected
by antipsychotics will be very important in future schizophrenia research.
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