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Abstract: Background: Companion animal clinics contribute to the spread of antimicrobial resistant
microorganisms (ARM) and outbreaks with ARM of public health concern have been described.
Methods: As part of a project to assess infection prevention and control (IPC) standards in companion
animal clinics in Switzerland, a total of 200 swabs from surfaces and 20 hand swabs from employees
were collected during four days in a medium-sized clinic and analyzed for extended spectrum beta-
lactamase-producing Enterobacteriaceae (ESBL-E), carbapenemase-producing Enterobacteriaceae
(CPE), vancomycin-resistant enterococci (VRE), and methicillin-resistant staphylococci (MRS). Results:
A total of 22 (11.0%) environmental specimen yielded CPE, 14 (7.0%) ESBL-E, and 7 (3.5%) MRS;
MR Staphylococcus aureus were isolated from two (10.0%) hand swabs. The CPE isolates comprised
Escherichia coli, Klebsiella pneumoniae, Enterobacter hormaechei, Citrobacter braakii, and Serratia marcescens.
Whole genome sequencing revealed that all CPE carried closely related blaOXA-48 plasmids, suggesting
a plasmidic spread within the clinic. The clinic exhibited major deficits in surface disinfection, hand
hygiene infrastructure, and hand hygiene compliance. CPE were present in various areas, including
those without patient contact. The study documented plasmidic dissemination of blaOXA-48 in a
companion animal clinic with low IPC standards. This poses a worrisome threat to public health and
highlights the need to foster IPC standards in veterinary clinics to prevent the spread of ARM into
the community.
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1. Introduction

Antimicrobial resistance has been declared as one of “the greatest and most urgent
global risks” by the United Nations General Assembly [1]. Antimicrobial resistant mi-
croorganisms (ARM) are estimated to cause the death of over 700,000 people per year and
pose a threat to the healthcare system [2]. Carbapenemase-producing Enterobacteriaceae
(CPE) represent ARM of special concern due to their ability to hydrolyze carbapenems.
The World Health Organization (WHO, Geneva, Switzerland) classifies carbapenem an-
tibiotics as critically important for human health and considers them as antimicrobials
of last resort due to their broad spectrum of activity against several gram-positive and
gram-negative bacteria [3]. Carbapenem resistance encoded by blaOXA-48 is often located
on transferable L/M complex plasmids. These plasmids can possess derepressed transfer
properties, allowing them to efficiently spread horizontally [4]. CPE have caused outbreaks
and hospital-acquired infections in human healthcare worldwide [5–11]. In companion
animal clinics, CPE have, so far, only scarcely been reported [12–15]. Of note, the use of
carbapenems in companion animal medicine is restricted to special indications and has not
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been widely reported [16]. Companion animal clinics harbor multiple factors that foster the
selection of antimicrobial resistant microorganisms (ARM): a high number of hospitalized
and debilitated patients, a high percentage of animals receiving antimicrobial therapy, and
daily invasive procedures associated with numerous hand-patient contacts.

As part of an action plan to combat the spread of ARM in companion animal clinics,
a project to evaluate the effect of infection prevention and control (IPC) implementation
in five veterinary clinics on environmental contamination with ARM, hand hygiene, and
IPC standards was launched in Switzerland. During this project, a spread of CPE and
extended-spectrum beta-lactamase producing Enterobacteriaceae (ESBL-E) was identified
in one of the clinics which showed extensive environmental contamination. The aims of
the present study were to characterize the isolates, to investigate potential transmission
events, and to assess IPC standards in the affected institution.

2. Results
2.1. IPC Standards and Hand Hygiene Adherence

The dissemination of resistant bacteria was identified in a medium-sized clinic in
Switzerland that comprised 45 staff members, offered a 24/7 emergency service and an
intensive care unit (ICU), and treated around 13,000 ambulatory and stationary dogs and
cats per year. In the IPC standard assessment the clinic reached 59 out of 102 (58%) total
scoring points (Table 1). The IPC audit revealed major deficits regarding cleaning and
disinfection, hand hygiene infrastructure, isolation measures, equipment in examination
rooms, and antimicrobial use. Written protocols on cleaning and disinfection were not
implemented. Hand washing stations and hand disinfection dispensers were not available
in all areas where patients were treated. The clinic had limited IPC management in place
and staff education regarding IPC was scarce.

Table 1. IPC areas and audit scores.

IPC Area IPC Audit Score/Maximum IPC Score

IPC management 1/10
Staff education 5/12

Cleaning/disinfection 5/8
Management of waste 4/4

Vector control 2/2
Equipment in examination rooms 2/4

Isolation measures 3/6
Patients with ARM 3/4

Hand hygiene 4/8
Personal hygiene 10/12

Protection of employees 5/8
Protective clothing 5/6

Medication 5/6
Use of antimicrobials 2/4

Miscellaneous 3/8

Total audit score/maximum IPC score (%) 59/102 (58%)
Abbreviations: IPC, infection prevention and control; ARM, antimicrobial resistant microorganisms.

Overall, 525 hand hygiene observations were collected in the clinic. Overall hand
hygiene compliance was 14.9% (95% CI 12.1–18.2%). Significant differences were observed
between clinical areas (p = 0.007) and hand hygiene indications (p < 0.0001). The highest
hand hygiene compliance was found in the wards (23.9%, 95% CI 17.5–31.8%), followed
by the consultation area (13.4%, 95% CI 8.5–20.4%), the ICU (11.8%, 95% CI 7.3–18.6%),
and the pre-operation preparation area (10.2%, 95% CI 6.2–16.4%). Hand hygiene was
more commonly performed after body fluid exposure risk (19.0%, 95% CI 12.9–27.0%), after
patient contact (16.5%, 95% CI 11.2–23.8%), and after touching the patient’s surrounding
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(18.2%, 95% CI 11.8–26.9%), than before patient contact (9.7%, 95% CI 5.5–16.6%) and before
clean/aseptic/invasive procedures (7.8%, 95% CI 3.4–17.0%).

2.2. Environmental Swabs and Hand Swabs

Overall, 200 environmental swabs and 20 hand swabs were collected and analyzed.
From the environmental specimens, 31 (15.5%) tested positive for at least one of the in-
vestigated ARM. CPE were detected in 22 (11.0%, 95% CI 7.4–16.1) specimens, ESBL-E
in 14 (7.0%, 95% CI 4.2–11.4), and methicillin-resistant staphylococci (MRS) in 7 (3.5%,
95% CI 1.7–7.0) specimens. MR Staphylococcus aureus were isolated from two hand swabs
(10.0%, 95% CI 1.77–30.1). Vancomycin-resistant enterococci (VRE) were not detected in
any specimens.

The environmental isolates originated from 22 different surfaces from all areas across the
clinic, including those where no animals were permitted, such as the staff kitchen, the toilet,
and the laboratory (Figure 1). The percentage of ARM positive samples from the environment
per day ranged from 10.0% (95% CI 4.3–21.4, day 3) to 18.0% (95% CI 9.8–30.8, days 1, 2
and 4). The isolates comprised several species and sequence types. The ESBL-E and CPE
isolates included Escherichia coli ST961, ST12, ST641, and ST1406; Klebsiella pneumoniae ST219,
ST3063, ST857, ST5580, and ST5873; Enterobacter hormaechei; Citrobacter braakii; and Serratia
marcescens (Figure 1, Table S1). All CPE carried blaOXA-48; the ESBL-E carried blaCTX-M-15 and/
or blaSHV-12; the MRS isolates all harbored the mecA gene (Table S1).

To investigate a potential clonal dissemination of isolates and horizontal spread of
blaOXA-48-encoding plasmids within the clinical environment, 12 blaOXA-48 harboring iso-
lates (1 C. braakii, 4 Enterobacter spp., 2 E. coli (ST961 and ST1406), 4 K. pneumoniae, (2 ST219,
ST3063, and ST5873) and 1 S. marcescens) were subjected to whole genome sequencing
(WGS) (Table S2). The four Enterobacter spp. isolates were identified as E. hormaechei accord-
ing rMLST analyses and assigned to ST113 and ST114 (3x) using the Enterobacter cloacae
complex MLST scheme. E. cloacae complex clades harboring ST113 and ST114 isolates were
previously designated as E. hormaechei subsp. steigerwaltii, and E. hormaechei subsp. xiang-
fangensis (or E. xiangfangensis), respectively [17,18]. Hybrid assemblies of three isolates
(2 K. pneumoniae (ST219 and ST5873), and 1 S. marcescens) which additionally underwent
long-read sequencing revealed the presence of identical blaOXA-48-carrying 63,589 bp IncL
plasmids in each isolate. Read-mapping-based approaches confirmed the presence of this
pOXA-48-like plasmid in all other sequenced CPE isolates. The plasmid was conserved
across the different clones and species, deviating only in E. coli MV-r4-SK2-C by one SNP
(T37049A). In the NCBI nucleotide collection, the identical plasmid (63,589 bp; 100% se-
quence identity and query cover; ignoring inversions) was found in 44 genomes from global
isolates (33 K. pneumoniae, 8 E. coli, and 3 Citrobacter freundii) deriving, amongst others, from
humans and the environment of another Swiss veterinary clinic [19]. The plasmid obtained
in the veterinary clinic differed structurally by a 5.6 kb inversion (Figure 2). The genetic
structure of the plasmid was described before (pEc_MW04_OXA, [20]) and did not contain
antimicrobial resistance genes other than blaOXA-48.

WGS also demonstrated a clonal spread of CPE across different sources and sampling
days in the clinic environment: three of the four sequenced E. hormaechei belonged to ST114
and differed by ≤7 pairwise whole genome SNPs. The three isolates were found on three
distinct surfaces in different areas of the clinic and collected over a period of 12 days.
Similarly, the two sequenced K. pneumoniae ST219 isolates differed by four whole genome
SNPs, suggesting a common origin. ST219 was found throughout the clinic and on every
sampling day (Figure 1).
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Figure 1. Timeline of CPE, ESBL-E, and MRS isolated from the clinical environment. Each column 
refers to one sampling day. Each horizontal line refers to a specimen obtained from the same envi-
ronmental surface over time. Isolates of the same surface on the same day derived from subcultures 
of the same samples. Negative test results are omitted. The sequence types are indicated at the right 
side of the symbols for the Escherichia coli, Klebsiella pneumoniae, and the Enterobacter hormaechei iso-
lates for which whole genome sequencing was conducted. Circles indicate CPE, triangles indicate 
ESBL-E, and squares indicate MRS. The color of the symbols indicate: purple, Staphylococcus spp.; 
orange, Serratia maracescens; yellow, Citrobacter braakii; blue, Enterobacter hormaechei; red, Escherichia 
coli; and green, Klebsiella pneumoniae. Abbreviations: ST, sequence type; CPE, carbapenemase-pro-
ducing Enterobacteriaceae; ESBL-E, extended spectrum beta-lactamase-producing Enterobacteri-
aceae; and MRS, methicillin-resistant staphylococci. 
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Figure 1. Timeline of CPE, ESBL-E, and MRS isolated from the clinical environment. Each column
refers to one sampling day. Each horizontal line refers to a specimen obtained from the same environ-
mental surface over time. Isolates of the same surface on the same day derived from subcultures of
the same samples. Negative test results are omitted. The sequence types are indicated at the right side
of the symbols for the Escherichia coli, Klebsiella pneumoniae, and the Enterobacter hormaechei isolates for
which whole genome sequencing was conducted. Circles indicate CPE, triangles indicate ESBL-E,
and squares indicate MRS. The color of the symbols indicate: purple, Staphylococcus spp.; orange,
Serratia maracescens; yellow, Citrobacter braakii; blue, Enterobacter hormaechei; red, Escherichia coli; and
green, Klebsiella pneumoniae. Abbreviations: ST, sequence type; CPE, carbapenemase-producing
Enterobacteriaceae; ESBL-E, extended spectrum beta-lactamase-producing Enterobacteriaceae; and
MRS, methicillin-resistant staphylococci.

The number of antimicrobial resistance genes identified in the entire genome of the
sequenced CPE isolates ranged from only one gene (blaOXA-48) in each of the two E. coli
isolates, to 17 genes in both clones associated with spread, i.e., E. hormaechei ST114 and
K. pneumoniae ST219 (Table S2). These included blaCTX-M-15 and fosA in the two K. pneumoniae
ST117 isolates, and mcr-9 and fosA in the three E. hormaechei ST114 isolates, amongst others.

AmpC-type β-lactamase genes were identified in the C. brakii aisolate (blaCMY-101), in
the E. hormaechei ST113 isolate (blaACT-15), in the three E. hormaechei ST114 isolates (blaACT-16),
and in the S. marcescens isolate (blaSRT-2). BLAST searches of the NCBI nucleotide collection
using contigs harboring the different AmpC-type β-lactamase genes as queries suggested
chromosomal locations in all six cases. Likewise, blaSHV genes identified in the four K.
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pneumoniae isolates were located in the chromosome. Hybrid assemblies of K. pneumoniae
MV-u1-SK2-O, K. pneumoniae MV-v4-SK2-O, and S. marcescens MV-u1-SK1-O revealed the
presence of five, two, and two plasmids, respectively. The (co-)location of antimicrobial
resistance genes in the chromosome or plasmids are shown in Table S3.
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Resistance profiles were determined for all ESBL-E and CPE isolates collected in
this study (Table S1). All ESBL-E and CPE isolates showed resistance to ampicillin and
cephazolin. Most strains were resistant to cefotaxime, amoxicillin-clavulanic acid, sul-
famethoxazole trimethoprim, azithromycin, streptomycin, and tetracyclin. One isolate was
resistant to fosfomycin. Of the CPE, two isolates were resistant to ertapenem. One of these
strains was additionally resistant to meropenem and imipenem.

3. Discussion

Our study documents an extensive environmental contamination with CPE, ESBL-E,
and MRS isolates in a companion animal clinic in Switzerland. A total of 15.5% of the
environmental specimens harbored at least one of the investigated ARM. From 11.0% of
the environmental specimens, a CPE was isolated. This is already the second report of a
CPE dissemination in a companion animal clinic in Switzerland. Recently, a CPE outbreak
caused by E. coli harboring the carbapenemase gene blaOXA-181 was documented in a
companion animal clinic in Switzerland. During the outbreak, 21.6% of the hospitalized
dogs and cats were colonized with E. coli blaOXA-181 after two days of hospitalization,
whereas only one of the tested animals was colonized at the time of admission (0.75%) [12].
Of concern, carriage of a closely related blaOXA181-positive E. coli was also detected in a staff
member of the clinic [22]. Furthermore, CP K. pneumoniae (ST11, blaOXA-48) was found in
22% of the environmental sampling sites collected in the ICU and the emergency room in
this institution [23]. In contrast to the aforementioned outbreak, the successful spread in
our study relied not only on clonal, but also on plasmidic dissemination of the IncL plasmid.
Based on SNP analyses and MLST, two dissemination clusters were detected in the present
study, namely E. hormaechei ST114 and K. pneumoniae ST219. Near-identical strains were
isolated from different sampling sites, indicating the presence of a common source. Identical
IncL OXA-48 plasmids were found in 11 of the 12 sequenced isolates, which belonged to
5 different bacterial species. The identified IncL plasmid has been isolated world-wide from
various sources, including veterinary and human healthcare settings [5,6,19,20,24]. Of note,
the IncL plasmid was compositionally identical to a plasmid isolated from another Swiss
veterinary referral hospital (5.6 kb inversion difference [19]). A connection between these
two clinics cannot be ruled out because animal patients are frequently referred between
the two institutions. The repeated occurrence of this plasmid in companion animal clinics
might contribute to the spread of CPE, posing a threat to public health.

Contamination in companion animal clinics may vary across sampling days, as has
been previously reported [25]. This was also evident in the present study, where ARM
contamination rates ranged from 10.0–18.0% over the 4 sampling days. In our study, ESBL-E
was found in 7.0% of the 200 samples collected from the clinical environment. A recent
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study in five Swiss companion animal clinics found ESBL-E contamination in 0–2% of the
environmental specimens [23]. ESBL-E were the most common ARM acquired by dogs and
cats during hospitalization in four clinics in Switzerland [26] and were recently shown to
spread to the household environment and to the animal owners after patient discharge [25].
In the latter study, transmission chains for four different high-risk human pathogenic
strains of ESBL-E were documented over a 45-day observation period in a companion
animal ICU. After discharge, the animal owners showed colonization with closely related
ESBL-E strains and extensive contamination of the household environment with ESBL-E
was documented. Transmission of CPE and ESBL-E between owners and their pets was
also reported in other studies [27,28], which underlines the public health concern of ARM
dissemination by companion animal veterinary institutions [25,28–34].

ARM-positive samples were commonly retrieved from areas with no patient contact,
such as the kitchen, the laboratory, and the toilets. In a recent study conducted at a compan-
ion animal shelter, these areas were reported to have a high bacterial contamination [35].
Thus, areas with little to no patient contact in a veterinary clinic could pose a reservoir for
ARM and a focus should also be placed on these locations when implementing cleaning
and disinfection protocols. The conducted audit revealed a low overall IPC score in the
investigated clinic (58% of the maximum IPC score). This goes in line with results from
the previous study, where three companion animal clinics in Switzerland with extensive
ARM contamination reached only 28–52% of the maximum IPC score [23]. Of note, hand
hygiene infrastructure was absent in many patient areas in the herein described clinic,
and hand hygiene compliance was worryingly low, with an overall compliance of only
14.9%. This compliance is even lower than recently reported in several companion animal
institutions in Switzerland and companion animal clinics abroad, which reported a hand
hygiene compliance of 14–42% [36–40]. Hand hygiene is regarded a key component to
interrupt transmission chains for ARM and other pathogens in hospital settings [41–44].
The very low hand hygiene compliance before clean/aseptic/invasive procedures (7.8%)
and before patient contact (9.7%) in this clinic poses the patients at greater risk to acquire
ARM through the hands of the healthcare workers.

The present study also has its limitations. For one, the IPC scoring system is based
on a consensus which might be subjective to interpretation. Additionally, animal patients
and healthcare workers were not sampled. However, recent studies have already doc-
umented closely related ARM, including CPE, in patients, healthcare workers, and the
clinical environment of companion animal clinics [12,22,26,45]. The number of hand swabs
investigated in the present study was limited, and the prevalence of ARM might thus be
over- or underestimated.

4. Materials and Methods
4.1. Study Set-Up and IPC Evaluation

IPC standards in the clinic were evaluated by direct audit as previously described [23]
and an adapted IPC audit protocol that included fifteen areas of IPC was applied [46].
The audit assessed general IPC management, staff education, cleaning/disinfection, man-
agement of waste, vector control, equipment in examination rooms, isolation measures,
handling of patients with ARM, hand hygiene equipment, personal hygiene, protection
of employees, protective clothing, medication, use of antimicrobials, and miscellaneous
(Table S4). A scoring system (0: not fulfilled; 1: partially fulfilled; 2: completely fulfilled)
was applied, and a total score calculated as described [23]. Participation in the study was
voluntary and was not reimbursed. After the IPC audit, the sampling, and the hand hygiene
observations were completed, the participating clinic received a written report of all results,
highlighting the IPC deficits and an action plan for IPC and hand hygiene implementation.

4.2. Hand Hygiene Evaluation

Hand hygiene compliance was evaluated according to the WHO five moments of hand
hygiene (after body fluid exposure risk, after patient contact, after touching the patient’s sur-
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roundings, before clean/aseptic/invasive procedures, and before patient contact) using the
CleanHands application version February 2021 (Swissnoso, National Centre for Infection
Prevention) as previously described [37]. Briefly, the CleanHands application was used to
evaluate hand hygiene (i.e., carried out or not) in four different clinical areas: consultation
rooms, wards, ICU, and pre-operation preparation area. Hand hygiene compliance across
professional groups (veterinarians, nurses, and others, i.e., personnel not allocated to the
aforementioned categories) was analyzed. According to WHO guidelines, glove usage was
not categorized as a hand hygiene event. All observations were carried out by the same
observer over a period of one week; the observer was previously trained by an experienced
observer [36]. After digital recording, the data was extracted from the software as Excel
files for further statistical analyses. Non-coded hand hygiene observations, i.e., those that
could not be matched to one of the five moments of hand hygiene, were excluded from
statistical analysis.

4.3. Statistical Analysis

The commercially available GraphPad PRISM® software (San Diego, CA, USA) was
used for statistical analysis. Descriptive statistics were conducted for the hand hygiene
compliance (%, number of correct hand hygiene events per total number of observed
hand hygiene events), and binomial confidence intervals for hand hygiene compliance
were calculated using the hybrid Wilson/Brown method [47]. Contingency tables were
calculated using the chi-square test. Significance was set at p < 0.05.

4.4. Microbiological Evaluation

Swab samples from a predetermined list of surfaces (Table S5) and from veterinary
employees’ hands were collected on four different days over a two-week period. As previ-
ously described [37], hand swabs of the entire dominant hand palm, fingers, and thumb
were collected before and after patient contact using a sterile cotton swab moisturized with
0.85% saline solution. If gloves were worn, hand swabs were taken from the gloved hand
directly, before and after patient contact. To reduce potential observer bias, hand swabs
were taken during busy daily procedures and in areas with a high density of patients and
personnel. The healthcare workers were approached immediately before animal contact
without any prior announcement. A coded sample collection procedure was used, and
hence, no personal data was collected from the study participants to ensure that employ-
ees did not feel obliged to change their hand hygiene behavior. All study participants
gave written informed consent, and the study protocol was approved by the Swiss Ethics
Committees on research involving humans (approval no. 2019-00768).

Hand swabs were processed immediately after sample collection, as previously pub-
lished [37]. The swabs were homogenized for 60 s in 10 mL peptone water (BioRad,
Hercules, CA, USA) using in a Stomacher® 400 (Seward, Worthing, UK). The homogenate
of each sample was thereafter enriched (37 ◦C, 24 h), followed by selective enrichment
for ESBL-E and CPE in Enterobacteriaceae enrichment broth (Oxoid, Hampshire, UK), in
BHI (BioRad, Hercules, CA, USA) with 6.5% saline solution for VRE, and additionally in
Mueller Hinton broth (Oxoid, Hampshire, UK) with 6.5% saline solution, followed by an
enrichment in tryptone soy broth (Becton Dickinson, Allschwil, Switzerland) with 4 mg/L
cefoxitin and 75 mg/L aztreonam for the detection of MRS. ESBL-E were screened by
using the chromogenic medium Brilliance™ ESBL Agar (Oxoid, Hampshire, UK), CPE
by using chromID® CARBA SMART Bi-Plate-Agar (bioMérieux, Marcy-l’Étoile, France),
VRE by using the Brilliance™ VRE Agar (Oxoid, Hampshire, UK)m and MRS by using
the Brilliance™ MRSA2 Agar (Oxoid, Hampshire, UK), according to the manufacturer’s
instructions. Species identification was conducted by using matrix-assisted laser desorp-
tion/ionization time-of-flight mass spectrometry (MALDI-TOF–MS, Bruker Daltronics,
Bremen, Germany).

Polymerase chain reaction (PCR) was carried out to screen for the presence of genes
encoding blaCTX-M group enzymes, blaSHV, and blaTEM, as previously described [48–51].
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PCR targeting blaVIM, blaKPC, blaOXA-48-like, and blaNDM genes was carried out using cus-
tom synthesized primers (Microsynth, Balgach, Switzerland) and conditions published
previously [52,53]. Multiplex PCR for the presence of vanA, vanB, and vanC1,2,3 was con-
ducted as previously described using custom synthesized primers (Microsynth, Balgach,
Switzerland) [54]. PCR for the presence of mecA and mecC was conducted using custom
synthesized primers (Microsynth, Balgach, Switzerland), as previously described [55,56].

Antimicrobial susceptibility testing was carried out for all ESBL-E and CPE isolates
as previously described [25]. Antimicrobial susceptibility testing was performed for Enter-
obacteriaceae in accordance with the Clinical and Laboratory Standards Institute (CLSI)
performance standards [57] using the disk-diffusion method on Mueller Hinton plates
(Oxoid, Hampshire, UK) and the 16 antibiotics: ampicillin (AM), amoxicillin with clavu-
lanic acid (AMC), azithromycin (AZM), cefazolin (CZ), cefepime (FEP), cefotaxime (CTX),
chloramphenicol (C), ciprofloxacin (CIP), fosfomycin (FOS), gentamicin (G), kanamycin (K),
nalidixic acid (NA), nitrofurantoin (F/M), streptomycin (S), sulfamethoxazole trimetho-
prim (SXT), and tetracycline (TE) (Becton Dickinson, Allschwil, Switzerland). Results were
interpreted according to CLSI standards [57]. For azithromycin, an inhibition zone of
≤12 mm was interpreted as resistant. In addition, the minimal inhibitory concentrations of
the carbapenem antibiotics ertapenem, imipenem, and meropenem were determined for all
CPE isolates.

For MRS isolates, antimicrobial susceptibility profiling was performed using the
automated VITEK® two compact system (bioMérieux, Marcy l’Etoile, France) with the
AST-GP80 susceptibility testing card (bioMérieux, Nürtingen, Germany).

4.5. Whole-Genome Sequencing and Genomic Analyses

A subset of 12 CPE isolates underwent Illumina short-read sequencing, of which 3
were additionally subjected to nanopore long-read sequencing (Table S2). For short-read
sequencing, genomic DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen,
Hilden, Germany). Libraries were prepared using the Nextera DNA Flex Library Prepa-
ration Kit (Illumina) and sequenced on the Illumina MiniSeq platform with 2 × 150 bp
paired-end chemistries. Draft genomes were assembled using SPAdes v3.14.1 [58] imple-
mented in shovill v1.1.0 (github.com/tseemann/shovill; accessed on 1 October 2021) [59].
For nanopore sequencing, genomic DNA was extracted with the MasterPure Complete
DNA and RNA Purification Kit (Lucigen). Multiplex libraries were prepared using the
SQK-LSK109 ligation sequencing kit with the EXP-NBD114 native barcoding expansion kit
(Oxford Nanopore Technologies). Libraries were sequenced on a MinION Mk1B device
using the FLO-MIN106 (R9) flow cell (Oxford Nanopore Technologies). Hybrid assemblies
were produced with Unicycler 0.4.8 [60,61]. Taxonomy was assigned using rMLST [61].
Antimicrobial resistance genes and plasmid replicons were identified using abricate 1.0.1
(github.com/tseemann/abricate; accessed on 1 October 2021), in conjunction with the
ResFinder [62] and PlasmidFinder [63] database, respectively. Multi-locus sequence types
(MLST) were determined using mlst 2.19.0 (github.com/tseemann/mlst; accessed on
1 October 2021). Whole genome SNPs among K. pneumoniae ST219 and E. hormaechei ST114
isolates were detected from Illumina read data using the CFSAN SNP pipeline v2.2.1 [64],
with assemblies of isolates MV-u1-SK2-O and MV-oo4-C as references, respectively.

The variability of pOXA-48-like plasmids in isolates only subjected to short-read
sequencing was determined by SNP detection using the CFSAN pipeline with pOXA48-MV-
u1-SK2-O-b (circular plasmid from the hybrid assembly of isolate MV-u1-SK2-O, accession
CP085868) as reference. Plasmid coverage and identified SNPs were confirmed by read-
mapping and variant detection implemented in CLC Genomics Workbench 21.0.4.

4.6. Data Availability

Sequencing data and genome assemblies generated as part of this study are available
under BioProject no. PRJNA774102. Genome accession numbers of all investigated isolates
are listed in Table S2.

github.com/tseemann/shovill
github.com/tseemann/abricate
github.com/tseemann/mlst
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5. Conclusions

Our results indicate that plasmidic dissemination of blaOXA-48 in companion animal
clinics may occur and poses a worrisome threat to public health. The IncL plasmid was
found in five different bacterial species and isolated on each of four sampling days in a
companion animal clinic in Switzerland. IPC standards, hand hygiene equipment, and
hand hygiene adherence were largely insufficient in the clinic, and improvement in these
aspects might support the containment of the ARM dissemination. Areas without patient
contact were also commonly contaminated, and cleaning and disinfection protocols should
not omit these areas, as they might represent a reservoir for ARM. The study highlights the
need to develop and implement evidence-based IPC concepts and hand hygiene trainings
in veterinary clinics to prevent the spread of ARM into the community. The ongoing project
will analyze the effect of IPC implementation as part of an intervention strategy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11020213/s1, Table S1: Antimicrobial resistant mi-
croorganisms isolated from the clinical environment; Table S2: Sequencing data for strains isolated
in this study; Table S3: Co-location of antimicrobial resistance genes identified in hybrid assemblies
of three selected carbapenem-producing isolates; Table S4: Criteria applied for the audit scoring;
Table S5: List of environmental sampling sites in the small animal clinic.
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