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Maternal betaine supplementation affects
fetal growth and lipid metabolism of high-
fat fed mice in a temporal-specific manner
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Anjana Saxena3 and Xinyin Jiang1

Abstract

Background/objectives: Maternal obesity increases the risk of gestational diabetes mellitus (GDM), which results in
fetal overgrowth and long-lasting metabolic dysfunctioning in the offspring. Previous studies show that maternal
choline supplementation normalizes fetal growth and adiposity of progeny from obese mice. This study examines
whether supplementation of betaine, a choline derivative, has positive effects on fetal metabolic outcomes in mouse
progeny exposed to maternal obesity and GDM.

Methods: C57BL/6J mice were fed either a high-fat (HF) diet or a control (normal-fat, NF) diet and received either 1%
betaine (BS) or control untreated (BC) drinking water 4–6 weeks before timed-mating and throughout gestation.
Maternal, placental, and fetal samples were collected for metabolite and gene-expression assays.

Results: At E12.5, BS prevented fetal and placental overgrowth and downregulated glucose and fatty acid transporters
(Glut1 and Fatp1) and the growth-promoting insulin-like growth factor 2 (Igf2) and its receptor Igf1r in the placenta of
HF, glucose-intolerant dams (P < 0.05). However, these effects disappeared at E17.5. At E17.5, BS reduced fetal adiposity
and prevented liver triglyceride overaccumulation in HF versus NF fetuses (P < 0.05). BS fetal livers had enhanced
mRNA expression of microsomal triglyceride transfer protein (Mttp) (P < 0.01), which promotes VLDL synthesis and
secretion. Although we previously reported that maternal choline supplementation downregulated mRNA expression
of genes involved in de novo lipogenesis in fetal livers, such alterations were not observed with BS, suggesting
differential effects of betaine and choline on fetal gene expression.

Conclusion: We propose a temporal-specific mechanism by which maternal BS influences fetal growth and lipid
metabolic outcomes of HF mice during prenatal development.

Introduction
Betaine (N,N,N-trimethylmethanaminium) is a methyl

derivative of glycine which is formed from glycine and
three methyl groups. Betaine is naturally found in foods
such as shrimp, beets, and whole grains1. It can also be

derived from the semi-essential nutrient choline (N,N,N-
trimethylethanolammonium) in the body via oxidation
mediated by choline dehydrogenase (CHDH). Betaine
serves as an osmolyte, a methyl donor, and a lipotrope,
and is primarily found in the livers of mammals.
The interaction of betaine with energy and macro-

nutrient metabolism has been revealed in multiple stu-
dies. Betaine is used as an additive to animal feed to
generate a leaner carcass2. Betaine treatment in cells
enhances mitochondrial and cellular respiration,
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mitochondrial potential, and ATP production, thereby
increasing energy expenditure3. Like its precursor choline,
betaine supplementation (BS) prevents fatty liver and
hepatic damage in rodents4–8, possibly in part by upre-
gulating the systemic metabolic regulator fibroblast
growth factor (Fgf) 21 or altering the DNA methylation of
genes involved in lipid metabolism. Recent studies also
suggest that BS in mice improves their glucose tolerance
and reduces insulin resistance5, 9. Betaine is also available
as a nutrition supplement, although its clinical effect on
non-alcoholic fatty liver disease is not clear10.
The importance of betaine during prenatal and early

postnatal development has attracted immense research
interest. Betaine has the ability to donate a methyl group
to convert homocysteine to methionine. Methionine can
then be converted to S-adenosylmethionine (SAM) which
donates a methyl group for DNA and protein methylation.
Prenatal BS in sow modifies DNA methylation and
expression of genes related to cholesterol metabolism and
gluconeogenesis in the liver of piglets11–13.
However, the influence of betaine on maternal and fetal

endpoints remains to be determined when maternal
energy supply is in excess. It is consistently shown that
high-fat (HF) fed mice become obese before gestation and
develop glucose intolerance during gestation, resembling
maternal obesity and gestational diabetes mellitus (GDM)
in humans14, 15. The increased nutrient transport through
the placenta leads to fetal overgrowth and excess adip-
osity16–18. Our previous studies suggest that prenatal
supplementation of choline in HF mice prevents fetal
overgrowth at E12.5 and excess adiposity at E17.5, pos-
sibly via the reduction in placental glucose and fat
transport or fetal hepatic lipogenesis15, 19. As the oxidized
derivative of choline, maternal BS may have similar effects
to choline supplementation (CS) on methyl group dona-
tion and epigenetic regulation. However, betaine cannot
be converted back to choline (i.e., oxidation of choline to
betaine is an irreversible process), and thus may have a
differential influence on lipoprotein structure as well as
lipid transport than choline which is an essential com-
ponent on the phospholipid membrane of lipoproteins.
The growing epidemic of maternal obesity increases the

incidence of GDM to as high as 15% in some popula-
tions20–22, which also increases the risk of fetal over-
growth or macrosomia (i.e., over 4 kg at birth)16–18.
Calorie control and weight management during preg-
nancy do not consistently normalize fetal weight23–27.
Betaine has the potential to influence nutrient transport
and epigenetic regulation of fetal genes, which may sub-
sequently normalize fetal growth and metabolism. The
current study examines the effect of maternal BS on
outcomes of maternal obesity and GDM in mouse pro-
geny. In this study, we can assess whether choline and
betaine act within the same metabolic pathway, through

DNA methylation, or whether they pose unique outcomes
depending on their different roles as a membrane struc-
tural component, an osmolyte, or a mitochondrial
respiration modifier.

Methods
Animals and diets
Six-week-old C57BL/6J mice were obtained from Jack-

son Laboratory. The mice were housed at 22 °C, humidity
40–60%, and 12-h light/dark cycle with regular bedding
and enrichment. The female mice were randomly divided
into four groups: the normal diet control (NF-BC) group
received a normal diet (D12450J, Research Diets, New
Brunswick, NJ, USA) containing 10% kcal from fat and
untreated drinking water; the NF betaine-supplemented
(NF-BS) group received the normal diet and purified
drinking water supplemented with 1% betaine anhydrous;
the high-fat control (HF-BC) group received a HF diet
(D12492, Research Diets) containing 60% kcal from fat
and untreated drinking water; and the HF betaine-
supplemented (HF-BS) group received the HF diet and
purified drinking water supplemented with 1% betaine
anhydrous (Fig. 1). Male mice for mating received the NF-
BC diet and purified drinking water. All animals had free
access to food and water. Composition of the two diets
has been described previously15.
In cohort 1, mice were fed 4 weeks of the experimental

diets after which two female mice and one male mouse
were caged together for timed-mating. The presence of a
vaginal plug indicated mating and was recorded as
embryonic day (E) 0.5. Female mice continued to receive

Fig. 1 Design of the study. Female C57BL/6J mice were divided into
four groups and fed with the normal fat (NF) no betaine (BC) diet, NF
betaine-supplemented (BS) diet, HF-BC diet, or HF-BS diet for 4 (cohort
1) or 6 (cohort 2) weeks before timed-mating and throughout
gestation. Male mice follow the NF-BC diet until timed-mating. The
intraperitoneal glucose tolerance test (GTT) was conducted on
embryonic day (E) 11.5 and 15.5. Dissection was conducted on E12.5
(cohort 1) or E17.5 (cohort 2). n is the number of dams in each group
from which data and samples were collected
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their assigned diets during gestation until dissection at
E12.5.
In cohort 2, pre-pregnancy feeding of the experimental

diets was extended to 6 weeks to attain greater maternal
obesity. The female mice underwent timed-mating and
received experimental diets during gestation until dis-
section at E17.5, a late gestational time point (Fig. 1).
There were at least six dams in each group. Sample size
selection was based on previous studies showing differ-
ences in fetal growth due to HF feeding. For both cohorts,
animals were weighed every week to assess weight gain
throughout the study. Food and water consumption was
measured each week. The NF and HF diets do not contain
betaine. Supplemental betaine was calculated as the
concentration of betaine in water multiplied by the
volume of water consumed each week.

Intraperitoneal glucose tolerance tests
Intraperitoneal glucose tolerance (IGT) tests were

conducted on the female mice at E11.5 for cohort 1 and at
E15.5 for cohort 2 as previously described15. Blood glu-
cose levels were checked at baseline (0 min), 15, 30, 60, 90,
and 120 min after glucose injection. The area under the
curve (AUC) was calculated28.

Sample collection
Animals were killed at E12.5 and E17.5 for cohorts 1

and 2, respectively by carbon dioxide inhalation. Imme-
diately after euthanasia, maternal blood was collected into
a serum separator tube (BD, Franklin Lakes, NJ, USA)
following cardiac puncture to obtain serum. Maternal
liver, abdominal fat, placentas, and fetuses were collected,
rinsed in phosphate-buffered saline, and dried on absor-
bent paper. These samples were first weighed on an
analytical balance. Subsequently, they were either flash
frozen in liquid nitrogen and stored at −80 °C or
immersed in RNAlater® (Thermo Scientific, Grand Island,
NY, USA) overnight before being stored at −80 °C until
analysis. The study protocol was approved by the Insti-
tutional Animal Care and Use Committee (IACUC) at
Brooklyn College.

Analytical measurements
For analytical measurement of placental samples, we

excluded dams with a litter size lower than 5 or higher
than 10 to prevent the potential confounding effect of
litter size on metabolic parameters. Two samples were
randomly selected from each litter unless specified
otherwise. Researchers were blinded to study grouping
when conducting experiments.

Embryo sexing
The sex of all fetuses was determined by PCR of a

sequence specific to the mouse sex-determining region Y

(Sry) gene on the Y chromosome according to a published
method29.

Non-esterified fatty acid (NEFA) measurements
Maternal NEFAs were measured with the HR Series

NEFA-HR(2) colorimetric reagents (Wako Diagnostics,
Richmond, VA, USA) according to the manufacturer’s
instructions.

Insulin measurement
Maternal serum insulin levels were measured with

enzyme-linked immunosorbent assay (ELISA) kits
(ALPCO, Salem, NH, USA) according to the manu-
facturer’s instructions.

Triglyceride measurements
Placental and maternal serum triglyceride concentra-

tions were quantified with the Triglyceride Colorimetric
Assay Kit (Cayman, Ann Arbor, MI, USA) according to
the manufacturer’s instructions.

Glycogen measurements
Fetal liver glycogen was quantified with the Glycogen

Fluorometric Assay Kit (Cayman) according to the man-
ufacturer’s instructions.

Choline measurements
A weighed portion of liquid nitrogen-pulverized liver

samples (about 50 mg) was used for choline quantifica-
tion. Measurements of choline and its derivatives were
conducted using the LC–MS/MS methodology30. One
fetal liver per dam and six dams from each group were
randomly chosen for choline quantification.

RNA extraction and quantitative real-time PCR
RNA extraction and quantitative real-time PCR were

conducted using published SYBR-green-based real-time
PCR methods15. Data were expressed as the fold differ-
ence of the gene of interest relative to the housekeeping
gene, beta-actin (Actb) and compared using the ΔΔCt
method31. All primers used were published previously15,
19. Expression of the following genes was analyzed: genes
involved in choline metabolism including betaine-
homocysteine S-methyltransferase 1 (Bhmt1), Chdh,
choline-phosphate cytidylyltransferase A (Pcyt1a), and
phosphatidylethanolamine N-methyltransferase (Pemt);
genes involved in placental growth including insulin-like
growth factor I receptor (Igf1r) and Igf2; genes affecting fat
and glucose transport including fatty acid transporter 1
(Fatp1) and glucose transporter 1 (Glut1); and genes
participating in de novo lipogenesis including acetyl-CoA
carboxylase (Acc) 1 and 2, carbohydrate-responsive ele-
ment-binding protein (Chrebp1), fatty acid elongase 5
(Elovl5), fatty acid desaturase 1 (Fads1), fatty acid
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synthase (Fasn), stearoyl-CoA desaturase-1 (Scd1), and
sterol regulatory element-binding protein 1, isoform C
(Srebp1c), as well as diacylglycerol O-acyltransferase 1
(Dgat1) which mediates triglyceride synthesis and
microsomal triglyceride transfer protein (Mttp) that is
involved in lipoprotein assembly.

Statistical analyses
General linear models (GLMs) were constructed to

assess the differences in the dependent variables (e.g.,
embryonic weight, placenta weight, and gene expression)
with HF and BS as well as their two-way interaction as
independent variables. Post hoc pairwise comparisons
were conducted if the interaction term has a P value ≤
0.1. Tukey’s HSD tests were used to correct for multiple
comparisons. For the assays in which multiple embryos
or placentas from the same dam were analyzed, the dam
was adjusted in the model as a random factor. Fetal sex
and litter size were also included in the model as inde-
pendent variables if they significantly modified the
dependent variable. Dependent variables deviating from
the normal distribution were logarithmically trans-
formed before analysis. A P value < 0.05 was considered
as significant. A P value < 0.1 was considered as a trend
to be significant. PD, PS, and PI represent the P values of
HF feeding, BS, and their interaction, respectively.
Values are presented as means ± standard error of mean
(SEM).

Results
Food and betaine intake
Maternal HF feeding significantly decreased food intake

yet increased total calorie consumption due to the higher
calorie density in the HF diet, as previously reported15.
Maternal BS did not modify food intake or calorie con-
sumption (data not shown). HF and BS interacted to affect
the volume of water consumed each week (PI= 0.03).
Pairwise analysis suggests that the NF-BS (22.8 ± 0.8 mL)
group had higher water consumption than the HF-BS
group (20.2 ± 0.5 mL, P= 0.03), while water consumption
in the NF-BC (20.2 ± 0.4 mL) and HF-BC (21.2 ± 0.5 mL)
groups was not significantly different. With this difference
in water intake, the NF-BS group received 1.94 ± 0.06 mM
betaine/week, 13% higher than the 1.72 ± 0.05 mM
betaine/week received by the HF-BS group.

Maternal weight, glucose tolerance, and biomarkers
We previously reported greater pre-pregnancy weight

gain of the HF-fed dams compared to the NF dams19 after
either 4 or 6 weeks of HF feeding (PD < 0.01). This weight
difference was not modified by BS (Fig. 2a). Weight gain
during pregnancy was higher at E12.5 (PD < 0.01) but
lower at E17.5 (PD= 0.02) in the HF versus NF groups
(Fig. 2b). BS did not modify gestational weight gain at

either time point. Glucose tolerance at both E11.5 and
E15.5 was worsened by maternal HF feeding (PD < 0.01),
yet was not modified by BS (Fig. 2c).
We have previously found that maternal HF feeding did

not affect liver weight, serum triglyceride, FFA, or serum
insulin levels at either time point, but did increase
abdominal fat weight (PD < 0.01) at both time points15, 19.
BS did not modify these biomarkers (data not shown).
Maternal liver triglyceride content was not affected by HF
feeding or BS at mid-gestation (E12.5), but was increased
by HF feeding at E17.5 (PD= 0.02) and tended to be
mitigated by BS (PS= 0.07) (Fig. 2d).
We measured betaine content in the liver of the dams at

E12.5. BS led to significantly higher hepatic betaine con-
tent compared to untreated control (PS < 0.01) (Table 1).
Although the oxidation of choline to betaine is irrever-
sible, betaine may still contribute to the liver choline pool
by providing methyl groups for the de novo synthesis of
choline via the PEMT pathway, in which the betaine-
derived methyl groups are used to sequentially methylate
phosphatidylethanolamine-forming phosphatidylcholine
(PC) that releases choline after phospholipase digestion
(Fig. 2e). Therefore, we also measured the concentrations
of choline and its other derivatives. BS and HF interacted
to affect free choline concentrations (PI= 0.01). Pairwise
comparison suggests that the HF-BS group had sig-
nificantly higher free choline levels than the other three
groups (P < 0.05). BS also increased methionine con-
centrations compared to BC (PS= 0.04). Phosphocholine
(an intermediate metabolite in the Kennedy pathway of
PC synthesis) content was significantly decreased
(PD= 0.04) and PC content tended to be decreased (PD=
0.09) by HF feeding, suggesting that HF feeding may have
reduced PC synthesis in the maternal liver. BS did not
modify the content of phosphocholine or PC.

Placental and embryonic outcomes
Our previous report has shown that maternal HF

feeding increased placental and fetal weight which was
normalized by maternal CS at E12.515. Similar effects were
observed with BS. HF tended to interact with BS to
influence fetal weight at E12.5 (PI= 0.09). Pairwise com-
parisons demonstrate that fetal weight was higher in the
HF-BC group compared to the other three groups
(P < 0.01) (Fig. 3a). HF increased (PD < 0.01) while BS
decreased (PS < 0.01) placental weight at E12.5 (Fig. 3b).
At 17.5, neither HF nor BS affected fetal weight (Fig. 3a).
However, HF feeding continued to increase (PD < 0.01)
placental weight which was not modified by BS (Fig. 3b).
We further examined body fat content of fetuses.

However, we were not able to assess fetal body fat at E12.5
because the content was below the detection limit of the
assay kit. At E17.5, despite the lack of difference in fetal
weight, maternal BS significantly lowered the percent
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body fat of the fetuses (PS= 0.02) (Fig. 3c). Maternal HF
feeding and BS interacted to affect hepatic triglyceride
content (PI= 0.03). HF feeding increased hepatic trigly-
ceride content of the fetuses in the HF-BC (P < 0.03) but
not the HF-BS (P= 0.94) group versus NF-BC (Fig. 3d).
Liver glycogen concentrations of fetuses were not sig-
nificantly different among the groups (P > 0.05) (data not
shown).
Since fetal weight and body fat content can be influ-

enced by maternal macronutrient transport through the
placenta and de novo lipogenesis of the fetus itself, we
examined metabolic gene expression in the placenta and
fetal liver. We previously reported that maternal CS

decreased transporters Glut1 and Fatp1 mRNA expres-
sion during HF feeding at E12.515. In this study, we
identified similar effects that maternal BS led to low-
erFatp1 (PS= 0.05) expression than BC. HF feeding
increased (PD < 0.01) while BS reduced (PS= 0.02) Glut1
expression (Fig. 4a). Maternal BS also lowered (PS < 0.01)
both placental Igf2 and Igf1r expression in the BS versus
BC groups at E12.5. However, the expression levels of
these transporters and growth factors were not affected by
HF or BS at E17.5, except for Igf2. HF feeding led to lower
Igf2 expression (PD= 0.02) (Fig. 4b).
We also examined fetal hepatic mRNA expression

among the groups at E17.5. Unlike maternal CS, BS did

Fig. 2 Weight gain and intraperitoneal glucose tolerance (IGT) of dams fed different diets. a Prepregnancy weight gain before timed-mating.
b Weight gain during gestation. c The area under the curve (AUC) of the IGT tests at E11.5 or E15.5. d Maternal liver triglyceride concentrations. e
Pathways and enzymes of choline metabolism. Sample sizes of the groups are specified in Fig. 1. NF-BC (solid bars), NF-BS (shaded bars), HF-BC (open
bars), and HF-BS (hatched bars). Data were analyzed using the general linear model. PD, PS, and PI represent the P values of HF feeding, betaine
supplementation, and their interaction, respectively. Post hoc pairwise comparisons were conducted with Tukey’s HSD correction if PI ≤ 0.1. Values
are mean ± standard error of mean (SEM); different letters (a versus b) indicate P < 0.05 in the pairwise analysis. ns not significant, BC no betaine
control, BS betaine supplemented, HF high-fat diet, NF normal-fat diet

Joselit et al. Nutrition and Diabetes  (2018) 8:41 Page 5 of 11

Nutrition and Diabetes



not downregulate expression of genes involved in de novo
lipogenesis including Acc2, Fads1, Elovl5 or their
upstream regulators Srebp1c and Chrebp1 (PS > 0.05)
versus BC (Fig. 4c). Moreover, HF feeding decreased
(PD < 0.01) while BS increased (PS= 0.05) the expression
of Fasn, which promotes fatty acid synthesis. HF-BS also
obviated the reduction in Scd1, another fatty acid syn-
thesizing gene, in the HF-BC group versus the NF-BC
group (PI= 0.1). HF or BS did not affect the expression of
Dgat1 which mediates fatty acid esterification either.
However, maternal BS significantly upregulated
(PS < 0.01) mRNA expression of Mttp compared to BC,
which may facilitate lipoprotein assembly and prevent
triglyceride accumulation in the fetal liver.
We explored the changes in betaine and choline meta-

bolism in the fetal liver that may have mediated the
changes in lipid metabolism at E17.5. HF increased
(PD= 0.03), whereas BS tended to decrease (PS= 0.09)
Bhmt1expression (Fig. 4d). Moreover, both HF feeding
(PD= 0.04) and BS (PS < 0.01) increased betaine content
in fetal livers. Therefore, the HF-BS group had the highest
betaine concentrations as compared to the other three
groups (NF-BC: 750 ± 263, NF-BS: 1354 ± 354, HF-BC:
970 ± 299, HF-BS: 2699 ± 299 nmol/g tissue). Other
metabolites or genes involved in choline metabolism were
not affected by HF or BS.

Discussion
In this study, we have found that maternal BS nor-

malizes the weight gain of fetuses from dams fed a HF diet
at mid-gestation as well as decreases percent body fat and
prevents hepatic triglyceride over accumulation at late
gestation. These phenotypes were consistent with obser-
vations in our previous studies on maternal CS. However,
gene expression and metabolite analyses indicate that the
metabolism of the maternal and fetal dyad may be regu-
lated differently by choline and betaine at different
gestational time points.

Maternal BS was as effective as CS on growth and
adiposity outcomes of fetuses from HF dams
This study is a continuation of our earlier studies where

we demonstrated that supplementation of choline pre-
vents fetal overgrowth and excess adiposity in dams
demonstrating phenotypes that resemble maternal obesity
and GDM15, 19. We also observed that betaine was the
only choline derivative with increased concentrations in
maternal livers after CS15. Betaine is formed from choline
via an irreversible oxidation reaction and it is an inter-
mediate in the pathway where choline participates as a
methyl donor. In the current study, we found that
maternal BS was as effective as CS in reducing fetal or
placental weight gain during mid-gestation (E12.5) in the
HF dams. This finding provides further evidence that theTa
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influence of CS on fetal growth at this time point may be
achieved via its increased oxidation to betaine and the
metabolic processes associated with betaine.
Nevertheless, the exact mechanism by which betaine

influences macronutrient metabolism and growth out-
comes of the fetus remain elusive. Maternal CS lowers the
expression of glucose and fat transporters as well as their
upstream regulator and placental growth promoter Igf2 in
the placenta15. The current study also demonstrates that
maternal BS reduced the expression of both Glut1 and
Fatp1. Moreover, maternal BS had a strong effect on
reducing the expression of both Igf2 and its receptor Igf1r,
regardless of HF or NF feeding. Such influence on Igf1r
expression was unique for BS and not observed with
maternal CS. IGF2 is a major growth factor that dictates
both placental and fetal sizes during gestation32. IGF1R
mediates the action of IGF2. The IGF signaling system
positively regulates macronutrient transport in the pla-
centa33, 34. Collectively, current data indicates a plausible
mechanism that choline or BS prevents fetal overgrowth

via the downregulation of genes involved in placental
nutrient transport and placental growth factors.
Igf2 is an imprinted gene with its expression tightly

regulated by DNA methylation levels of differentially
methylated regions35. Igf1r expression is also reported to
be influenced by DNA methylation36. Since a major role
of betaine is to serve as a methyl donor, increasing its
availability during gestation may have increased methyl
group provision for DNA methylation of Igf2 and Igf1r, or
other placental growth factors, thereby decreasing their
expression and macronutrient transport through the
placenta that they regulate.
Since betaine is formed via irreversible oxidation of

choline, it is not a direct source of choline for PC
synthesis. However, betaine may still contribute to the PC
pool by providing methyl groups for the sequential
methylation of phosphatidylethanolamine to form PC via
the PEMT pathway37. Therefore, the possibility that BS
alters PC signaling38, 39 which influences other nutrient
sensing mechanisms such as the mechanistic target of

Fig. 3 Fetal and placental growth markers of dams fed different diets. a Fetal weight at E12.5 or E17.5. b Placental weight at E12.5 or E17.5. c
Percent of body fat at E17.5. d Fetal liver triglyceride concentrations at E17.5. n= 2 per dam and 6 dams per group; NF-BC (solid bars), NF-BS (shaded
bars), HF-BC (open bars), and HF-BS (hatched bars). Data were analyzed using the general linear model. PD, PS, and PI represent the P values of HF
feeding, betaine supplementation, and their interaction, respectively. Post hoc pairwise comparisons were conducted with Tukey’s HSD correction if
PI ≤ 0.1. Values are mean ± standard error of mean (SEM); different letters (a versus b) indicate P < 0.05 in the pairwise analysis. ns not significant, BC
no betaine control, BS betaine supplemented, HF high-fat diet, NF normal-fat diet
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rapamycin (mTOR) to affect placental transport16 cannot
be ruled out.

Maternal BS prevented excess fetal adiposity potentially
via a different mechanism than CS
Both BS and CS prevented the increase in fetal fat

percentage and TG over accumulation at E17.5. Inter-
estingly, betaine attained such effects without altering the
expression of lipogenic genes Acc2, Fads1, Elovl5 or their
upstream regulators Srebp1c and Chrebp, which were all
downregulated by CS19. BS even mitigated the decrease in
Fasn and Scd1 expression observed in the HF-BC group
versus NF-BC, which further attenuated the adjustment to
decrease fatty acid synthesis in response to HF feeding.
These results indicate that mechanisms other than a
reduction in de novo lipogenesis mediate the influence of

maternal BS on fetal adiposity. Fetal hepatic Mttp
expression was higher in the BS groups than the BC
groups, while its expression was not altered by maternal
CS19. The upregulation ofMttpmight explain the reduced
triglyceride content in the HF-BS fetal livers since it is
required for the assembly and secretion of VLDLs from
the liver. However, the role of MTTP in whole body
adiposity is uncertain, since Mttp deficiency in mice does
not affect total adiposity or glucose tolerance40.
The more than twofold increase in fetal liver betaine

content in the HF-BS group provides a vast pool of methyl
group for methylation reactions. The lower Bhmt1
expression by BS is also consistent with the enhanced use
of betaine for homocysteine remethylation to methionine
since SAM, the universal methyl donor derived from
methionine, has an inhibitory effect on BHMT141.

Fig. 4 Placental and fetal liver mRNA expression. Placental transporter mRNA abundance at E12.5 (a) and E17.5 (b). c Fetal liver mRNA abundance
of genes involved in lipid metabolism at E17.5. d Fetal liver mRNA abundance of genes involved in choline and betaine metabolism. n= 2 per dam
and 6 dams per group; NF-BC (solid bars), NF-BS (shaded bars), HF-BC (open bars), HF-BS (hatched bars). Data were analyzed using the general linear
model. PD, PS, and PI represent the P values of HF feeding, betaine supplementation, and their interaction respectively. Post hoc pair-wise
comparisons were conducted with Tukey’s HSD correction if PI ≤ 0.1. Values are mean ± standard error of mean (SEM); different letters (a, b) indicate
P < 0.05 in the pairwise analysis. ns not significant. Acc acetyl-CoA carboxylase, Acox1 peroxisomal acyl-coenzyme A oxidase 1, Bhmt
betaine–homocysteine S-methyltransferase, Chdh choline dehydrogenase, Chrebp1 Carbohydrate-responsive element-binding protein, Dgat1
diacylglycerol O-acyltransferase 1, Elovl5 fatty acid elongase 5, Fasn fatty acid synthase, GPC glycerophosphocholine, Me methyl group, Mttp
microsomal triglyceride transfer protein, Pcyt1a choline-phosphate cytidylyltransferase A, PC phosphatidylcholine, PE phosphatidylethanolamine,
Pemt phosphatidylethanolamine N-methyltransferase, Scd1 stearoyl-CoA desaturase-1, Srebp1 sterol regulatory element-binding protein 1, BC no
betaine control, BS betaine supplemented, HF high-fat diet, NF normal-fat diet
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Notably, one carbon metabolism consumes energy
thereby reducing anabolism42. Moreover, methylation of
DNA and proteins alters expression and activity of
metabolic enzymes, thereby influencing lipid metabolism
in the fetus. Maternal BS has been shown to alter DNA
methylation of genes involved in cholesterol metabolism
such as LDL receptor, gluconeogenesis such as Pck, as
well as DNA methylation and expression of glucocorti-
coid receptor in the brain and its miRNA regulators,
which can influence whole body energy homeostasis in
stress12, 13, 43. The role of betaine in activating AMP-
activated kinase (AMPK) provides another possible
mechanism that might contribute to the prevention of
triglyceride accumulation. AMPK regulates ACC and fatty
acid synthase, rate limiting enzymes in fatty acid synthesis
in the liver9. Others also demonstrate that mitochondrial
betaine degradation is important for increasing energy
expenditure which enhances lipid catabolism and pre-
vents hepatic accumulation3. In summary, although
maternal BS did not lower lipogenic gene expression or
placental transport at late gestation, the increase in
betaine in the liver may be sufficient to reduce liver
steatosis and whole body fat metabolism via other
mechanisms.
It should be noted that the attenuating effect of BS on

fetal growth and hepatic fat accumulation was only
observed in the HF but not NF groups, suggesting an
interaction between HF and BS. This interaction may be
related to the increased utilization of betaine as a methyl
donor or a lipotrope during metabolic disturbance44–50.
Therefore, BS may aid in meeting the higher demand for
betaine in the HF fed dams.

The temporal differences in placental and fetal response to
HF and BS
In our study another interesting phenomenon that

emerged was the temporal-specific effect of betaine on
fetal growth and placental transport. The reduction of
fetal growth and nutrient transport by BS at E12.5 did not
sustain into late gestation, suggesting that placental and
fetal response to the maternal environment depends on
the specific stage of gestation. Previous studies in mice
reported similar temporal-specific response in fetal
growth. Calorie restriction by 50% during E1.5–11.5 led to
placental weight reduction in early gestation, yet this
weight reduction was reversed at E18.551, 52. Over-
nutrition induced by a high-sugar, HF diet reduced feto-
placental growth at E16, yet fetal weight was normalized
at E1953.
The development of placental networks regulating

nutrient transfer is maximized by mid-gestation. Placental
transport appears to be especially sensitive to maternal
nutrition during this stage of rapid proliferative develop-
ment of the organ54. Placental fatty acid transporter

expression is associated with maternal cholesterol and
triglyceride status at mid-gestation in ewes55. Under-
nutrition of mouse dams reduced GLUT1 expression at
E16 but not at E1956. Supplementing choline to dams
decreased the expression of GLUT1 at E15.5 but not at
E18.557. Late gestation is characterized by the growth
spurt of the fetus related to lipid accretion, while placental
growth is lessened56. The placenta adapts itself to the
need of the fetus. The fetal liver also plays a more
important role in regulating its own metabolism at this
stage13. Our observation that placental nutrient trans-
porters were only altered at mid-gestation by maternal HF
or BS corroborates the aforementioned studies.

BS did not modify maternal endpoints of the HF dams
There were differences in the effect of BS and CS on the

metabolic outcomes of HF dams. Although both BS and
CS had limited effects on maternal metabolism versus
placental or fetal outcomes at either time points, CS
seemed to improve glucose tolerance while paradoxically
promoted hyperinsulinemia and increased circulating
FFAs regardless of HF feeding at E17.519. BS did not affect
any of the above endpoints, although its effect on redu-
cing hepatic triglyceride accumulation of the dams was
more pronounced than CS. BS also seems to be more
effective in altering concentrations of one carbon meta-
bolites such as methionine and free choline in maternal
livers. These observations again suggest that BS and CS,
while having shared pathways of influence, also have dif-
ferential impacts on metabolism via the different bio-
chemical processes that they participate in.

Conclusions
This study demonstrates that maternal BS produced

similar phenotypes to CS on placental and fetal growth
and adiposity in response to maternal obesity in mice.
However, the underlying mechanisms of action may be
different. Their impacts on fetal outcomes are also tem-
poral and tissue specific. This study provides proof of
concept evidence that betaine may be further explored as
adjuvant therapy to current nutrition intervention meth-
ods for the improvement of fetal outcomes during
maternal obesity and GDM.
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