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ABSTRACT Prediction of complex traits using molecular genetic information is an active area in quantitative genetics research. In the
postgenomic era, many types of -omic (e.g., transcriptomic, epigenomic, methylomic, and proteomic) data are becoming increasingly
available. Therefore, evaluating the utility of this massive amount of information in prediction of complex traits is of interest. DNA
methylation, the covalent change of a DNA molecule without affecting its underlying sequence, is one quantifiable form of epigenetic
modification. We used methylation information for predicting plant height (PH) in Arabidopsis thaliana nonparametrically, using repro-
ducing kernel Hilbert spaces (RKHS) regression. Also, we used different criteria for selecting smaller sets of probes, to assess how
representative probes could be used in prediction instead of using all probes, which may lessen computational burden and lower
experimental costs. Methylation information was used for describing epigenetic similarities between individuals through a kernel matrix,
and the performance of predicting PH using this similarity matrix was reasonably good. The predictive correlation reached 0.53 and the
same value was attained when only preselected probes were used for prediction. We created a kernel that mimics the genomic relation-
ship matrix in genomic best linear unbiased prediction (G-BLUP) and estimated that, in this particular data set, epigenetic variation
accounted for 65% of the phenotypic variance. Our results suggest that methylation information can be useful in whole-genome
prediction of complex traits and that it may help to enhance understanding of complex traits when epigenetics is under examination.

KEYWORDS epigenetics; DNA methylation; MeDIP-Chip; phenotypic prediction; RKHS regression; GenPred; shared data resource

EPIGENETICS focuses on heritable changes of genetic
materials that donot reside in the sequence ofDNA, called

epigenetic modifications (Riggs et al. 1996; Riggs and Porter
1996). Major forms of these changes are DNA methylation,
histonemodification, and noncoding RNAs (ncRNAs) (Rivera
and Bennett 2010). DNA methylation is the most common
epigenetic modification, which can have various forms de-
pending on the targeting nucleotide of the modification
(Ratel et al. 2006). In vertebrates and flowering plants, it is
usually referred to as the covalent addition of a methyl group
(-CH3) to the 5-position carbon atom (5C) of the cytosine
pyrimidine ring, resulting in 5-methylcytosine (m5C) (Jeltsch

2002; Meissner et al. 2005; Vanyushin 2006). Thus, “DNA
methylation” stands for m5C throughout this article. Histone
modification is the multivalent modification of histone tails of
the core histones, which can be acetylation, methylation, phos-
phorylation, ubiquitination, and symoylation (Kouzarides 2007;
Ruthenburg et al. 2007). Both DNA methylation and histone
modification interact with the entering and binding of transcrip-
tion factors (TFs) to theDNAmolecule such that gene expression
is altered. Usually, DNA methylation is associated with reduced
gene expression (Bird 1984; Razin and Cedar 1991; Lim and
Maher 2010) and histone modification can either enhance or
repress expression, according to different modification targets
(e.g., which amino acids are at the histone tail) and modifi-
cation types (e.g., methylation or acetylation) (Berger 2002;
Cheung and Lau 2005). Recently, ncRNAs were found to be
composed of a hidden layer of internal signals that control
various levels of gene expression associated with physiolog-
ical and developmental processes. Their role in epigenetic
regulation has been acknowledged as well (Zhou et al.
2010; Kaikkonen et al. 2011).
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Epigenetic modifications have an important role in gene
expression regulation, and malfunctioning of the regulation
process can have severe consequences. In epidemiology and
humangenetics,manydiseasesanddisorders, includingcancer,
have been confirmed to have an epigenetic basis (Jones and
Baylin 2002, 2007; Jiang et al. 2004; Esteller 2008; Pembrey
2012; Tollefsbol 2012). For example, Prader–Willi syndrome
(PWS) and Angelman syndrome (AS) are sister imprinting-
related disorders involving deletion of DNA segments derived
from different parents at the same genomic region (Meijers-
Heijboer et al. 1992; Nicholls et al. 1998; Cassidy et al. 2000).
Another example of epigenetics-related diseases is that of
oncogenes; these exist in almost everyone’s genomewhile only
a small proportion of the population develops a cancer. Here,
the promoter region of a tumor suppressor gene is usually
unmethylated such that the gene is expressed normally and,
therefore, it prevents the formation of a tumor. In cases where
there is hypermethylation in the promoter region, the tumor
suppressor is deactivated and a cancer develops (Jones and
Baylin 2002; Robertson 2002; Egger et al. 2004).

Due to the potentially important role of epigenetics in
diseases, epigenome-wide association studies (EWAS),
a counterpart of genome-wide association studies (GWAS)
at the epigenome level, have been conducted in recent years
(MacArthur 2008; Rakyan et al. 2011; Bell 2013), aiming at
finding associations between epigenetic polymorphisms and
traits of interest, instead of using DNA polymorphisms (e.g.,
SNPs). Although epigenetic regulation is not restricted to
DNA methylation, the latter is the most commonly used bio-
marker in EWAS at present, because it is more stable and
easier to be quantified than other epigenetic regulatory
mechanisms (Flanagan 2015). In EWAS, DNA methylation
across the whole genome is converted into a certain measure-
ment reflecting the “methylation level,” using methylation-
sensitive enzyme digestion (Waalwijk and Flavell 1978;
Kaput and Sneider 1979), methylated DNA immunoprecipi-
tation (MeDIP) (Weber et al. 2005), or bisulfite sequencing
(BS-Seq) that combines next-generation sequencing tech-
niques with bisulfite conversion (Frommer et al. 1992), with
BS-Seq being the most popular method used in methylation
profiling. In BS-Seq, a DNA sample is treated with sodium
bisulfite, which can convert unmethylated cytosine into ura-
cil, whereas methylated cytosine is intact. Uracil is read as
thymine in polymerase chain reaction (PCR) and sequence
alignment after PCR amplification gives the counts of C (orig-
inally methylated cytosine) and T (originally unmethylated
cytosine) at a single-base resolution. The ratio C=ðC þ TÞ
gives the absolute methylation level at that base, which is
referred to as the b-value in methylation profiling literature
and is usually considered as the “gold standard” in methyl-
ation quantification (Krueger et al. 2012). Once the methyl-
ation level is obtained, statistical methods are then applied to
find associations between the “methylation profile” and the
trait of interest in a selected sample.

Although some diseases associated with dysregulation of
epigenetic modification at some genomic region have been

found, EWAS has similar drawbacks to GWAS: it is difficult to
estimate how much variation in phenotypes, especially for
complex traits, is explained by epigenetic polymorphisms,
even if there is evidence that they contribute to phenotypes,
either biologically or statistically. Two studies attempting to
solve this question have been published in recent years,
with Arabidopsis thaliana used as experimental material
(Johannes et al. 2009; Reinders et al. 2009). In Johannes
et al. (2009), a wild-type inbred line was chosen as the pa-
ternal founder and a ddm1mutant was used as the maternal
founder. The ddm1 mutant was genetically identical to the
wild type, except for the DDM1 locus and few other loci.
The DDM1 locus encodes an ATPase chromatin remodeler
that is involved in methylation maintenance, and the ddm1
mutant used in their study was featured by a whole-genome-
wide demethylation. The F1 generation was obtained by
crossing the wild-type (as male) and ddm1 mutant (as fe-
male), and then it was backcrossed with the wild type (as
male) to create the backcross generation (BC1). The BC1

individuals were selfed for several generations to construct a
population of epigenetic recombinant inbred lines (epiRILs).
In total, 505 epiRILs were obtained by Johannes et al. (2009)
after four generations of selfing starting from the BC1 genera-
tion. Since these 505 lines were (almost) isogenic at the DNA
level and differed only in methylation profile, all observable
phenotypic variation was then regarded as due to epigenetic
and environmental factors, with the impact of genetic polymor-
phism at theDNA level ruled out. By examining plant height and
flowering time, Johannes et al. (2009) found that epigenetics
contributed �30% of the phenotypic variation. A similar ap-
proach was used in Reinders et al. (2009) with the only differ-
ence being that the genetic polymorphism in the two parental
Arabidopsis lines was at the Met1-3 locus, which also has an
impact on thewhole-genomemethylation level, and that instead
of a backcrossing to a parental line, selfing of F1 was adopted. At
the end of the F8 generation, 68 epiRILs were obtained.

Both Johannes et al. (2009) and Reinders et al. (2009) found
that epigenetic variation contributed to a considerable propor-
tion of phenotypic variation, hinting that epigenetic informa-
tion may help prediction of quantitative traits. When using
DNA polymorphisms, whole-genome-enabled prediction mod-
els can be viewed as an extension of the single-marker regres-
sion models used in GWAS, where instead of finding genomic
regions that may be associated with a complex trait, integrating
all marker information for prediction and/or artificial selection
is the ultimate goal. In a similar context, EWAS can also be
extended for prediction, using data mining and machine learn-
ing techniques. Because methylation profiles can explain phe-
notypic variation and it is widely believed that DNAmethylation
is themost stable epigeneticmodification that can be retained in
eithermitosis ormeiosis, perhaps prediction can be enhanced by
using methylation data, as foreseen by González-Recio (2012).
In this study, therefore, we used DNA methylation data for
building statistical models suitable for prediction purposes, with
the expectation that this information could potentially supple-
ment that from DNA polymorphisms.

780 Y. Hu et al.



Materials and Methods

Data

This study used phenotypic and methylation data. The phe-
notypic data set is from Johannes et al. (2009), and it contains
measurements of plant height (PH) and flowering time (FT)
collected in two greenhouses for 505 Arabidopsis epiRILs and
2 parental lines. These data were analyzed by Johannes et al.
(2009), using a mixed-effects model, to explore the propor-
tion of phenotypic variance explained by different effects.
Their model used greenhouses and microenvironments
(i.e., individual planting plots in the greenhouse) as fixed
effects and the 505 epiRILs as a random factor. Greenhouse
explained 39.61% and 2.45% of phenotypic variance for
FT and PH, respectively, and microenvironment explained
4.12% and 0.086% of phenotypic variance for these two
traits; the variance explained by random epiRIL effects
accounted for �30% for both traits. Because the micro-
environment arrangement data are no longer available
(F. Johannes, personal communication), we decided to per-
form the analysis on PH only, as FT was apparently more
strongly affected by this factor. The methylation data were
downloaded from the Gene Expression Omnibus data repos-
itory (accession no. GSE37284). In this data set, 123 of the
505 epiRILs and the 2 parental lines were epi-profiled, using
MeDIP with a customer-designed array chip. Each line was
examined at 711,320 probes (loci) located on five Arabi-
dopsis chromosomes. Each probe is associated with two val-
ues: one is the rescaled log2 of the signal/background
intensity ratio, which describes the enrichment of methylated
cytosine proxied by that probe. This information is referred to
as methyl values in subsequent discussion, and a higher
methyl value indicates higher level of methylation. The other
value is methylation status [methylated (M), intermediately
methylated (I), or unmethylated (U)] predicted from the
methyl values. Note that the methyl values are generated
from enrichment intensity ratios, so these are relative, rather
than absolute, values. Due to this reason, there are typically
no threshold values that can be used to perform methylation
status calls, and hence the status was predicted using a hid-
den Markov model (Colomé-Tatché et al. 2012), a commonly
used tool in bioinformatic analysis. This predicted methyl-
ation status is referred to as methyl status hereafter. There
were no missing values in the methylation data, and after
removing epiRILs without phenotypic data, 114 lines re-
mained for subsequent analysis. Therefore, each epiRIL used
in this study has 1 phenotypic record on PH and pairedmethyl-
values/methyl-status records at each of 711,320 probes (loci).
For more detailed information about themethylation data, see
Colomé-Tatché et al. (2012) and the NCBI description page. A
description on data processing was given in Cortijo et al.
(2014a).

Methods and prediction models

The methylation data described above were used by Cortijo
et al. (2014b) to map epigenetic QTL (epiQTL) contributing

to root length and FT, and threemajor epiQTLwere found for
both traits. Using analysis of variance, it was found that the
broad sense (epi)heritabilities of these two traits were�60%,
and major epiQTL explained 87% and 60% of (epi)heritabil-
ity in the two traits, respectively. Due to the strong contribu-
tion of methylation to variation of phenotype, we decided to
explore the predictive power of this information, as sug-
gested by González-Recio (2012). Here, we built whole
(epi)genome prediction models that are analogous to
whole-genome prediction models, where instead of SNP
markers, methylation information was used as predictor
variables. Most genome-enabled prediction studies (e.g.,
Meuwissen et al. 2001; de los Campos et al. 2013) use a linear
model with the form

y ¼ 1mþ XbþWaþ e; (1)

where y is a vector of n phenotypic records, m is an unknown
constant (intercept) common to all individuals, b is a vector
of fixed effects with associated incidence matrix X; W is an
n3 pmatrix possessing SNP genotypic codes (e.g.,Wij ¼ 0; 1,
or 2), and a is a p3 1 vector of regression coefficients asso-
ciated with all SNP loci. Model 1 is more statistical than bio-
logical when the W matrix contains epigenetic information,
compared to when using genomic information such as SNP
markers, with the reasons being stated next. When perform-
ing genomic prediction using SNPs, a represents allelic sub-
stitution effects at these marker loci, an important concept in
quantitative genetics; hence, a statistical regression coeffi-
cient can be linked to a quantitative genetic parameter. Since
such a concept does not exist in quantitative epigenetic anal-
ysis, this implies that a model with this form may not lead
itself to interpretability of underlying biological processes.
Therefore, we adopted kernel methods for prediction pur-
poses, fromwhich a biological interpretation is available with
less difficulty.

Kernel methods: theory: In kernel regression, phenotypes
and predictor variables are often linked nonlinearly, via a ker-
nel function. In a regression problem without nuisance var-
iables, the relationship between an observation yi and its
corresponding covariates xi is generally written as

yi ¼ gðxiÞ þ ei; (2)

where yi is the observation on the ith subject and xi is, say,
a p3 1 vector of covariates measured on i; gð:Þ is some func-
tion (usually unknown); and ei is the model residual. For the
purpose of describing the kernel methods, it is assumed that
phenotypes (y’s) and regression covariates (x’s) are centered,
so Equation 2 does not include an intercept. In standard lin-
ear regression, gðxiÞ is x9iv; where v is a vector of unknown
coefficients to be inferred. The most common solution for the
weights v is obtained by using ordinary least squares (OLS).
In whole-genome prediction of complex traits, many meth-
ods use this functional form but assign some penalties (or
priors) to v because the “curse of dimensionality” makes
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OLS not applicable, and often Bayesian techniques are em-
ployed (Gianola et al. 2009; Gianola 2013). The linear addi-
tive model often provides a reasonable approximation to the
underlying statistical architecture of a complex trait and it is
easy to interpret. However, nonadditive gene action, for ex-
ample epistasis, is usually not accounted for, which may lead
to incorrect attributions of genetic variation .

One can define gðxiÞ ¼ EðyijxiÞ as the conditional expecta-
tion of yi in Equation 2, given xi; which can be inferred using
the Nadaraya–Watson estimator (Nadaraya 1964; Watson
1964), having the form (Silverman 1986; Gianola et al. 2006)

ĝðxÞ ¼
Xn
i¼1

yikhðxi 2 xÞ: (3)

In genome-enabled prediction using high-density markers, n
is the number of individuals, xi is the p3 1 vector of SNP
marker genotypes of individual i, x is the focal point at which
the kernel function khð:Þ is evaluated, and h is a smoothing
parameter of the kernel function. Because xi possesses the
marker information of individual i, khðxi; xjÞ measures the
“genomic distance” between individuals i and j by definition.
Therefore, the n3 n symmetric matrix Kh ¼ fkhðxi; xjÞg
measures the pairwise genomic distance of all individuals.
According to Gianola and Van Kaam (2008), this kernel treat-
ment can be written as (the “dual formulation”) the linear
regression model

y ¼ Khaþ e; (4)

where y is an n3 1 vector;Kh is an n3 n symmetric, positive
definite matrix;a is an n3 1 vector of regression coefficients;
and e is the model residual with assumption e � Nð0; Is2

e Þ;
where s2

e is the residual variance. Under the reproducing
kernel Hilbert spaces framework (e.g., Gianola and Van Kaam
2008), one assumes thatajh � Nð0;K21

h s2
KÞ and, becauseKh

is symmetric and invertible, â is estimated as the solution to 
Kh þ

s2
e

s2
K
I

!
â ¼ y: (5)

Above, s2
K is the variance captured by the kernel. The vector

Khâ estimates the vector of genetic effects marked by SNPs,
that is, gðxÞ:

Alternatively, starting from y ¼ g þ e; one can minimize
a loss function with form

ℓðgjlÞ ¼ ky2gk2 þ lkgk2H; (6)

where l is a regularization parameter and kgk2H is the squared
norm of g under a Hilbert space H: According to the repre-
senter theorem of Kimeldorf and Wahba (1971), the objective
function g is reduced to Kha; as in Equation 4, and Equa-
tion 6 becomes ℓðajlÞ ¼ ðy2KhaÞ9ðy2KhaÞ þ la9Kha:

When minimizing ℓðajlÞ by taking its first derivative with
respect to a, Equation 5 is retrieved if l ¼ s2

e=s
2
K is assumed.

Because optimization of the penalty function is carried out
under a Hilbert space, this approach is known as reproduc-
ing kernel Hilbert spaces (RKHS) regression, first proposed
in computer sciences and machine learning (Aronszajn
1950; Kimeldorf and Wahba 1971; Wahba 1990, 1999,
2002).

Equation 4 has the same form as the “animal model” (e.g.,
Henderson 1984; Mrode 2014) widely used in animal
breeding,

y ¼ Zuþ e; (7)

where u is the vector of infinitesimal additive effects and Z is
the associated incidence matrix. Assumptions for this model
are u � Nð0;As2

uÞ and e � Nð0; Is2
e Þ; and the best linear un-

biased predictor (BLUP) of u can be obtained by solving�
Z9Zþ s2

e
s2
u
A21

�
û ¼ Z9y; (8)

where s2
u and s2

e are the additive genetic and residual var-
iances, respectively. Here, the additive relationship matrix A
can be interpreted as a kernel matrix measuring the kinship
between individuals based on pedigree, as discussed in de los
Campos et al. (2009) and in Morota and Gianola (2014).
Hence, the conventional animal model [pedigree-based
BLUP (P-BLUP)] is a special case of RKHS regression. Simi-
larly, the genomic BLUP (G-BLUP) proposed by VanRaden
(2008) uses a genomic relationship matrix G}XX9; with X
being the n3 p incidence matrix of marker genotypes, in lieu
of the A matrix derived from pedigree. G-BLUP exploits “re-
alized” relationship between individuals, using genomic in-
formation covering the entire genome. Therefore, G-BLUP is
also a special case of RKHS regression. For more details on
RKHS regression and its applications to animal breeding, see
Gianola et al. (2006), Gianola and Van Kaam (2008), Gianola
and de los Campos (2008), González-Recio et al. (2008), de
los Campos et al. (2009, 2010), Morota et al. (2013), and
Morota and Gianola (2014).

In general, the role of a kernelmatrix in RKHS regression is
to convey pairwise similarity between individuals, using a cer-
tain type of input information, with methylation profiles used
here. Although the choice of the kernel function is arbitrary, as
any positive-definite function canbeused as a kernel function,
multiple factorsmay affect its choice in practice. For example,
the diffusion kernel adopted by Morota et al. (2013) has
a distance function (Manhattan distance) that may not be
optimal for real numbers. Hence, we chose a Gaussian kernel
for the continuous methyl values. By definition, the ði; jÞth
element of the Gaussian kernel K is calculated as

Kij ¼ kðxi; xjÞ ¼ expð2
kxi2xjk2

h
Þ; (9)

where kxi 2 xjk is the Euclidean distance between vectors xi
and xj; in our case the 711; 3203 1 vectors of methyl values
of epiRILs i and j, and h is the bandwidth parameter of the
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kernel, which controls the smoothness of the fitted surface.
The choice of the bandwidth parameter is important since it
affects the performance of the regression. A number of algo-
rithms have been proposed to optimize the bandwidth pa-
rameter (Jones et al. 1996). Here, we determined the
optimal bandwidth parameter using a grid search approach
under cross-validation, aiming at finding a value that maxi-
mized the predictive correlation within a model setting.

From the definition of the Gaussian kernel, all diagonal
entries of the kernelmatrix are 1, since the Euclidean distance
between a vector and itself is always zero. Also, as thedistance

increases, Kij approaches zero. Hence, the entries of K range
between 0 and 1, making the kernel act as a correlation ma-
trix. Therefore, we considered Pearson’s correlation matrix P
as a naive kernel, where Pij ¼ Corrðxi; xjÞ: Advantages of us-
ing the P matrix are computation related: (1) it is easy to
obtain, and (2) tuning a bandwidth parameter is not needed.
Comparisons between prediction performances obtained us-
ing the P and the K kernels are described later. A graphical
comparison between the P andK kernels is shown in Figure 1.
In Figure 1, the plot at the top left corner shows the Pmatrix
created from the methyl-values data. Most between-lines

Figure 1 Visualization of several kernel matrices. The four matrices displayed are Pearson’s correlation matrix (top left) and Gaussian kernels with
bandwidth parameters of 1,000,000 (top right), 500,000 (bottom left), and 250,000 (bottom right).
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correlations range from 0.7 to 0.9 and only few pairwise
correlations are ,0.65. The other three plots represent a K
matrix with various h values. It can be seen that h has a big
impact on the values of the K matrix. When h is large
(1,000,000, top right corner), the majority of the entries
range from 0.4 to 0.5; for intermediate h (500,000, bottom
left corner), most entries are between 0.2 and 0.7; when h is
small (250,000, bottom right corner), almost all entries are
,0.5 except for the diagonal elements.

Given a kernelK and a vector of fixed effects b (in our case
the greenhouses only), the predictionmodel can bewritten in
matrix form as

y ¼ 1mþ XbþKaþ e; (10)

where y is the vector of phenotypic records (PH here); m is an
unknown intercept common to all observations; X is the in-
cidence matrix of fixed greenhouse effects; a is the random
vector of regressions on the kernel associated with epigenetic
variation, with assumed distributionNð0;K21s2

KÞ;where s2
K

is a variance component associated with the kernel; and e is
the model residual with distribution Nð0; Is2

e Þ:
Prediction using preselected probes: Our main goal is to
build prediction models, using epigenetic information as a po-
tential supplement to genomic variation (e.g., SNP markers), as
foreseen by González-Recio (2012). In animal and plant breed-
ing, a training population with thousands of individuals is usu-
ally needed. However, methylation profiling experiments are
extremely expensive, at least at present. Thus, cost is usually
a main consideration in epigenetic studies, and data sets with
hundreds of profiled individuals are commonly viewed as large-
scale experiments. Due to Meissner et al. (2005), a molecular
genetic technique called reduced representation bisulfite se-
quencing (RRBS) has been used to take only a small subset of
all available probes as proxies to describe the methylation level
of the whole genome, which may reduce experimental costs
drastically and make experiments executed on a larger cohort
possible. According to the mechanisms of DNA methylation
known so far, cytosine in a CpG dinucleotide context (cytosine
followed by guanine, where “p” indicates the phosphate bond in
between) is the main target of DNA methylation in eukaryotic
cells. Thus, genomic regions with high CpG content may repre-
sent themethylation profile of the entire genome and hence are
chosen for BS-Seq in RRBS (note that CpG content is different
from CG content; the latter evaluates cytosine and guanine
frequencies separately). In the mouse, according to Meissner
et al. (2005), these selected regions comprised only �12 Mb
of the whole genome (,0.5%), but captured most variation at
the methylation level. This suggests that a subset of represen-
tative probes may perhaps provide a similar predictive perfor-
mance to that from all probes. If this is the case, prediction using
representative probes would be less expensive and computing
burdenwould be lessened because generating a kernelmatrix is
potentially time-consuming.

Considering the size of the murine (�3000 Mb) and the
Arabidopsis (�120Mb) genomes, we decided to select the top

(see below) 10%of the profiled probes inArabidopsis such that
the genomic regions in which these probes reside had�12Mb
in total. Thus, the cost needed for the experiment would not
exceed the magnitude of what was suggested by RRBS in
mouse. The criterion for this selection was based on the ob-
served/expected (O/E) CpG ratio defined as

Number  of   CpG
Number  of   C3Number  of   G
3  Total  number  of   nucleotides  in  the  sequence

(Gardiner-Garden and Frommer 1987), which is a statistic
describing the frequency of occurrence of CpG dinucleotides.
Besides CpG dinucleotides, it has been found that trinucleo-
tides CpHpG and CpHpH (H ¼ A, C, or T) are target sites of
DNA methylation in plants as well (Henderson and Jacobsen
2007; Lister et al. 2008). Thus, we also calculated the O/E
ratio for these two trinucleotides. According to the reference
genome (TAIR7, downloaded from http://www.arabidopsis.
org), the total length of theArabidopsis genome is 119,186,497
bp. With 711,320 probes on the designed chip, on average
there is 1 probe for every 167 bp. The average length of all
probe sequences is 55.2 bp (max 75 bp, min 50 bp), which
means that the DNA segment between two probes is �112
bp long, on average. Considering that 55 bp may not be an
adequate length for calculating the O/E ratio with accuracy,
especially for the two trinucleotides, we decided to extend
the region of examination by 120 bp to the upstream of each
probe. After this extension, the estimation of O/E CpG ratio is
expected to be more accurate, and the number 120 was chosen
because (1) it fills the gap between two probes, so this ensures
that the whole genome is under examination, and (2) the over-
lap between adjacent probes after extension is reduced.

To make up 10% of total probes, we chose the top 5%
probes with highest O/E ratio for CpG dinucleotides and the
top2.5%probeswith highestO/E ratio for each of CpHpGand
CpHpH. This 2:1:1 partition comes from the fact that inArabi-
dopsis, the fractions of m5C identified in CpG, CpHpG, and
CpHpH contexts are about 55%, 23%, and 22%, respectively
(Lister et al. 2008). As a result, we selected 35,585, 17,783,
and 17,783 probes based on the CpG, CpHpG, and CpHpH
contents, respectively, and ended up with 65,506 probes
(9.2% of all probes) in total (with some overlap between
contents of different contexts). After mapping back to the
genome annotation file (TAIR7, downloaded from http://
www.arabidopsis.org), it was found that within these
65,506 probes, 10,044 (15.3%) were located in promoter
regions of genes, and these 10,044 probes covered 40.9%
of total promoters; 12,074 (18.4%) were found in coding
DNA sequences (CDS); 2329 and 2005 (3.6% and 3.1%)
were in 59-UTR and 39-UTR regions, respectively; and 2534
(3.9%) probes were in pseudogenic exons. Also, 1418 and
16,258 (2.2% and 24.8% of the 65,506 preselected probes)
were found in the intron and transposon regions, respec-
tively, with the reference information provided by Cortijo
et al. (2014a). Finally, 18,620 (28.4%) probes did not map
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to any annotated region according to the current annotation
file. A graphical representation of the distribution of selected
probes by genomic element groups is shown in Figure 2. In
addition to a model using all available probes, a prediction
model using these 65,506 preselected probes was built as
well.

In their RRBS study, Meissner et al. (2005) reported that
the representative subset covered .   90% of gene promoter
regions, while in our bioinformatic search, only 40% of the
promoter regions were covered by preselected probes as de-
scribed above. This is probably due to differences between
species since the original RRBS method was developed in the
mouse. Given the important role of gene promoter regions in
epigenetic regulation of gene expression, we attempted to
select a subset of probes with a different criterion such that
more promoter regions could be covered. In epigenetics, CpG
islands (CGIs) are CpG-rich regions that are usually unme-
thylated and located in the gene promoter region. In humans,
at least 60�70% gene promoter regions overlap with CGIs
(Illingworth and Bird 2009). CGI shores are close proximity
regions (�2 kb of upstream or downstream) of CGIs (Portela
and Esteller 2010). Recent studies suggested that 70% of
differentially methylated regions in epigenetic reprogram-
ming are associated with CGI shores (Doi et al. 2009; Ji
et al. 2010). Therefore, probes located in CGI shores were
also selected such that more gene promoter regions can be
covered and these probes may constitute another (indepen-
dent) subset capturing most variation of the whole-genome
methylation profile. Following the definition of CGI given by
Gardiner-Garden and Frommer (1987), we found 23,640
CGIs, and the probes located in the shore regions of these
CGIs covered 65.6% of all promoters (Table 1). Thus, apart
from different kernel matrices applied, prediction was per-
formed using (1) all probes available in the data set, (2)
preselected probes based on CpG/CpHpG/CpHpH contents

(referred to as contents rule hereafter), or (3) preselected
probes located in the CGI shore region (referred to as CGI
rule hereafter).

Prediction using methyl-status data: When P-BLUP and
G-BLUP are viewed as kernel methods, the A- and G-kernel
matrices have an explicit biological meaning. For example,
the kinship matrix A reflects the expected fraction of identical-
by-descent alleles shared by a pair of relatives and the G
matrix can be viewed as a realization of relationships given
the observed molecular markers or as a “molecular similarity
matrix” based on the DNA polymorphisms. Thus, variance
components associated with A orG have a clear genetic basis.
The correlationmatrix P and any of the Gaussian kernels with
specific bandwidth parameters used here, on the other hand,
are constructed from methylation profiles and reflect only
epigenetic similarity in some manner. Hence, variance com-
ponents associated with these kernels do not have an easy
biological interpretation except that of measuring a contribu-
tion to phenotypic variance. Further, when a Gaussian kernel
K is used, the bandwidth parameter h has a large impact on
the values in K; as depicted in Figure 1. As such, one may
expect that various distinct ŝ2

K will be obtained when differ-
ent values are assigned to h; hence, ŝ2

K=ðŝ2
K þ ŝ2

e Þ will vary

Table 1 Number of promoters covered by CGI (definition in
Gardiner-Garden and Frommer 1987) shores

Chromosome No. promoters No. CGIs
No. promoters covered

by CGI shores (%)

Chr1 6,354 1,716 4,111 (64.7)
Chr2 3,990 1,063 2,583 (64.7)
Chr3 4,902 1,363 3,289 (67.1)
Chr4 3,621 1,025 2,402 (66.3)
Chr5 5,677 1,624 3,709 (65.3)
Total 24,544 6,791 16,094 (65.6)

Figure 2 Distribution of the selected 65,506 probes.
Most selected probes (�70%) were located in anno-
tated regions (e.g., CDS, 59-UTR, 39-UTR, promoter,
intron, etc.).
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as well. To obtain a more meaningful partition of phenotypic
variation explained by epigenetic polymorphisms, we built an
additional kernel matrix for RKHS.

Because the methylation state of one copy at a single locus
(e.g., a single cytosine at a CpG dinucleotide) can be only
methylated or unmethylated, the absolute methylation level
b (as obtained by BS-Seq, for example) is alwaysmeasured as
a ratio that ranges between 0 and 1, with the numerator
being the number of methylation incidences in a sample. Un-
der some circumstances, methylation at the locus under in-
vestigation can be classified into one of the three categories:
M, I, or U, according to the b-value at that locus (Meissner
et al. 2008; Du et al. 2010). If two DNA segments with similar
nucleotide sequence but different methylation status (e.g.,
one is methylated and the other is not) are considered as
two epialleles, this classification provides an approximation
to the underlying “epigenotypes” such that M and U stand for
the “epihomozygotes” for one of the two epialleles and I is the
“epiheterozygote.” Analogous to the SNP coding system, we
can use 2, 1, and 0 to code M, I, and U and generate a kernel
matrix mimicking the Gmatrix in G-BLUP (VanRaden 2008),
which we call the epi-G matrix. This required little extra
effort since methyl status was available in the methylation
data set. However, this approach has some pitfalls: (1) when
continuous methyl values are converted to discrete methyl
status, information is lost; and (2) once a numeric coding is
arrived at, many probeswould be excluded from downstream
analysis because their “epi-MAF”would be,0.05 (MAF, “mi-
nor allele frequency”). In the current data set, only 206,600
probes were kept for subsequent analysis after this epi-MAF
filtering. Nevertheless, this epi-G kernel may be more bio-
logically intuitive than a Gaussian kernel generated from
methyl values since the numeric coding used to generate
the epi-G kernel is an absolute count of a certain epiallele of
an epigenotype. Thus, a prediction model can be built and

implemented as in G-BLUP, and the variance component asso-
ciated with epi-G would estimate the proportion of total vari-
ance explained by epigenetic variation with a clearer biological
sense.

Data availability

Phenotypic data are from Johannes et al. 2009. Methylation
data are downloaded froom Gene Expression Omnibus re-
pository with accession number GSE37284.

Results

Prediction with different kernels

Considering that the data set had only 114 epiRILs, we used
a leave-one-out cross-validation (LOO CV) for model evalu-
ation throughout the study. When the correlation matrix P
was used as a naive kernel, the predictive correlation was
0.384. When a Gaussian kernel was used, the predictive cor-
relation varied according to the bandwidth parameter chosen.
In this case, when all probes were used to create the kernel
matrix, the best prediction performance was obtained when
the bandwidth parameter was set to 140,000, and the predic-
tive correlationwas 0.531, with predictivemean squared error
(MSE) = 32.16.

It can be seen that a reasonable predictive correlation was
reached when using the Gaussian kernel, which performed
much better than the correlation kernel. However, the band-
width parameter played an important role in model perfor-
mance (Figure 3). Taking the four kernels in Figure 1 as an
example, P had entries ranging from �0.6 to 1, which means
that the “dissimilarity” between each line must be distin-
guished within a 0.4 range. On the other hand, all three
Gaussian kernels in Figure 1 ranged from �0 to 1, such that
pairwise dissimilarity was better distinguished on a wider

Figure 3 Predictive correlation and
predictive MSE with various band-
width parameters under LOO CV (all
probes used). The kernel with the
highest predictive correlation and low-
est MSE is denoted by a dashed red
line, where bandwidth is 140,000.
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scale. Thus, it was not surprising that the Gaussian kernel
outperformed the correlation kernel. Predicting an unob-
served record borrows information from observations on sim-
ilar individuals. Thus, the “similarity” between lines matters.
From the definition of the kernel matrix (Equation 9), the off-
diagonal elements are close to zero if h is small (Figure 4).
This makes the kernel matrix “confounded” with the identity
matrix, which represents the variance–covariance structure
of the model residuals. According to de los Campos et al.
(2010), this type of kernel matrix captures “local” similarity,
focusingmainly on the comparison of an individual with itself
and a few other individuals with highest similarities. A
“global” kernel with a larger bandwidth parameter, on the
other hand, will also take into account comparisons be-
tween more (epi)genetically distant individuals. Therefore,
the “optimal” bandwidth parameter should provide a balance
between local and global comparisons between different
lines, using the available data. Unless multiple kernels with
different bandwidth parameters are fitted simultaneously
(e.g., Tusell et al. 2014), a kernel with an intermediate h is
expected to provide the best predictive correlation (Figure 3,
black solid line). A similar pattern was observed for predic-
tive MSE (Figure 3, blue dotted line).

Prediction using preselected probes

Forpreselectedprobes,modelsusingdifferent kernelmatrices
were evaluated as well; again, the bandwidth parameter for
theGaussian kernelwasdeterminedbasedonagrid searchvia
LOO CV. When using the P kernel, the predictive correlations
for contents rule and CGI rule probes were 0.398 and 0.395,

respectively, slightly higher than when all probes were used
for prediction. When a Gaussian kernel was used, the highest
predictive correlations for these two sets of preselected
probes were 0.532 and 0.531, respectively, given an appro-
priate bandwidth parameter. This result was the same as
when all probes were used (Table 2, Figure 5). As a compar-
ison, we also drew 10 subsets of probes, each consisting of
a random 10% of all available probes, to evaluate the useful-
ness of preselection of representative probes according to
different criteria. Results showed that the predictive correla-
tions using randomly selected probes were all lower than
when using representative probes selected according to an
explicit criterion, regardless of the kernel used in prediction.

Our results suggest that a properly selected subset of all
probes is able to capture most variation at the methylome
level. Therefore, prediction of a larger cohort with a limited
budget is possible since only a small fraction of “loci” is needed
for methylation profiling with computation time decreasing
drastically. This could be very useful in livestock or crop

Figure 4 A Gaussian kernel with small bandwidth parameter is similar to an identity matrix. (Left) A visualization of a Gaussian kernel with bandwidth of
75,000, which makes it closer to an identity matrix than any of the other matrices in Figure 1. (Right) A histogram of the values in this kernel matrix showing
that most values in this matrix are either exactly zero or very close to zero. A short bar at Kij ¼ 1 represents the diagonal elements of this kernel matrix.

Table 2 Comparison between prediction results using all probes
and preselected probes

Kernel All probes
Contents

rule probes
CGI rule
probes

Correlation
Corrðy; ŷÞ 0.384 0.398 0.395
MSE 38.28 37.73 37.83

Gaussian
Corrðy; ŷÞ 0.531 0.532 0.531
MSE 32.16 32.08 32.13
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production since there are usually thousands of individuals in
a breeding program that need to be chipped (i.e., methylation
profiled), which is still very costly. Lower predictive correla-
tions obtained using randomly selected probes indicated that
the most relevant methylation variation is harbored in pre-
viously identified regions, i.e., high CpG/CpGpH/CpHpH-
content regions or CGI shore regions.

Prediction using the epi-G kernel

When using epi-G in prediction, the predictive correlation was
0.505 when all probes were used; predictive correlations were
0.494 and 0.507, if probes were preselected based on the
contents or the CGI rules, respectively. Thus, the predictive
correlation using epi-G was somewhat lower than that when
a Gaussian kernel was used, perhaps due to the loss of infor-
mation from discretization of methyl values. The estimated
variance component associated with epi-G was 41.57
(SD ¼ 1:69 under cross-validation) and the residual variance
was estimated as 22.75 (SD¼ 0:45), so the proportion of total
variance explained by epigenotype was 0.646, close to what
was reported in Cortijo et al. (2014b). This proportion was
0.656 and 0.647 when only preselected probes (with two cri-
teria, respectively) were used (Table 3). When using Gaussian
kernels, on the other hand, the variance component associated
with the kernel matrix represented 0.542 of the phenotypic
variance (all probes used, bandwidth = 140,000), which was
lower than with the epi-G kernel.

It is difficult to assess which kernel provides a more mean-
ingful proportion of phenotypic variance explained by the
methylation profile, since the true variance components are
unknown. However, it is worth noting that in addition to
a strong impact on predictive performance (Figure 3), the

bandwidth parameter h had a big influence on variance com-
ponent estimates as well (Figure 6). The estimated variance
components associated with the Gaussian kernel were very
large when h was large, and the proportion of phenotypic
variation explained by the kernel matrix seemed excessive
(up to 0.85). Note that the residual variance was essentially
independent of the bandwidth parameter value. Therefore,
caution needs to be exercised when interpreting the variance
component associated with the kernel as variation explained
bymethylation polymorphisms.When using the epi-G kernel,
on the other hand, the proportion of phenotypic variation
explained by epigenetic polymorphisms seemed more rea-
sonable, and predictions obtained using this kernel gave
a better predictive correlation than when using the P kernel
(Corrðy; ŷÞ ¼ 0:384). Also, the regression of testing set obser-
vations on predicted values was 0.99, much higher than for
the P kernel (by; ŷ ¼ 0:90; Figure 7).

Discussion

Prediction using epigenomic data

It was found that methylation data produced a reasonable
predictive correlation when predicting plant height in Arabi-
dopsis. The kernel matrix used here reflected epigenetic sim-
ilarity between epiRILs based on their methylation profiles,
and such epigenomic information might complement geno-
mic information at the DNA level. The predictive correlation
and mean squared error values were similar when only pre-
selected probes were used. Hence, use of representative
probes may help to reduce the cost of methylation profiling
and computing time as well, at least for prediction purposes.

Nonparametric prediction using kernel methods is rela-
tively simpler than with Bayesian regression models based on
Markov chain Monte Carlo involving an enormous number of
proposal distributions. However, in most cases the variance
components associated with a kernel matrix do not provide
a meaningful explanation of underlying biological processes,
except for P-BLUP and G-BLUP, two special cases of RKHS
regression. It was observed that when a Gaussian kernel was
used for prediction, the estimated variance component asso-
ciated with the kernel varied much with different choices of

Figure 5 Graphical representation of prediction performance using dif-
ferent sets of probes in a Gaussian kernel. The green solid line is a 45� line
passing through the origin, and the other three lines are fitted lines of
regressing observation on predictions. No differences were observed for
the three different sets of probes used in prediction.

Table 3 Estimated variance components associated with
a Gaussian and an epi-G kernel

Kernel All probes
Contents rule

probes
CGI rule
probes

Gaussian

Corrðy; ŷÞ 0.531 0.532 0.531
ŝ2
K 25.59 23.75 25.61

ŝ2
e

21.59 21.44 21.58

ŝ2
K=ðŝ2

K þ ŝ2
eÞ

0.542 0.525 0.543

epi-G

Corrðy; ŷÞ 0.505 0.494 0.507
ŝ2
K 41.57 44.45 41.58

ŝ2
e

22.75 23.35 22.70

ŝ2
K=ðŝ2

K þ ŝ2
eÞ

0.646 0.656 0.647
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the bandwidth parameter h, probably due to the big impact of
h on the values of the kernel matrix. This variation produced
a wide range of ŝ2

K=ðŝ2
K þ ŝ2

e Þ ratios, making it difficult to
assess phenotypic variance explained by epigenetic polymor-
phisms (Figure 6), but the best predictive performance was
obtained when a Gaussian kernel was used. To cope with this
difficulty, an epi-G that mimics the G matrix in G-BLUP was
used as a kernel in RHKS regression. Since the epi-G kernel
was generated from a discrete methyl status that was con-
verted from continuous methyl-values data, a reduced pre-
dictive performance was observed probably due to loss of
information during this data conversion process. However,
the methyl-status data approximate the underlying epigeno-
types of each locus. Hence the variance component associ-
ated with the epi-G is interpretable as in a G-BLUP model,
which is clearly based on a biological concept.

In this study, we built prediction models with epigenetic
information fromMeDIP chip data. Alternatively, one should
be able to build prediction models under the same statistical
framework with BS-Seq data, which come from a combina-
tion of bisulfite conversion and next-generation sequencing
(NGS) techniques with decreasing cost. Advantages of using
BS-Seq data include the following: (1) unlike MeDIP chip
data that rely on DNA segments, BS-Seq has single-base
resolution inherited from NGS, making it more informative;
and (2) instead of using the ratio between signal and back-
ground intensities to representmethylation level in a relative
way, a ratio between the counts ofmethylated reads and total
reads is used to measure the (absolute) methylation level,
making it more accurate. However, when constructing the
kernel matrix, any input information on methylation level,
regardless ofwhether it is based on relativeMeDIP data or on
absolute BS-Seq data, can be turned into a relative measure-
ment of epigenetic similarity, indicating that a better pre-
dictive performance may not be guaranteed when BS-Seq

data are used. Moreover, the problem of information loss
stemming from the discretization step when constructing
the epi-G kernel will not be solved by the use of BS-Seq
data. Therefore, even though NGS technologies are making
inroads into the field of complex traits analysis, a potential
next challenge is to develop a framework for BS-Seq data to
take advantage of.

Despite the potential usefulness of epigenetic information
in phenotype prediction suggested by our results, it should be
noted that DNA methylation is reversible (i.e., a methylated
DNA molecule can be demethylated). Hence, methylation

Figure 6 Estimated variance compo-
nents (black lines, left y-axis) and vari-
ance component ratio (blue dotted
line, right y-axis) with various bandwidth
parameters of the Gaussian kernel (all
probes used).

Figure 7 Graphical representation of prediction performance using dif-
ferent kernel matrices (all probes used). The green solid line is a 45� line
passing through the origin. Regression lines using the Gaussian kernel
and the epi-G kernel overlapped and were close to the 45� line, whereas
the line from the P kernel had a smaller slope.
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data are unstable relative to DNA polymorphisms. The re-
versibility of DNA methylation may produce “epimutation”
events (Becker et al. 2011). Therefore, the entire methylome
represents the dynamics of epimutations, and a particular
methylation data set should be viewed as a “snapshot” of
the methylome at a specific time from a specific tissue. To
enhance phenotypic prediction performance further, infor-
mation from multiple snapshots could be useful. Although
methylation profiling is still expensive, its cost has decreased
in recent years, and this trend is expected to continue.

Integrating genomic and epigenomic data in prediction

Our results suggested that epigenetic information can be used
alone for whole-genome prediction of plant height, as a rea-
sonable prediction performance was obtained. Therefore, it is
of interest to combine epigenetic andDNA information for the
same purposes. Recently, Vázquez et al. (2014) showed that
the inclusion of multilayer -omics data in human epidemiol-
ogy can increase the predictive correlation of disease risk
drastically. Likewise, Shah et al. (2015) presented evidence
suggesting that combining genetic information with signifi-
cant associations between phenotype and epiprofile may be
useful for predicting body mass index in humans. These find-
ings suggested a potential use of epigenomic data in addition
to genomic data for prediction using RKHS regression since
integrating multiple information sources by introducing extra
kernels tends to enhance predictive performance. For exam-
ple, Tusell et al. (2014) reported that a multikernel model
performed better than a single-kernel model, as anticipated
by de los Campos et al. (2010). Also, fitting a pedigree-based
relationship matrix (the A matrix) and a genome-based rela-
tionship matrix (the G matrix) together can give a higher pre-
dictive correlation than when only one matrix was fitted
(Crossa et al. 2010). When viewing P-BLUP and G-BLUP as
special cases of RKHS regression, a predictionmodelwith both
A and G is then a model with multiple kernels. The benefit
from fitting multiple kernels simultaneously can be enhanced
if all kernels are mutually orthogonal (Morota et al. 2014),
which explains the result of Crossa et al. (2010), since A and
Gmay provide information from different perspectives, withG
supplementing information that is not captured by A: In a re-
cent study, it was shown that genetic and epigenetic informa-
tion can be uncoupled by epimutation over an evolutionary
timescale (van der Graaf et al. 2015), so a higher predictive
correlation could be expected when information from the epi-
genome is included in a prediction model, as suggested by
Vázquez et al. (2014), since this extra information is distinct
from the information conveyed by DNA polymorphisms.

Biologically, theprecedingphenomenoncanbe interpreted
as follows. The DNA sequence is transcribed into RNA and
subsequently translated into protein, the building blocks of
final phenotypes. Therefore, information at the protein layer
(proteome) is “closest” to and genomic information is most
“distant” from phenotypes in this biological pathway. Hence,
proteomic information might provide better predictions of
phenotypes than genomic information. Similarly, the epigenomic

information, which lies between that conveyed by DNA and
RNA layers, might be useful, if available. However, the avail-
ability of epigenomic data does not preclude the use of geno-
mic information. On one hand, recent studies indicated that
genomic variation and epigenomic variationmay interact with
each other (e.g., Arnold et al. 2013; Wachter et al. 2014), such
that epigenetics do not have a determinant effect on the ulti-
mate phenotype, although it is a closer layer than DNA varia-
tion. On the other hand, epigenetic status can be predicted
from genomic information (e.g., Benveniste et al. 2014;
Whitaker et al. 2015), suggesting that the inclusion of
DNA polymorphisms may enhance predictive performance.
Further, DNA information is crucial for artificial selection,
and the epigenetic data would be informative in such a con-
text only if transmission between generations is verified or if
it enhances DNA-based predictions. For these reasons, inte-
grating epigenomic with genomic data may be worthwhile
for prediction purposes. Unfortunately, the epiRILs popula-
tion used in this study did not have any SNP data, due to
genetic identity between individual lines (C. Camilleri, per-
sonal communication). Nevertheless, one can expect that
data integration will always be beneficial, along the lines that
using information from multiple layers is expected to give
stronger predictive correlations, as indicated by González-
Recio (2012) and corroborated by Vázquez et al. (2014).

In short, including bothDNAand epigenetic information into
a prediction model may be fruitful. For example, if an epi-G
kernel were to be used along with aGmatrix (using SNP data),
the estimated variance components should help in interpreting
the proportion of phenotypic variance attributed to genetic and
epigenetic variation. Also, perhaps the loss of information in-
curredwhen forming the epi-G kernelmight be compensated by
G: Therefore, using epigenomic and genomic information to-
gether has potential and additional study is warranted.

Conclusion

We built prediction models nonparametrically, using DNA
methylation data. We chose RKHS regression for prediction
because, unlike with prediction using SNP data, estimated
regressions using methylation data do not have an obvious
interpretation that links to model parameters via some theory
or biological concept. In RKHS regression, a kernel matrix
describing epigenetic similarities between different epiRILs
makes model interpretation less difficult. Further, the tuning
procedure is easier than for a parametric model, where a
Bayesian treatment andMCMC techniques are usually needed.

We used different kernels in RKHS regression, namely the
naive correlation matrix P and a Gaussian kernel K with dif-
ferent bandwidth parameters. When the bandwidth parame-
ter was selected appropriately, the model with a Gaussian
kernel performed better than that with a P kernel. Since
a reasonably good predictive correlation was observed, this
suggested that epigenetic information may be useful in whole-
genome prediction as a source of information that does not
reside in a DNA sequence. Furthermore, the value of the
predictive correlation was retained when using preselected
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representative probes, suggesting an avenue for cost reduc-
tion in prediction studies.

The performance of RKHS regression with a Gaussian
kernel was strongly affected by its associated bandwidth
parameter, not only in terms of the predictive correlation
and predictive mean squared error, but also with respect to
the variance component associated with the kernel matrix.
This is because epigenetic similarities between individuals
provided by the kernel matrix are based on a relative metric,
instead of an absolute one. Therefore, the proportion of
variance explained by the kernel does not give a meaningful
interpretation of the proportion of phenotypic variance
explained by epigenetic variation. On the other hand, a kernel
matrix created from coded methylation status (epi-G) mim-
icked the genomic relationship matrix G and gave an esti-
mated proportion of total variance explained by epigenetic
variation of �65%. Although a small degradation in predic-
tion performance is incurred when this epi-G kernel is ap-
plied, perhaps a better understanding of the importance of
epigenetic variance can be obtained.

Using epigenetic information in addition to DNA polymor-
phisms in prediction has been studied by other authors in
human epidemiology (e.g., Vázquez et al. 2014), and results
have suggested that this extra information may lead to a pro-
nounced impact on prediction performance. Based on their
results and on the empirical observation that RKHS regres-
sion with multiple kernels performs better than a single-
kernel regression (Tusell et al. 2014), we conclude that
inclusion of epigenetic information in prediction models
may be warranted and possibly useful in livestock and crop
production, as suggested by González-Recio (2012).
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