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A B S T R A C T

Background: To reduce the high incidence and mortality of gastric cancer (GC), we aimed to develop deep
learning-based models to assist in predicting the diagnosis and overall survival (OS) of GC patients using
pathological images.
Methods: 2333 hematoxylin and eosin-stained pathological pictures of 1037 GC patients were collected from
two cohorts to develop our algorithms, Renmin Hospital of Wuhan University (RHWU) and the Cancer
Genome Atlas (TCGA). Additionally, we gained 175 digital pictures of 91 GC patients from National Human
Genetic Resources Sharing Service Platform (NHGRP), served as the independent external validation set. Two
models were developed using artificial intelligence (AI), one named GastroMIL for diagnosing GC, and the
other named MIL-GC for predicting outcome of GC.
Findings: The discriminatory power of GastroMIL achieved accuracy 0.920 in the external validation set, supe-
rior to that of the junior pathologist and comparable to that of expert pathologists. In the prognostic model, C-
indices for survival prediction of internal and external validation sets were 0.671 and 0.657, respectively. More-
over, the risk score output by MIL-GC in the external validation set was proved to be a strong predictor of OS
both in the univariate (HR = 2.414, P < 0.0001) and multivariable (HR = 1.803, P = 0.043) analyses. The predict-
ing process is available at an online website (https://baigao.github.io/Pathologic-Prognostic-Analysis/).
Interpretation: Our study developed AI models and contributed to predicting precise diagnosis and prognosis
of GC patients, which will offer assistance to choose appropriate treatment to improve the survival status of
GC patients.
Funding: Not applicable.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

Gastric cancer (GC) is the fifth most common type of malignant
disease, and it ranks as the third leading cause of cancer-related
deaths worldwide [1]. For patients with early GC, the 5-year survival
rate can exceed 90% [2]. However, approximately half of patients
with GC already proceed the advanced stage at the time of diagnosis,
with the 5-year survival rate dropping below 30% [3,4]. To reduce the
mortality of GC, early detection and appropriate treatment are cru-
cial, and precise and efficient pathology services are indispensable to
realize this goal.

Pathological evaluation remains the gold standard for the diagno-
sis of GC. Conventionally carried out by pathologists, this method is
labor-intensive, tedious, and time-consuming. A severe shortage of
pathologists and a heavy workload of diagnosis are widespread prob-
lems globally, which negatively affect the diagnostic accuracy [5].
Accordingly, it is necessary to design a new method to conveniently
and accurately diagnose GC using pathological pictures.

Surgery is the main treatment for GC, followed by adjuvant treat-
ments including chemoradiotherapy and molecular targeted therapy
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Research in context

Evidence before this study

We first searched PubMed and learned about relevant
researches, and then carried out our project (Dec. 5, 2019). We
searched for the keywords “gastric cancer” AND “deep learn-
ing” OR "artificial intelligence", with no restrictions on language
or publication date. We learned that gastric cancer (GC) was the
fifth most common type of malignant disease, and it ranks as
the third leading cause of cancer-related deaths worldwide.
Pathological evaluation remains the gold standard for the diag-
nosis of GC. When deciding on the necessity for further expen-
sive and painful adjuvant treatments after surgery, clinicians
tend to make decisions according to evidence-based informa-
tion about the risk of death. Convolutional neural network
(CNN) is a high-efficient deep learning method for image recog-
nition and has excelled in quite a few image interpretation
tasks and might be utilized to abstract additional characteristics
from pathological images of GC patients. There had been a
number of AI studies focusing on GC, most of which relied on
endoscopy and medical radiologic technology. A few articles
had focused on the application of deep learning algorithm to
pathology of GC. There was still much room for improvement
in developing AI models to diagnose GC and predict survival
outcome through pathological pictures, especially to improve
the performance of AI models.

Added value of this study

In this study, we designed a CNN-based model, GastroMIL, for
the accurate diagnosis of GC directly from digital H&E-stained
pictures. Encouragingly, this diagnosis model achieved excel-
lent performance in differentiating GC from normal tissues in
the training and internal validation sets (AUC nearly 1.000).
Moreover, we have successfully developed a deep learning-
based model, MIL-GC, to automatically predict OS in patients
with GC with C-index of 0.728 and 0.671 in the training and
internal validation sets. And we also used an independent
external validation set, and the two models showed good diag-
nostic (AUC = 0.978) and prognostic (C-index = 0.657) predic-
tion performance, indicating good robustness of the two
designed models. And the risk score computed by MIL-GC was
proved to be of independent prognostic value of GC by univari-
ate and multivariable Cox analyze. In the comparison with
human pathologists, the diagnostic model (GastroMIL)
achieved accuracy better than that of the junior pathologist and
comparable to that of expert pathologists. More importantly,
we further constructed the first webpage (https://baigao.
github.io/Pathologic-Prognostic-Analysis/) for the automatic
diagnosis of GC and survival prediction.

Implications of all the available evidence

Our models can be adopted to make diagnosis with high accu-
racy and help clinicians select the appropriate adjuvant therapy
following surgery, by identifying patients at high risk who
would benefit from intensive regimens as well as patients at
low risk who might be cured through surgery alone. It will help
improve the survival status of GC patients and reduce the high
mortality.
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[6�8]. When deciding on the necessity for further expensive and
painful adjuvant treatments, clinicians tend to make decisions
according to evidence-based information about the risk of death.
Clinical practice has confirmed that prognoses of almost all human
cancers, including GC, are closely related to pathological criteria [9],
especially the tumour-node-metastasis (TNM) staging system speci-
fied and revised by the American Joint Committee on Cancer (AJCC)
[10]. However, manual histological analysis of tumour tissues is still
not accurate enough to stratify and identify those who may benefit
from adjuvant treatment. Hence, there is an urgent need to develop
succinct and reliable methods to predict overall survival (OS) of
patients with GC, which could assist in developing individualized
therapeutic strategies and maximizing the benefits.

In recent years, deep learning has gradually attracted the atten-
tion of oncologists. Deep learning belongs to the class of machine
learning that can successively identify more abstract information
from the input data [11�13]. Deep learning has progressed remark-
ably in the field of oncology, and has been demonstrated to be supe-
rior to conventional machine learning techniques [14,15].
Convolutional neural network (CNN) is a high-efficient deep learning
method for image recognition and has excelled in quite a few images
interpretation tasks [16,17].

Many studies have reported that artificial intelligence (AI) trained
with endoscopic images could detect GC precisely [18�21]. When it
comes to the field of tumour detection and prediction of prognosis of
GC using AI through pathological images, some progress has been
made. Song et al. [22] reported a histopathological diagnosis system
for GC detection using deep learning with the sensitivity near 100%
and average specificity of 80.6%. Another research developed recali-
brated multi-instance deep learning for whole slide gastric image
classification with 86% accuracy [23]. Wang et al. [24] successfully
predicted GC outcome from resected lymph node histopathology
images using deep learning.

Before proposing our models, we had established a number of
challenges that needed to be overcome in order to make the devel-
oped AI models better applicable to clinical practice. First of all, a
large sample size from multiple centres should be available for train-
ing and validating the proposed model to ensure the robustness.
While ensuring the effectiveness of model training, it is preferable
not to rely on extensive manual pixel-level annotation, which would
be laborious and time consuming and might hinder the development
of AI in the field of pathology. The developed model should be able to
be applied in clinical practice, and it should be simple, affordable and
accessible enough to be easily used by people without an AI back-
ground or in places where the economy is not particularly developed.
We hoped to accomplish these challenges better than previous stud-
ies.

In this study, we developed deep learning-based models, named
GastroMIL and MIL-GC, for precisely and conveniently detecting
tumour and predicting outcome of GC by analyzing pathological pic-
tures, respectively. GastroMIL and MIL-GC were proved to be novel
and strong predictors for diagnosis and outcome of GC patients on
both internal and independent external validation sets. In the com-
parison with human pathologists, our GastroMIL model outper-
formed the junior pathologist and achieved a great agreement with
expert pathologists. Furthermore, we designed an online website
(https://baigao.github.io/Pathologic-Prognostic-Analysis/) based on
our analysis to make this prediction more available to users who
have no knowledge of AI.

Methods

Patient Population

Three different cohorts were retrospectively collected to achieve a
broad patient representation and thereby improve the ability to gen-
eralize results to other cohorts. In the Renmin Hospital of Wuhan
University (RHWU; Wuhan, Hubei, China), we continuously collected
871 candidate patients with GC from 2012 to 2017, together with
corresponding 588 tumour tissue blocks (made from surgically
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removed tumour tissue, which was formalin-fixed and paraffin-
embedded) and 1276 pathological images. 1057 digital H&E-stained
pictures of 449 GC patients from The Cancer Genome Atlas (TCGA)
public dataset were collected, 934 of which were malignant and 123
were normal. In addition, 91 GC patients with 175 digital pictures
were acquired from National Human Genetic Resources Sharing Ser-
vice Platform (NHGRP; Shanghai, China) and served as the indepen-
dent validation set to evaluate the robustness of our models.

We adopted the following inclusion criteria for developing the
diagnostic model: (a) patients unequivocal diagnosed with GC by
preoperative biopsy or postoperative pathological examination; (b)
patients older than 18 years old and assentient to participate in this
study; and (c) pathological images available and clear rather than
loss, destruction or mildew.

Pictures used in the diagnostic model were excluded from the
prognostic model when they met the following conditions: (a) identi-
fied as normal; (b) lack of follow-up information; and (c) no critical
clinicopathologic information available.
Sample collection

Digital images of H&E-stained pathological images were used to
construct the computer frameworks. For each GC patient, we selected
two representative images in principle, which included tissues from
not only GC tumour but also surrounding normal gastric tissues. For
candidate patients from RHWU, the corresponding formalin-fixed,
paraffin-embedded tumour tissue blocks, made from surgically
removed tumour tissue, and their H&E-stained slides were obtained.
Next, two expert pathologists A and B selected preferred blocks and
marked areas that were cancerous or normal independently. When it
came to a disagreement between them, the diagnostic opinion of
another expert pathologist C was final adopted. Expert pathologists A
and B were associate chief pathologists, while expert pathologists C
was chief pathologist. The marked areas were utilized to construct
tissue microarrays (TMAs), which were then photographed to obtain
1276 digital H&E-stained images, of which 640 were malignant and
636 were normal. For the TCGA cohort, 1057 pathological pictures
(malignant 936, normal 123) were downloaded from the website
(https://www.cbioportal.org/study/summary?id=lihc_tcga). In view
of the uneven number of cancerous and normal pictures in the TCGA
cohort, the data augmentation technique was used to equalize the
distribution of images. In the external validation cohort from NHGRP,
there were 91 malignant digital pathological images and 84 normal.

Clinical and pathological information was additionally needed for
survival analysis, including survival state, OS time, age, sex, tumour
size, neoplasm histologic grade, and pathologic T,N, M and TNM
stages (according to the American Joint Committee on Cancer (AJCC)
Cancer Staging Manual, Eighth Edition, 2017) [25]. Clinicopathologi-
cal data of patients from the RHWU cohort were collected through
electronic medical records, and those of the TCGA and NHGRP
cohorts were downloaded directly from the official website.

This retrospective study was checked and approved by the clinical
ethics committees of RHWU (No. WDRY2021-K002). And informed
consents were gained from patients.
Diagnostic Model

Firstly, we designed a diagnostic model, named GastroMIL, to dis-
tinguish GC images from normal gastric tissue images. In order to
avoid complex manual annotation, we applied weak supervised
learning to our algorithm framework, specifically multiple instance
learning (MIL) [26�29]. Based on the assumption of MIL, each input
image was a bag, and the tiles it contained were the example instan-
ces. To develop the model, we only needed coarse-grained labels of
bags, that is, pathological diagnosis of each image. When the target
picture was marked positive, at least one tile was positive; if the tar-
get picture was marked negative, all tiles should be negative.

Given that the images used to train the model had different mag-
nifications, specifical the original magnification of images from TCGA
was 20 £ (without fixed size, could larger than 30000*30000 pixels),
whereas that of RHWU was 30 £ (3200*2400 pixels), we uniformly
processed these images into 5 £, 10 £, and 20 £ magnification and
use them to develop the algorithm separately.

Our GastroMIL model comprised two-step algorithms (Fig. 1a-b).
First of all, each input image was split into fixed-size tiles with
224 £ 224 pixels, the labels of which were the same as the pathologi-
cal diagnoses of the image itself. These tiles were used as training
data for the first step algorithm, the MIL classifier. There were
10548460 tiles used for training and 4523755 tiles used for internal
validation. Considering accuracy and efficiency, we chose RegNet
developed by Facebook to constitute the backbone of MIL. The output
of RegNet was the probability of these tiles being malignant. To
obtain the inference results of the complete pictures, we introduced
a recurrent neural network (RNN) as the second step classifier. Fea-
ture vectors with dimension 608 of the 32 most suspicious tiles
gained from each picture by the first step were sequentially passed
on to the RNN classifier to predict the probability of malignancy of
the entire picture.

The GastroMIL model could thus not only distinguish malignant
images from normal, but also identify regions of interest (ROIs) by
the segmentation and analysis of tiles. ROI indicated the area recog-
nized as malignant by GastroMIL, which could be visualized in the
form of heat map (Fig. 1b) and provide additional guiding informa-
tion for clinicians.

Prognostic Model

After identifying the malignant images, we developed another
model, MIL-GC, to predict the prognosis of GC patients. As shown in
Fig. 1a-c, the first step of MIL-GC was similar to that of the GastroMIL
model, and the 128 most suspicious tiles were selected and output as
feature vectors with dimension 608. In the second step, each feature
vector would finally yield a probability value between 0 and 1,
through a multilayer perceptron (MLP) algorithm. Probability values
of the 128 most suspicious tiles of the input picture were merged to
generate an average value as the output risk score.

Statistical analysis

Receiver operating characteristic (ROC) curves and areas under
the curve (AUCs), analysed with scikit-learn, a Python software pack-
age for machine learning, were used to quantify the performance of
the diagnostic classifier as well as accuracy, sensitivity, and specific-
ity. The cut-off value of ROC curves was set as 0.5. Cohen’s kappa
coefficient was used to assess the inter-observer agreement of the
diagnostic model (GastroMIL) and human pathologists. To assess the
predictive performance of the prognostic classifier, we adopted Har-
rell’s concordance index (C-index) as a metric. Kaplan-Meier survival
curve plotted with GraphPad Prism_9 was used to evaluate the corre-
lation between risk score generated by prognostic models and OS of
GC patients and Log-Rank test was performed. Prognostic factors
were identified using univariate and multivariate Cox proportional
hazards models implemented in SPSS26.0. The statistical significance
level was set at 0.05 (two-tailed). Statistical significance threshold
was adjusted for multiple comparisons using the Bonferroni correc-
tion. Python and Pytorch were employed to build the algorithm.

Role of the funding source

Not applicable.
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Fig. 1. Flow chart of the developed models. The framework of GastroMIL is shown in a-b, and that of MIL-GC is shown in a-c. Pathological images are input and tiles with 224 £ 224
pixels of each image are generated (a). Through CNN classifier of the MIL model, the probability of these tiles being malignant is output. Heat map visualizes ROIs identified by the
model. Feature vectors with dimension 608 of the most suspicious tiles are extracted. Feature vectors of the K most suspicious tiles are input to the second layer of MIL and aggre-
gated by RNN, and then the final diagnosis prediction of the input image is generated. In this study we took K as 32 (b). Feature vectors of the most S suspicious tiles are input to the
prognosis model (in this study S = 128). In the MIL-GC model, each feature vector yields a probability value through a MLP algorithm. Probability values of the 128 most suspicious
tiles of the input picture were merged to generate an average value as the output risk score (c). CNN, convolutional neural network; RNN, recurrent neural network; MIL, multiple
instance learning; MLP, multilayer perceptron; ROI, region of interest.
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Results

Patient characteristics

A total of 871 GC patients were initially screened from the RHWU
cohort, and 588 with tumour tissue blocks were eligible for the study.
There were 449 GC patients with digital H&E-stained pathological
images were eligible for this study in the TCGA cohort and 91 in the
NHGRP cohort. A total of 1276 images from the RHWU cohort and
1057 images from the TCGA cohort were obtained for the develop-
ment of the GastroMIL model. Through data augmentation, 3221 pic-
tures (malignant: normal = 1574: 1647) were finally enrolled in the
GastroMIL model and 70% (N = 2261) were randomly assigned to the
training set while the remaining 30% (N = 960) were included in the
internal validation set. 175 pictures from the independent NHGRP
cohort were used as the external validation set. The detailed data dis-
tribution was shown in Supplementary Table 1.
A total of 199 malignant pathological pictures with intact follow-
up and clinicopathological information from the RHWU cohort and
440 from the TCGA cohort participated in the construction of the
prognostic model and then randomly spilt into training set (N = 443)
and internal validation set (N = 196) at a ratio of 70: 30. 91 GC digital
pathological pictures with the required information from NHGRP
were included in the external validation set.

Table 1 exhibits the baseline characteristics of the pictures used in
MIL-GC. It is worth noting that the OS time of the TCGA cohort was
significantly lower than that of the RHWU cohort (median of 13.8
months vs. 43 months, P < 0.0001, Kruskal-Wallis nonparametric
test) (Bonferroni-adjusted significance threshold P’ < 0.017) and
NHGRP cohort (median of 13.8 months vs. 44 months, P < 0.0001,
Kruskal-Wallis nonparametric test) (Bonferroni-adjusted significance
threshold P’ < 0.017) (Supplementary Fig. 1a). Differences between
the RHWU cohort (median 43 months) and NHGRP cohort (median
44 months) were not statistically significant (P = 0.075, Kruskal-



Table 1
Baseline characteristics in the prognostic model (MIL-GC).

RHWU (N = 199) TCGA (N = 440) NHGRP (N = 91)

Age (years) 60 (54, 66) 67 (58, 73) 63.5§10.8
Sex
Male 146 (73.4%) 284 (64.5%) 31 (34.1%)
Female 51(25.6%) 156 (35.5%) 60 (65.9%)
Missing 2 (1.0%) 0 0
Tumor size (cm) 4.0 (2.8, 6.0) 1.8 (1.1, 2,4) 5.0 (4.0, 7.0)
Histologic grade
1 12 (6.0%) 11 (2.5%) 0
2 57 (28.6%) 159 (36.1%) 16 (17.6%)
3 125 (62.8%) 261 (59.3%) 69 (75.8%)
4 0 0 6 (6.6%)
Missing 5 (2.5%) 9 (2.0%) 0
pT stage
pT1 39 (19.6%) 22 (5.0%) 2 (2.2%)
pT2 22 (11.1%) 93 (21.1%) 10 (11%)
pT3 2 (1.0%) 197 (44.8%) 47 (51.6%)
pT4 134 (67.3%) 118 (26.8%) 32 (35.2%)
Missing 2 (1.0%) 10 (2.3%) 0
pN stage
pN0 71 (35.7%) 130 (29.5%) 19 (20.9%)
pN1 33 (16.6%) 119 (27.0%) 19 (20.9%)
pN2 45 (22.6%) 85 (19.3%) 22 (24.2%)
pN3 50 (25.1%) 88 (20.0%) 31 (34.1%)
Missing 0 18 (4.1%) 0
pM stage
pM0 168 (84.4%) 388 (88.2%) 89 (97.8%)
pM1 31 (15.6%) 30 (6.8%) 2 (2.2%)
Missing 0 22 (5.0%) 0
pTNM stage
Stage I 40 (20.1%) 59 (13.4%) 7 (7.7%)
Stage II 34 (17.1%) 132 (30.0%) 27 (29.7%)
Stage III 92 (46.3%) 187 (42.6%) 55 (60.5%)
Stage IV 31 (15.6%) 44 (10.0%) 2 (2.2%)
Missing 2 (1.0%) 18 (4.1%) 0
Survival status
Alive 146 (73.4%) 268 (60.9%) 37 (40.7%)
Dead 53 (26.6%) 172 (39.1%) 54 (59.3%)
OS time (months) 43 (33, 54) 13.8 (7.1, 24.5) 44 (15, 71)
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Wallis nonparametric test) (Bonferroni-adjusted significance thresh-
old P’ < 0.017). Since pictures in the TCGA cohort were collected
from different medical centres, the distribution of their OS time was
Fig. 2. Diagnostic abilities of GastroMIL at different magnification in the training and inter
20 £ magnification, respectively; e-g, ROC curves in the internal validation set when image
training and internal validation sets were exhibited in d and h, respectively. ROC, receiver o
specificity.
much more heterogeneous. To better adapt our models to the hetero-
geneity caused by patients from different sources and to improve the
generalizability of the developed models, we used a mixture of
images from the RHWU and TCGA cohort together as the training and
internal validation sets. The independent NHGRP cohort of images
was used as the external validation set. The OS time of the external
validation set (median 44 months) was significantly higher compared
with the training set (median 20.2 months, P < 0.0001, Kruskal-
Wallis nonparametric test) (Bonferroni-adjusted significance thresh-
old P’ < 0.017) and the internal validation set (median 22.4 months,
P < 0.0001, Kruskal-Wallis nonparametric test) (Bonferroni-adjusted
significance threshold P’ < 0.017) (Supplementary Fig. 1b).

Performance of the Diagnostic Model

In the diagnostic model, GastroMIL, all 3221 pictures after data
augmentation were mixed and then randomly split into the training
set and the internal validation set at a ratio of 7: 3. As shown in Fig. 2,
ROC curves and AUCs represented the ability to discriminate malig-
nant pathological images of the GastroMIL model when pictures
were at 5 £, 10 £ and 20 £ magnification. The accuracy (Acc), sensi-
tivity (Sen), and specificity (Spe) of each magnification in the training
(Fig. 2d) and internal validation (Fig. 2h) sets are shown in Table 2 a.

In the training set, the AUCs achieved 1.000 at three different
magnifications. The differences of Acc between the three groups was
statistically significant (P = 0.003, Chi-square test) (significance
threshold P < 0.05). The group of 10 £ magnification (Acc = 1.000)
outperformed that of 20 £ (Acc = 0.996) (P = 0.004, Chi-square test)
(Bonferroni-adjusted significance threshold P’ < 0.017). There was no
statistically significant difference in Acc between the groups of
5 £ and 10 £ (0.999 vs. 1.000, P = 0.250, Chi-square test) (Bonferroni-
adjusted significance threshold P’ < 0.017) and between the groups
of 5 £ and 20 £ (0.999 vs. 0.996, P = 0.109, Chi-square test) (Bonfer-
roni-adjusted significance threshold P’ < 0.017).

In the internal validation set, the AUC achieved 0.995 when pic-
tures were magnified 10 times. The AUCs were also very close to it
when images were magnified 5 times (AUC = 0.995) and 20 times
(AUC = 0.994). The differences in Acc among the three groups of dif-
ferent magnifications (0.976, 0.976, and 0.979) were not statistically
significant (P = 0.870, Chi-square test) (Bonferroni-adjusted
nal validation sets. a-c, ROC curves in the training set when images at 5 £, 10 £ and
s at 5 £, 10 £ and 20 £ magnification, respectively. The AUC, Acc, Sen and Spe of the
perating characteristic; AUC, area under the curve; Acc, accuracy; Sen, sensitivity; Spe,



Table 2
Accuracy, sensitivity and specificity of the diagnostic model (GastroMIL) and human pathologists.

a. Accuracy, sensitivity and specificity in the diagnostic model (GastroMIL) when images at different magnification.
Accuracy (95%) Sensitivity (95%) Specificity (95%)

Training set 5 £ 0.999 (0.998, 1.000) 0.998 (0.993, 1.000) 1.000 (0.997, 1.000)
10 £ 1.000 (1.000, 1.000) 1.000 (0.997, 1.000) 1.000 (0.997, 1.000)
20 £ 0.996 (0.994, 0.999) 0.998 (0.993, 1.000) 1.000 (0.997, 1.000)

Internal validation set 5 £ 0.976 (0.966, 0.986) 0.969 (0.949, 0.981) 0.985 (0.970, 0.993)
10 £ 0.976 (0.966, 0.986) 0.981 (0.965, 0.990) 0.971 (0.952, 0.983)
20 £ 0.979 (0.970, 0.988) 0.969 (0.949, 0.981) 0.985 (0.970, 0.993)

b. Accuracy, sensitivity and specificity in the diagnostic model (GastroMIL) with 10£magnified images
Accuracy (95%) Sensitivity (95%) Specificity (95%)

Training set 1.000 (1.000, 1.000) 1.000 (0.997, 1.000) 1.000 (0.997, 1.000)
Internal validation set 0.976 (0.966, 0.986) 0.981 (0.965, 0.990) 0.971 (0.952, 0.983)
External validation set 0.920 (0.879, 0.961) 0.934 (0.864, 0.969) 0.905 (0.823, 0.951)

c. Diagnostic performance of the GastroMIL model and human pathologists in the external validation set with images at 10£magnification
Accuracy (95%) Sensitivity (95%) Specificity (95%) P-value* Kappa#

GastroMIL Model 0.920 (0.879, 0.961) 0.934 (0.864, 0.969) 0.905 (0.823, 0.951) - -
Expert Pathologist D 0.971 (0.947, 0.996) 1.000 (0.960, 1.000) 0.952 (0.884, 0.981) 1.000 0.805
Expert Pathologist E 0.983 (0.963, 1.002) 0.967 (0.908, 0.991) 1.000 (0.956, 1.000) 0.332 0.806
Expert Pathologist F 0.983 (0.963, 1.002) 0.967 (0.908, 0.991) 1.000 (0.956, 1.000) 0.332 0.806
Junior Pathologist G 0.874 (0.825, 0.924) 0.758 (0.661, 0.835) 1.000 (0.956, 1.000) <0.0001 0.617

*Difference of Accuracy between the GastroMIL Model and each human pathologist, tested by paired chi�square test (McNemars test).
#Inter-observer agreement of the GastroMIL Model and each human pathologist, evaluated by Cohen’s kappa coefficient.
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significance threshold P’ < 0.017). It can be seen that our GastroMIL
model achieved excellent diagnostic ability for the differentiation of
malignant and normal gastric pathological pictures, and the generali-
zation performance was excellent for images at these three magnifi-
cations.

The diagnosis prediction by the GastroMIL model was based on
the classification probability output of all tiles, which can be used to
visualize the localization of highly suspected lesions on positive sec-
tions. That is, tiles predicted positive could show chromatic aberra-
tion, and through appropriate strides, suspected areas would overlap
many times, colour of which thus became warmer and darker than
other areas. The warmer the colour, the higher the probability that
GastroMIL predicted malignant in this area. Fig. 1b showed how heat
maps generated by GastroMIL. Heat maps of the RHWU (Fig. 3) and
TCGA (Supplementary Fig. 2) cohorts could almost accurately outline
the area where the tumour was located, regardless of different
cohorts or pathological TNM stage, indicating excellent generaliza-
tion performance of GastroMIL.

Performance of the prognostic models

In the process of outcome prediction, 639 malignant images
from RHWU and TCGA cohorts were mixed and then randomly
Fig. 3. Heat maps of the RHWU cohort. a-d, pathological images and corresponding heat ma
actual tumor regions annotated by expert pathologists were shown with yellow lines.
divided into the training set and the internal validation set at a
7:3 ratio. Considering that the discriminatory power of the Gas-
troMIL model for different magnification images was basically
identical to each other, we chose 10 £ images to be applied in
the prognosis model. The MIL-GC model performed well in both
the training set and the internal validation set, with C-index of
0.728 and 0.671, respectively.

Prognostic model assigned risk score to each picture, and we
divided the GC patients into high-risk and low-risk score groups.
We used the median value of risk score in the training set as
the threshold for stratifying patients. Then we adopted Kaplan-
Meier plots and univariate and multivariable Cox models to
assess the association between risk score and prognosis among
patients with GC. In the training set, the MIL-GC classifier was a
strong predictor of survival in the univariate analysis
(HR = 4.209, P < 0.0001, Cox analyse; Supplementary Table 2
and Supplementary Fig. 3). The classifier remained strong in
multivariable analysis (HR = 3.549, P < 0.0001, Cox analyse; Sup-
plementary Table 2) after adjusting for significant prognostic
indexes in univariable analyses: age, pT stage, pN stage, pM
stage and pTNM stage.

In the internal validation set, our model stratified the population
accurately based on univariate analysis (HR = 3.249, P < 0.0001, Cox
ps with pathological TNM stage I, II, III, and IV from the RHWU cohort, respectively. The



Fig. 4. Prognostic significance of the risk score generated by MIL-GC in the internal validation set. HRs for prediction of survival by the MIL-GC model and other clinicopathological
indexes based on univariate (a) and multivariate (b) analyses. The output score was converted into a binary score (high or low risk), using the median value of the training set as a
threshold. KM survival curves for the internal validation set (c) and some other subgroups: age �60 (d); age > 60 (e); histologic grade 1-2 (f); histologic grade 3-4 (g); pT stage 3-4
(h); pN stage 0-1 (i); pN stage 2-3 (j); pTNM stage 1-2 (k) and pTNM stage 3-4 (l). ****, P < 0.0001; **, P < 0.01; *, P < 0.05. The P-value of Kaplan-Meier survival curve was evaluated
by Log-Rank test. The P-value of HR was calculated by Cox analyse.
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analyse; Fig. 4a and c). The MIL-GC classifier predicted survival even
after stratification for other features (such as age, histologic grade, pT
grade, pN grade and pTNM grade; Fig. 4). The risk score computed by
MIL-GC was of independent prognostic value (HR = 2.976, P < 0.0001,
Cox analyse; Fig. 4b). The results showed that the prognostic model
based on CNN was equipped to predict OS of GC and might provide a
basis for the choice of treatment.
Independent external validation of developed models

Figures from the independent NHGRP cohort were employed as
the external validation set for the diagnosis prediction model, Gastro-
MIL and outcome prediction model, MIL-GC. The magnification of the
original images is 20 £ (3900*3900 pixels), and we pre-processed
them into 10 £ magnification. The GastroMIL model showed good



Fig. 5. Predicting diagnosis and prognostic performance in the external validation set. ROC curve (a) and HRs based on univariate (b) and multivariate (d) analyses are exhibited. KM
survival curves for the external validation set (c) and some other subgroups: age > 60 (e); tumour size �5 (f); histologic grade 3 (g); pT stage 3 (h); pN stage 0 (i); pN stage 3 (j); pM
stage 0 (k); pTNM stage 2 (l) and pTNM stage 3 (m). ***, P < 0.001; **, P < 0.01; *, P < 0.05. ROC, receiver operating characteristic; AUC, area under the curve. The P-value of Kaplan-
Meier survival curve was evaluated by Log-Rank test. The P-value of HR was calculated by Cox analyse.
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performance in identifying malignant pathological images on the exter-
nal validation set (AUC = 0.978, Fig. 5a). Heat maps of the independent
external validation set were displayed in Supplementary Fig. 4.

The C-index of MIL-GC in the external validation set was
0.657. The MIL-GC classifier was a strong predictor of OS in the
univariate analysis (HR = 2.414, P < 0.0001, Cox analyse; Fig. 5b
and c). The MIL-GC classifier predicted survival among the various
subgroups (such as age > 60, tumour size � 5, histologic grade 3,
pT stage 3, pN stage 0 and 3, pM stage 0, pTNM stage II and
pTNM stage III; Fig. 5). After adjusting for significant prognostic
indexes in univariable analyses: histologic grade, pT stage, pN
stage, pM stage and pTNM stage, the risk score output by MIL-GC
remained strong in multivariable analysis (HR = 1.803, P = 0.043,
Cox analyse; Fig. 5d). Good diagnostic and prognostic prediction
performance demonstrated on the external validation set, indicat-
ing good robustness of the two designed models.
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Comparing diagnostic performance with human pathologists

To explore how the diagnostic performance of our model com-
pared to that of human pathologists, we employed three expert
pathologists D, E, and F who were chief or associate chief pathol-
ogists and one junior pathologist G who was under training to
diagnose images in the external validation set. Human patholo-
gists were blind for patients’ information before examination. The
accuracy, sensitivity, and specificity of manual diagnosis were
exhibited in Table 2c. The performance of our GastroMIL model
(Accuracy = 0.920) was significantly better than the junior pathol-
ogist G (Accuracy = 0.874) (P < 0.0001, paired chi�square test).
There was no significantly difference when our model compared
to expert pathologist D (Accuracy = 0.971) (P > 0.05, paired
chi�square test), expert pathologist E (Accuracy = 0.983)
(P > 0.05, paired chi�square test), and expert pathologist F
(Accuracy = 0.983) (P > 0.05, paired chi�square test), respec-
tively. And the diagnostic model achieved substantial interob-
server agreement with the expert pathologists (kappa = 0.805,
0.806, and 0.806, respectively). Moreover, we designed an online
website (https://baigao.github.io/Pathologic-Prognostic-Analysis/)
to make the process of prediction more available and much easier
for users without AI knowledge. The detail process of prediction
is seen in Supplementary Fig. 5.

Analysis of representative predictive tiles

Our models predicted diagnosis and outcome of GC patients
from the 32 and 128 most suspicious tiles automatically gained
from the input HE-stained pathological pictures, respectively. We
extracted these suspicious tiles and had them reviewed by expert
pathologists A and B. Here we displayed some representative pre-
dictive tiles with interpretation by pathological experts (Fig. 6).
These tiles were of obvious tumour heterogeneity, including
necrosis, nerve invasion, signet ring cell, intravasated cancer cells,
muscularis propria invasion, and mucous secretion, hiding signifi-
cant diagnostic and prognostic information. These suspicious tiles
provide a preliminary indication that our model could automati-
cally identify regions of pathological significance and classify GC
pathology images based on these regions. Further details on the
analysis of deep learning, which has been traditionally treated as
a black box, deserve our further study in the future.
Fig. 6. Representative predictive tiles produced by our model. These tiles were of
obvious tumour heterogeneity, including necrosis (a), nerve invasion (b), signet
ring cell (c), intravasated cancer cells (d), muscularis propria invasion (e), and
mucous secretion (f).
Discussion

In this study, we designed a CNN-based model, Gastro-MIL, for the
accurate diagnosis of GC directly from digital H&E-stained pictures.
Encouragingly, this diagnosis model achieved excellent performance
in differentiating GC from normal tissues in the training and internal
validation sets (AUC nearly 1.000). Moreover, we have successfully
employed deep learning to automatically predict OS in patients with
GC with C-index of 0.728 and 0.671 in the training and internal vali-
dation sets. The predictive models can be adopted to help clinicians
select the appropriate adjuvant therapy following surgery, by identi-
fying patients at high risk who would benefit from intensive regi-
mens as well as patients at low risk who might be cured through
surgery alone. And we also used an independent external validation
set, and the two models showed good diagnostic (AUC = 0.978) and
prognostic (C-index = 0.657) prediction performance, indicating good
robustness of the two designed models. Moreover, the risk score
computed by MIL-GC was proved to be of independent prognostic
value of GC by univariate and multivariable Cox analyse. In the com-
parison with human pathologists, our diagnostic model GastroMIL
outperformed the junior pathologists and demonstrated a high
degree of consistence with expert pathologists (kappa > 0.8). More
importantly, we further constructed the first webpage (https://bai
gao.github.io/Pathologic-Prognostic-Analysis/) for the automatic
diagnosis of GC and survival prediction.

In recent years, deep learning, such as CNN, has attracted much
attention and has achieved particular success in computer vision
tasks. In our previous study, we developed an AI model to distinguish
abnormal images from normal images in small bowel capsule endos-
copy, and it was validated to exceed human performance [30]. In this
study, we adopted CNN to analyse digital H&E-stained GC pathologi-
cal images. Song et al. [9] reported deep learning model for GC detec-
tion by analysing histopathological images with validation in
multicentre sample. They reached good performance and developed
the system for pathologists to use the proposed model. However,
they applied a large number of pixel-level manual annotations to
train the model, which consumed a lot of time and effort of patholo-
gists. The need for extensive manual annotation was also seen in the
studies using AI for GC [23] and bladder [31] pathological diagnosis,
different from the models proposed in our study. Due to the adoption
of a weakly supervised model (specifical MIL) in our study, the only
label we needed for training was the reported diagnoses made by
pathologists in the course of their daily work, eliminating large man-
ually annotated tasks that used to hinder the development and clini-
cal practice of AI in pathology. And the system Song et al. [9] have
developed may be too expensive (Small hospital: $84, 000-$87, 000;
Large hospital: $161, 000-$164, 000) for economically underdevel-
oped areas with a shortage of pathologists, limiting its promotion in
primary hospitals to a certain extent. We designed a website based
on our analysis, simple and easy to use, and all the users need is a
computer with an Internet connection or even an Internet-connected
phone or tablet. When a histological image is uploaded without any
professional annotation, the webpage will show a brief result of the
primary type and survival prediction. The website identifies suspi-
cious areas, thus improving diagnostic accuracy in a limited amount
time, which will prove particularly useful in areas with a shortage of
pathologists and in improving the diagnosis performance of junior
pathologists who are under training.

There have been a number of AI studies focusing on GC
[19,20,32�35]. Most of these previous studies relied on endoscopy,
and a small amount of selected medical radiologic technology, such
as computed tomography. Moreover, previous studies generally
employed a small sample size from a single centre, lacking effective
proof to validate the robustness of models. We constructed models
on much larger datasets from two different cohorts, and validated on
another independent external validation set, greatly enhancing the

https://baigao.github.io/Pathologic-Prognostic-Analysis/
https://baigao.github.io/Pathologic-Prognostic-Analysis/
https://baigao.github.io/Pathologic-Prognostic-Analysis/
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universality of the diagnostic and survival models. In the meantime,
images in the external validation were diagnosed by human patholo-
gists. By comparing the diagnosis performance of our model with
that of junior and expert pathologists, the accuracy and reliability of
our model was further confirmed.

For survival prediction, we designed MIL-GC algorithm in this
study. The risk score generated by MIL-GC exhibited a distin-
guished performance in predicting OS among patients with GC, as
reflected by the C-index of 0.728, 0.671, and 0.657 in the training,
internal validation and external validation sets, respectively. Fur-
thermore, we applied Cox regression analysis to determine
whether the risk score generated by MIL-GC was an independent
biomarker for the prediction of OS in GC patients. Fortunately,
the risk score generated by MIL-GC remained strong in multivari-
ate regression (HR = 2.976, P < 0.0001 in the internal validation
set, and HR = 1.803, P = 0.043 in the external validation set) after
the adjustment for established prognostic features, indicating that
the risk score generated by MIL-GC will be a promising supple-
ment to the established markers and help refine risk stratification
among GC patients.

A recent study [24] predicting the outcome of GC from
resected lymph node histopathology images also yielded mean-
ingful results. Our study focused on the pathological histological
features from the stomach tissue, while their study concentrated
on the lymph node metastasis of GC. Both of these two studies
able to make predictions about the prognosis of patients with GC.
If the key points of the two researches could be combined in the
future, we may achieve a more satisfactory performance in pre-
dicting GC patients’ prognosis. Furthermore, our webpage could
conveniently provide predictions of patient prognosis, serving as
an important reference for selection of adjuvant therapy after
surgery in patients with GC.

There are some limitations to our study. First, the survival time of
GC individuals from the TGCA cohort was different from that in the
RHWU cohort due to the progress of treatment. Therefore, it is not
appropriate for us to use the TCGA or RHWU cohort as the training
set and the other as the validation set. Hence, we mixed them
together and randomly split them into the training or internal valida-
tion set. Furthermore, datasets we collected in the RHWU, TCGA and
NHGRP cohorts were retrospective and thus suffered from inherent
biases. In the future, we plan to conduct a prospective, randomized,
multicentre clinical trial to validate the performance of precisely
diagnosing GC and stratifying patients into high-risk and low-risk
score groups to assist in selecting the suitable individualized adjuvant
treatment regiments.

In conclusion, we developed deep learning models to diagnose GC
and predict the survival outcomes of GC patients by analyzing H&E-
stained pathological images. To make our models more intuitive and
easier to use, an online website (https://baigao.github.io/Pathologic-
Prognostic-Analysis/) based on developed algorithms was designed.
Our models assist oncologists in the identification of GC and selection
of appropriate treatment, thus reducing the physical and economic
burdens of patients.
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