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Abstract: The vital importance of rapid and accurate detection of food borne pathogens has
driven the development of biosensor to prevent food borne illness outbreaks. Electrochemical
DNA biosensors offer such merits as rapid response, high sensitivity, low cost, and ease of use.
This review covers the following three aspects: food borne pathogens and conventional detection
methods, the design and fabrication of electrochemical DNA biosensors and several techniques for
improving sensitivity of biosensors. We highlight the main bioreceptors and immobilizing methods
on sensing interface, electrochemical techniques, electrochemical indicators, nanotechnology, and
nucleic acid-based amplification. Finally, in view of the existing shortcomings of electrochemical DNA
biosensors in the field of food borne pathogen detection, we also predict and prospect future research
focuses from the following five aspects: specific bioreceptors (improving specificity), nanomaterials
(enhancing sensitivity), microfluidic chip technology (realizing automate operation), paper-based
biosensors (reducing detection cost), and smartphones or other mobile devices (simplifying signal
reading devices).

Keywords: food borne pathogens detection; electrochemical DNA biosensors; bioreceptors;
nanomaterials; DNA amplification

1. Introduction

Due to the widespread outbreak of food borne epidemics in both developed and developing
countries, people are paying increasing attention to public health issue. Studies have shown that the
main cause of food safety problems is food borne pathogens including E. coli O157:H7, Staphylococcus
aureus, Salmonella, Listeria monocytogenes, etc. [1–4]. Food products and their raw materials are
dominant transmitting agent of more than 250 known diseases [5,6]. Table 1 summarizes the relevant
pathogens spread through food matrix, their main sources, virulence factors, as well as the associated
epidemics. Owing to the abundance of various nutrients, raw materials are generally preferred hosts
for microorganisms to grow. Although heating process can kill most of the potential bacteria in food,
the emergence of ready-to-eat food in recent years increases the probability of exposure to pathogenic
contamination [1]. Food products are highly susceptible to microbial contamination during processing,
packaging, distribution, storage, and other stages [2]. Thus, in a modern industrial environment,
the control of food processing and real-time monitoring of food borne pathogens are of paramount
importance to ensure consumers’ safety.
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Table 1. Common food-borne pathogens.

Pathogens Gram Virulence Factors Epidemics Food Source Refs.

Salmonella - Enterotoxin

Typhoid fever,
paratyphoid fever,
gastroenteritis, and
septicemia

Egg, raw milk and their
products, commercial
cold food dishes, raw
poultry and meat

[3–7]

E. coli O157:H7 - Endotoxin, exotoxin,
capsule, and adhesin.

Acute gastroenteritis and
acute dysentery

Meat, fruits, vegetables,
commercial cold food
dishes, ready-to-eat food,
drinking water

[7–15]

Listeria
monocytogenes +

Endogenous
hormone,
phagosome, and
surface protein

Listeriosis

Frozen food, cheese,
milk, meat products, ice,
vegetable salad,
ready-to-eat food,
commercial cold food
dishes

[7,16–23]

Staphylococcus
aureus +

Hemolytic toxin,
leukocidin,
enterotoxin, plasma
coagulase, and
deoxyribonuclease

Suppurative infection,
pneumonia,
pseudomembranous
colitis, pericarditis, sepsis,
septicemia

Milk, meat, eggs, fish
and their products,
commercial cold food
dishes

[7,24–26]

Shigella - Endotoxin and
exotoxin Bacterial dysentery Cooked food and raw

material [27–29]

Cronobacter - Enterotoxin, and
adhesion factor

Necrotizing colitis,
neonatal meningitis, and
bacteremia

Powdered infant
formula and milk
powder

[30–33]

Vibrio
parahemolyticus - Hemolysin and

urease
Food poisoning, and acute
diarrhea

Seafood such as fish,
shrimp, crab, shellfish,
and seaweed

[34–36]

Proteus -
Endotoxin, and
heat-resistant
enterotoxin

Food poisoning, and acute
diarrhea

Food of animal origin,
bean products [37,38]

Clostridium
botulinum + Botulinum toxoid

Muscle relaxation
paralysis, and respiratory
paralysis

Canned products, cured
meat [39–41]

Bacillus cereus + Enterotoxin Food poisoning
Leftovers of different
meals, commercial cold
food dishes

[7,42–44]

Campylobacter -

Endotoxin, exotoxin,
invasive protein,
adhesion, and
flagellum

Bacterial gastroenteritis Raw chicken and
by-products [45,46]

Rapid and accurate monitoring or detection of food borne pathogens is an international priority
because accurate diagnosis is one of the most effective ways to control and prevent food borne
epidemics in humans and can reduce mortality rates drastically [47]. Table 2 lists various conventional
methods for food borne pathogens detection, which based on microbiological methods, immunological
methods, or nucleic acid-based amplification assays (e.g., polymerase chain reaction [48], loop-mediated
isothermal amplification [49], rolling circle amplification [50]). Although these methods are sensitive
and allowed the detection of one single or multiple bacterium, there are still several key challenges
that hinder their further development from laboratory detection stage to application in market [51,52].
Summarized as the following points: time-consuming; poor sensitivity and specificity; high detection
cost; non-amenable for on-site and real-time diagnosis. Among these methods, biosensor strategies are
highly prevalent over other assays and fulfill the expanding demands of modern industry for detection.
In addition to fast response, robustness, cost-effectiveness, high sensitivity, and selectivity, they also
have the ability to detect real sample on-site with minimal sample preparation [53].
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A typical biosensor combines a bioreceptor with a transducer. The bioreceptor, which specifically
interacts with the target analyte, and the transducer, which converts this interaction into an electronic
signal. Three basic parts of a biosensor are recognition material, transducer or detector system, and
signal processor [54]. According to bioreceptors, biosensors can be classified into antibody biosensors,
DNA biosensors, enzyme biosensors, whole-cell biosensors, and phage biosensor; according to
transducers, biosensors can be classified into electrochemical biosensors, piezoelectric biosensors,
calorimetric biosensors, and optical biosensors (Figure 1). Among various biosensors, electrochemical
DNA biosensor has become a ideal alternative of conventional methods for food borne pathogens
detection, due to its features such as low detection limit, wide linear dynamic range, and high
reproducibility [55]. Figure 2 shows the number of annual articles published on China National
Knowledge Infrastructure (CNKI) for the detection of food borne pathogens by electrochemical DNA
biosensors. The literature survey demonstrates more than 31,557 articles have been published since
1986. In the past 30 years, the total number of publications has increased dramatically. The data reveals
the development of electrochemical DNA biosensors in the field of food borne pathogen detection
has received extensive attention. There are a number of review articles that summarize the use of
electrochemical DNA biosensors to detect a specific food borne pathology, or detecting food borne
pathogens by using a large class of biosensors. However, there are few review articles summarizing
previous studies on electrochemical DNA biosensors for detecting food borne pathogens.Sensors 2019, 19, x FOR PEER REVIEW 5 of 33 
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Table 2. Current methods for food-borne pathogens detection.

Method Derivative Analysis Time Advantages Disadvantages Refs.

Traditional
microbiological
culture

Chromogenic
medium method 5–7 days High accuracy

Time-consuming,
laborious, poor
sensitivity and
specificity

[56,57]

Immunological
method

ELISA,
immunomagnetic
separation (IMS),
immune colloidal
gold technique
(GICT)

4 h

Rapid,
relatively high
sensitivity and
specificity

High false
positive rate
and poor
stability

[58–63]

PCR Real time-PCR,
multiple PCR ≤2 h

Relatively
sensitive and
rapid, multiple
detection

The need of
expensive
thermal cycle
instruments
and trained
users

[64–69]

Nucleic
acid-based
isothermal
amplification
assays

LAMP, rolling circle
amplification (RCA),
saltatory rolling
circle amplification
(SRCA)

≤2 h

No need for
thermal cycle
instruments,
high sensitivity
and selectivity

Not suitable for
on-site
detection

[70–73]

Biosensors

Based on signal
amplification
techniques such as
nanotechnology

≤2 h

Rapid,
cost-effective,
high sensitivity
and selectivity

Most cannot
achieve
multiple
detection

[74–78]
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Therefore, the present review overviews extensive and up-to-date findings of electrochemical DNA
biosensors for detecting food borne pathogens, summarizes the basic principle of an electrochemical
DNA biosensor, DNA immobilization methods, electrochemical techniques, and detection methods.
Besides, because sensitivity is a critical performance for electrochemical DNA biosensors, we also
summarized several strategies for improving the sensitivity of electrochemical DNA biosensors, such
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as nucleic acid-based amplification technologies, which are rarely summarized in reviews. Finally, we
predicted the future prospective in the field of pathogen detection.

2. Electrochemical DNA Biosensors

2.1. Basic Principle of Electrochemical DNA Biosensors

In the detection of food borne pathogens, single-stranded nucleic acids or aptamers are the
preferred bioreceptor to be used in the design of electrochemical DNA biosensor. The most common
transducers are gold electrodes (GE) [79–81], glassy carbon electrodes (GCE) [82], pencil graphite
electrodes (PGE) [76] and screen printed electrodes (SPE) [83,84], and carbon ionic liquid electrode
(CILE) [85]. The reaction between bioreceptor and target is performed on the electrode surface. The
basic principle of electrochemical DNA biosensor is that the biological reaction between bioreceptor
and target can produce or consume ions or electrons, which changes the electric current, potential,
or other electrical properties of the solution. The biological signal can be converted into a detectable
electrical signal proportional to target concentration by transducer and displayed on a computer [86].
The basic scheme of an electrochemical DNA biosensor is presented in Figure 3.
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2.2. Bioreceptor of Electrochemical DNA Biosensor

2.2.1. Type of Bioreceptor

For electrochemical DNA biosensors, the bioreceptor is DNA. DNA consists of two types: naturally
occurring recognition element DNA and aptamer artificially synthesized in vitro with a known sequence
of bases. Biosensors regarding naturally occurring DNA as bioreceptors are called ‘genosensors’.
Typically, targets for such sensors are DNA of pathogens. The DNA probes immobilized on electrode
surface can recognize and hybridize with targets DNA by complementary base pairing. Targets can also
be recognized and captured by aptamers involving high-molecular-weight compounds, whole cells,
and small molecules. Biosensors considering aptamer as bioreceptors are called “aptasensors” [86].
We attribute the high specificity of electrochemical DNA biosensors to strong affinity of ssDNA or
aptamer and its target.
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Advantages of Aptamer

Aptamers are single-stranded DNA or RNA with 15–80 mononucleotides by artificial
synthesis in vitro or peptide screened by SELEX (systematic evolution of ligands by exponential
enrichment) [87,88]. The binding pattern between the aptamer and its target is similar to that of
antigen–antibody, but aptamers have outstanding merits over their corresponding antibodies mainly
involving in the following three points:

(1) Target diversity: It possesses the capability to bind with a wide range of targets (e.g., proteins,
drugs, cell, amino acids, organic, and inorganic ions) by naturally fold into three-dimensional structures
with high affinity and specificity [86,89–92].

(2) As amplifiable molecules: Due to the property of nucleic acids, aptamers can be amplified
by polymerase chain reaction (PCR). Currently, several studies have applied this aptamer feature to
improve the sensitivity of aptasensors based on real-time PCR [93,94], LAMP [95], RCA [96–98], et al.

(3) Low cost: Aptamers are stable even in drastic environmental conditions and not require special
transport or storage conditions; aptamers can be prepared on a large scale by simple chemical synthesis
with inexpensive nucleotides [99]. In addition, biosensors regarding aptamers as recognition elements
have long lifetime, reducing the cost of detection.

Detection Mechanisms of Aptamers with their Targets

Aptamers are often considered as bioreceptors in the strategy of electrochemical DNA biosensors.
When recognizing and capturing targets, aptamers fold into a three-dimensional formation. Because
the elongated primary molecular structure of aptamers is unfavorable in energy and not stable, some
unpaired nucleobases interact with each other to generate secondary structural motifs. The interactions
of these motifs lead to more complex tertiary structures. Typical tertiary motifs are coaxial stacking
and G-quadruplexes. Three different detection mechanisms are commonly applied in electrochemical
DNA biosensors design for food borne bacteria detection:

(1) Direct binding mechanism: The aptamer immobilized on the electrode surface binds to target
directly, causing a conformation change of aptamer, and then the current signal changes.

(2) Target-induced dissociation mechanism (TID) [88,100]: In the absence of target, the aptamer
hybridizes with its complementary sequence. While the addition of target induces dissociation and
replacement of the complementary sequence from the aptamer, making its complementary sequence
free again and changing the electrochemical signal.

(3) Dual aptamer detection mechanism: Usually be employed in the design of sandwich-type
aptasensors. In this case, the first aptamer is immobilized on sensing interface as capture probe to bind
with the target and the second aptamer acts as a signal probe.

2.2.2. Immobilization Methods of Bioreceptor

The properties of electrochemical DNA sensors—including sensitivity, specificity, and lifetime—are
largely related to the immobilization of bioreceptors on the surface of electrodes. Therefore, the most
basic requirements for the immobilization method is that it neither destroy the biological activity of
the bioreceptor nor affect the interaction between the bioreceptor and the target. Table 3 describes the
principles, advantages, and disadvantages of three basic immobilizing methods of DNA.

Among various DNA immobilization methods, adsorption is the simplest, and it does not require
any chemical reagents and DNA modifications. The phosphate backbone of DNA is negatively charged,
and DNA can be immobilized by modifying positively charged substance on the electrode surface [101].
Such substances usually include chitosan, cationic polymeric films, etc. In addition, studies have
shown that applying a positive potential to the electrode can make the DNA immobilization more
stable. Vijayalakshmi Velusamy et al. [102] reported an electrochemical DNA biosensor to detect
Bacillus cereus DNA. The gold electrode surface was modified with polypyrrole (PPy) to immobilize
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DNA, and then a fixed potential 0.8 V for 600 s was applied to enhance the immobilization efficiency
and stability.

Table 3. Common methods of DNA immobilization.

Methods Principle Evaluation

Adsorption

The skeleton of ssDNA is negatively
charged, by modifying the surface of
electrodes with positively charged
substances or applying a positive potential,
DNA can be absorbed on the electrodes.

Simple, with no need of any
chemical reagents and DNA
probes modification [101]. Low
DNA hybridization efficiency.

Covalent binding

DNA is immobilized on the surface of
electrodes through the formation of
covalent bonds such as amide bonds, ester
bonds, ether bonds, Au-S, and Ag-S et al.

Flexible structure, high efficiency
of DNA immobilization and
hybridization, but with the need of
chemical reagents, and with the
possibility of non-specific
adsorption.

Affinity binding

Avidin is first adsorbed on the surface of the
electrode by covalent binding or
electrostatic adsorption, and then the
biotin-modified DNA is immobilized on the
electrode by affinity interaction between
biotin and avidin.

The method is simple, stable and
resistant to the extreme of
temperature, pH, denatured
detergents, and organic
solvents [101].

Due to high efficiency of DNA immobilization and hybridization, covalent binding is one of
the most common methods for DNA immobilization on electrode surfaces. Mahmoud Amouzadeh
Tabrizi et al. [103] developed an electrochemical DNA biosensor based on nanoporous glassy carbon
electrodes to detect Salmonella DNA sequences. The amino modified probe DNA was firstly covalently
linked with carboxylic group on the nanoporous GCE. Then target DNA hybridized with the probe
DNA and the hybridization result was obtained by DPV and EIS techniques. The LOD of the biosensor
was 2.1 pM and 0.15 pM, respectively. Besides, self-assembly is another common covalent bond method
for DNA immobilization on the electrode surface. Zahra Izadi et al. [76] developed an electrochemical
DNA biosensor to detect Bacillus cereus in milk and infant formula. Before introducing DNA to the
biosensor, they thiolated the 5’ end of ssDNA to immobilize ssDNA on PGE surface modified with
gold nanoparticles by Au-S bonds. The biosensor sensitivity of B. cereus was found to be 100 CFU/mL.
E. Sheikhzadeh et al. [104] established a label-free impedimetric biosensor to detect S. Typhimurium in
apple juice. Modifying the amino group at the 5’ end of aptamer before immobilizing on electrode
surface. LOD of developed biosensor was 3 CFU/mL, which achieved a satisfying detection result.

One of the most valuable strategies for the effective immobilization of DNA on electrodes is
affinity binding. This method is dependent on the specific affinity between avidin and biotin. However,
compared with other methods, LOD of the electrochemical DNA biosensor established by this method
is low. For example, Kavita Arora et al. [105] constructed an electrochemical DNA biosensor based on
polypyrrole-polyvinyl sulfonate (PPy-PVS) coated onto Pt disc electrode. DNA probe was immobilized
on electrode by biotin–avidin binding (indirect immobilization) or carbodiimide coupling (direct
immobilization). Compared to the indirect immobilization, the detection limit of direct immobilization
of the probe increased by 2200 times and the sensitivity increased by about 6 times. In order to solve
this problem, several studies have combined covalent binding and affinity binding to improve DNA
immobilization efficiency. For instance, Malhotra et al. [106] developed an electrochemical DNA
biosensor to detect E. coli. Avidin was modified with –COOH and then attached to the polyaniline
(PANI)-modified Pt disk by the covalent binding between –COOH and –NH/NH2 of PANI. Thereby,
the biotin-labeled capture probe was immobilized on electrode surface by the affinity binding. Finally,
a satisfactory detection limit for E. coli genomic DNA (0.01 ng/uL) was obtained.
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2.3. Electrochemical Techniques

Due to the lower tendency for noise, voltammetry has developed into one of the most versatile
electrochemical analysis techniques. The current is measured in a constant potential imposed to work
electrode. Peak current intensity is proportional to the target concentration. More importantly, it is
adapted to all types of bioreceptors [51].

Among the voltammetry techniques, cyclic voltammetry (CV), square wave voltammetry (SWV),
and differential pulse voltammetry (DPV) are the most frequently employed. CV is often used to
characterize chemical reactions and electrochemical coupling process on electrode surface. SWV, as
a type of frequency dependent electrochemical analysis technique, is versatile and highly sensitive,
which is widely used in quantitative analysis and kinetic studies of materials. Besides, the peak shape
of SWV is simple and convenient for data analysis. DPV possesses the merits of lower background
current and higher sensitivity, almost all electrochemical DNA biosensors regard DPV as an analysis
technique for determining target concentration.

Another electrochemical technique generally applied to electrochemical DNA biosensors is
electrochemical impedance spectroscopy (EIS). In this technique, impedance values are affected by the
electric field changes caused by the interaction between bioreceptor and target [51]. EIS is a frequency
domain measurement technique with a wide range of measurable frequencies, which allows more
kinetic information and electrode interface structure information to be obtained than conventional
electrochemical techniques. Table 4 listed several electrochemical techniques commonly used in
electrochemical DNA biosensors for detecting food borne pathogenic bacteria.

Table 4. Electrochemical techniques.

Electrodes Targets Detection Techniques Linear Range LOD Ref.

Glassy carbon electrode
(GCE) Salmonella DNA CV, EIS, DPV 10–400 and

1–400 pM 2.1 and 0.15 pM [103]

Gold disk electrode Salmonella typhimurium CV, DPV 102–108 CFU mL−1 3 CFU mL−1 [104]

GCE Staphylococcus aureus CV, EIS 10–106 CFU mL−1 10 CFU mL−1 [107]

Gold electrode (GE) Staphylococcus aureus EIS - 10 CFU mL−1 [108]

GE Escherichia coli,
K. pneumoniae EIS 102–106 CFU mL−1 100 CFU mL−1 [109]

GE E. faecalis, B. subtilis EIS 103–106 CFU mL−1 1000 CFU mL−1 [109]

GE
S. aureus, E. faecalis,

P. aeruginosa, E. coli and
Salmonella typhimurium

CV, EIS 101–104 CFU mL−1 10 CFU mL−1 [110]

Indium tin oxide (ITO) Salmonella typhimurium
DNA CV, DPV 10 fM–50 nM 10 fM [111]

ITO Escherichia coli O157:H7
DNA CV, EIS 1 uM–10 fM 10 fM [112]

GE Bacillus cereus spore
simulant EIS 104–5 × 106

CFU mL−1 3000 CFU mL−1 [113]

Carbon paste electrode
(CPE)

Aeromonas hydrophila
DNA SWV - 160 fM [114]

Carbon ionic liquid
electrode (CILE)

Listeria monocytogenes
DNA CV, EIS, DPV 1 uM–1 pM 290 fM [85]

Pt/Ir electrodes Listeria monocytogenes CV, DPV - 100 CFU mL−1 [115]

ITO Salmonella typhimurium
DNA DPV, EIS 4 aM–24 fM 4 aM [116]

GE Enterobacteriaceae
bacteria DNA SWV, DPV, EIS 0.01 pM–1 nM 8.7 fM [117]

GE Salmonella SWV, DPV, EIS 2 × 102–2 × 106

CFU mL−1 200 CFU mL−1 [118]

GE Bacillus subtilis DNA DPV 0.1 fM-20 fM 0.08 fM [119]

GCE Salmonella CV, EIS 75-7.5 × 105

CFU mL−1 25 CFU mL−1 [120]
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Table 4. Cont.

Electrodes Targets Detection Techniques Linear Range LOD Ref.

ITO Salmonella typhimurium CV, EIS - 10 CFU mL−1 [121]

Pencil graphite electrode
(PGE) Bacillus cereus DPV, EIS 100–107 CFU mL−1 9.4 pM [76]

CILE Yersinia enterocolitica
DNA DPV 1 uM–10 PM 1.76 pM [122]

GCE E. coli O157:H7 DNA CV, EIS, DPV - 19.7 fM [79]

GE Salmonella typhimurium DPV 72–7.2 × 106

CFU mL−1 28 CFU mL−1 [123]

GCE DNA ASV, EIS - 100 aM [124]

- Not available

2.4. Detection Methods

DNA hybridization detection methods can be classified into label-free and label-based
methods [101]. For label-free electrochemical DNA biosensors, DNA’s own structure and composition
are of paramount advantageous for electrochemical detection. Adenine and guanine of DNA can be
easily oxidized within a certain potential range, thymine and cytosine require higher potential for
oxidation, so electron transfer can be performed directly on several electrode surfaces [125,126]. Even
the sensing strategy based on direct redox reaction of nucleic bases has a high sensitivity, the large
background current interference limits its application [101]. The oxidation reaction of ribose destroys
the phosphate backbone of DNA, it is rarely used for DNA-modified electrodes.

For label-based electrochemical DNA biosensors, numerous studies introduced redox active
molecules as indicators to promote electron transfer between the electro-active base and the electrode
surface. DNA was detected indirectly by measuring the electrical signals generated by the modified
substances. Sensitivity of this method is much higher than that of strategy based on direct redox
reaction of nucleic bases [127]. Three selection requirements for redox active indicators are summarized
below. (a) Indicators cannot affect the activity of bioreceptors and cannot react with the electrode
material itself. (b) Possessing the ability to bind with ssDNA or dsDNA selectively. (c) Cannot adsorb
on the sensing surface. According to the above requirements, we summarized several redox active
molecules applied to electrochemical DNA biosensors (Table 5).

Both Zahra Izadi et al. [76] and Wei Sun et al. [85] used methylene blue (MB) as the electroactive
indicator to detect DNA hybridization efficiency, because MB can intercalated into the dsDNA structure
and reaction signal was improved [54]. TB can bind to the negatively charged phosphate group of
DNA. R. Nazari-Vanani et al. [80] employed this feature to examine the hybridization reaction between
Enterococcu faecalis DNA and capture DNA. The study showed that TB binds with dsDNA in a higher
extent compared to ssDNA. Thus, ssDNA and dsDNA structures on the surface of electrodes can be
distinguished through the peak current. Besides, a electrochemical nanobiosensor was constructed by
Mostafa Azimzadeh et al. [128] using oracet blue (OB) as an electroactive label for the first time. OB,
an organic dye, has a hydrophobic rigid plane which can insert into the dsDNA base pair, causing the
reduction signals to change.

Hoechst 33258 is mainly combined with minor and major groove only existing in dsDNA. For
daunomycin, its molecular carbocyclic moiety can be inserted into the base pair of the DNA helix,
and its amino sugar moiety generate electrostatic interaction with the phosphate. M. Ligaj et al. [114]
utilized the features of Hoechst 33258 and daunomycin to develop two electrochemical DNA biosensors
for Aeromonas hydrophila detection. After hybridization between DNA probes immobilized on the
surface of biosensors and the target DNA, the peak currents of biosensor I used Hoechst 33258 as the
indictor increased by 75–135% and the other increased by 34–92%. Additionally, because Ru(phen)3

2+

can intercalate into the groove of dsDNA, it is another redox indicator commonly used to detect
the DNA hybridization event. For example, Huayu Huang et al. [129] selected Ru(phen)3

2+ as a
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redox indicator to amplify electrochemical signal. Linlin Yang et al. [97] also used it to enhance the
electrochemiluminescence intensity.

There are also several studies employing enzyme label-based electrochemical detection to
construct direct or sandwich DNA hybridization biosensors to detect food borne pathogenic bacteria.
In this method, the electrochemical signal can be amplified since the enzymes can catalyze its
electroinactive substrate into electroactive products [101]. The particular redox-active enzymes
typically include horseradish peroxide and alkaline phosphate. Generally, the redox-active enzymes
combine with DNA by the affinity binding of biotin-avidin/streptavidin. For example, a sandwich
DNA hybridization genosensor was developed for Salmonella detection [130]. Interestingly, this study
used AuNPs-horseradish peroxidase-streptavidin (AuNPs-HRP-SA) as the signal tag to amplify the
detection signal. SA biofunctionalized HRP bind to the biotinylated DNA by affinity. In the presence of
H2O2 and hydroquinone (HQ), the electrochemical signal was generated. Because hydroquinone (HQ)
acted as a redox mediator, HRP can catalytic H2O2 to reduce. In another study, Chuang Ge et al. [100]
constructed an aptasensor to ultra-sensitively determine Salmonella typhimurium. Streptavidin-alkaline
phosphatase (ST-AP) was used as the label enzyme to combine with the biotinylated detection probe
by the affinity. The electrochemical signal was improved by catalytic activity ST-AP towards enzyme
substrate α-NP. Even enzyme label-based electrochemical detection is used widely, high cost of enzyme
production and the instability of enzymes limit its further development [101].

Table 5. Redox active molecules applied in electrochemical DNA biosensors

Redox Active Molecule Classification Target Principle Refs.

Methylene Blue (MB) Organic dye
Bacillus cereus;

Listeria
monocytogenes

MB covalently interacts with
G bases of DNA [76,85]

Toluidine Blue (TB) Organic dye Enterococcus faecalis TB binds to a negatively
charged phosphate group [80]

Oracet Blue (OB) Organic dye Helicobacter pylori
The hydrophobic rigid plane
of OB inserts into the
dsDNA base pair

[128,129,131]

Hoechst 33258 Organic dye Aeromona hydrophila
Hoechst 33258 can bind to
dsDNA by minor and major
groove interaction

[114]

[Ru(phen)3]2+ Metal complex Aeromona hydrophila Ru(phen)3
2+ can intercalate

into the groove of dsDNA
[97,129]

Daunomycin Drug molecular Aeromona hydrophila

The molecular carbocyclic
moiety can be inserted into
the base pair of the DNA
helix, and the amino sugar
moiety generate electrostatic
interaction with the
phosphate backbone of the
DNA

[114]

Besides those, nanoparticles commonly act as the reporter labels to characterize the DNA
hybridization. Most of the previous studies applied this approach to sandwich genosensors. In the
sensors, target DNA will co-hybridize with both of capture probe immobilized on the electrode surface
and signal probe labeled with nanoparticles. For instance, a sandwich electrochemical genosensor using
cadmium sulfide nanoparticles (CdSNPs) as a label was established by Mandour H. Abdalhai et al. [79]
to detect Escherichia coli O157:H7. The signalizing probes were modified by amine (NH2) and then
attached to CdSNPs by covalent binding. Finally, the sandwich structure immobilized on the electrode
surface was dissolved in HNO3 solution, then the released CdSNPs ions were ready for electrochemical
measurement. Although the method is highly sensitive, the detection method, including chemical
synthesis of nanoparticles, is extremely cumbersome.
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3. Strategies for Improving the Sensitivity of Electrochemical DNA Biosensors

Sensitivity is a critical performance for electrochemical DNA biosensors. When detecting targets
with low concentration, the reaction signal is difficult to distinguish from the background signal due to
the small amount and the limitation of method itself, resulting in inaccurate detection results. Thus,
in the past few decades, researchers have made enormous efforts into integrating biosensors with
other disciplines such as nanotechnology and molecular biology technology to improve the sensitivity.
Herein, we summarized various nanomaterials and DNA amplification technologies employed widely
to improve the sensitivity of electrochemical DNA biosensors.

3.1. Nanomaterials

Recently, in view of their intrinsic properties—such as high surface area to volume ratio, great
electronic conductivity, and excellent physico-chemical properties, carbon nanomaterials (containing
carbon nanotubes, carbon nanofibers, graphene, nanoparticles et al.)—as a class of promising candidate
for biosensing material, have successfully been applied to sensing strategies to improve the sensitivity
of electrochemical DNA biosensors [47]. Figure 4 shows several nanomaterials of different dimensions
(0D, 1D, 2D, 3D) commonly used in electrochemical DNA biosensors for food borne pathogen detection.
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3.1.1. Conventional Nanomaterials

Reduced graphene oxide (RGO), gold nanoparticles (AuNPs) and carbon nanotubes (CNTs) are
the three most common nanomaterials modified on electrodes.

Graphene has large specific surface area, outstanding biocompatibility and highest mechanical
strength in known materials. However, many studies introduced RGO to electrode surface, because
graphene has the irreversible agglomeration, which limited its application [82,132–134]. The abundant
oxygenated groups (hydroxyl, epoxy, carbonyl, and carboxyl groups) of graphene oxide (GO) reduce
the electron transporting ability of the electrodes. So many studies employed several appropriate
reduction methods to remove these oxygenated groups of GO [135].

Due to its small particle size, special stability and catalytic properties, AuNP is considered as
the most favorite nanomaterial in the field of biosensors [135,136]. AuNPs provide substrates for
DNA immobilization on the electrode surface, because DNA can be immobilized on the surface of the
AuNPs-modified electrode by Au-S bonds. Besides, AuNPs can maintain the biological activity of
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DNA and enhance the capacity of DNA immobilization and hybridization [85]. Many studies have
combined RGO and AuNPs to improve electrode performance synergistically [85,107,135,137].

Since its discovery in 1991 [138], CNTs have received extensive attention in the field of
electrochemical sensors due to its mechanical flexibility, rapid electron transfer, excellent electrochemical
stability, and unique thermal conductivity. Additionally, CNTs are easily modified by various functional
groups and bind with DNA, and so can be widely used in the construction of electrochemical DNA
biosensors [139].

3.1.2. Composite Nanomaterial

Safiye Jafari et al. [140] constructed an electrochemical DNA biosensor based on Ceria nanoparticles
decorated reduced graphene oxide (CeO2NPs-RGO) to detect Aeromonas hydrophila DNA. Polyaniline
and CeO2NPs-RGO were used to modify the glassy carbon electrode. PANI provided a large surface
area for DNA immobilization, and it can interact with RGO by Π–Π stacking. RGO was also used
for the DNA immobilization through Π–Π stacking between its conjugated interface and DNA bases.
Besides, CeO2 possessed high catalytic activity and biocompatibility, and can adsorb DNA through
electrostatic attraction. Thus, in this study, ssDNA was immobilized on the GCE surface without any
functionalization or mediators. [Ru(bpy)3]2+/3+ redox signal was used as electrochemical marker and
square wave voltammetry was used as detection technique. Finally, a wide linear range of 1 × 10−15–1 ×
10−8 mol L−1 and a low LOD of 1× 10−16 mol L−1 were obtained. The biosensing strategy can be applied
to DNA detection in other area such as clinical diagnosis, food safety, and environmental monitoring.

Yange Sun and colleagues took advantage of chitosan-multiwalled carbon nanotubes
(CS-MWCNTs) and gold nanoparticles (AuNPs) to modify an Au electrode (AuE) [141]. Chitosan
own the merits of nontoxic nature, excellent film forming ability, and cost effectiveness. However,
the electrical conductivity of CS is very poor. In this study, MWCNTs were utilized to dope into CS
film to improve the electrical conductive properties of CS, because MWCNTs have the advantages
of high electrical conductivity, chemical stability, and a high surface-to-volume ratio. AuNPs can
provide a platform for DNA immobilization and can enhance the electrical conductivity with MWCNTs
synergistically. The thiol-modified ssDNA was immobilized on the AuNPs/CS-MWCNTs/AuE by Au-S
bonds and then hybridized with the target DNA. Methylene blue (MB) was used as an electrochemical
indicator. In the end, this platform reached a detection limit of Staphylococcus aureus DNA as low as
3.3 × 10−16 M and the linear detection range was 1.0 × 10−15–1.0 × 10−8 M.

In addition to the above proposed composite nanomaterials used in electrochemical DNA sensors,
Table 6 lists several other nanocomposites applied in the sensing design to synergistically enhance the
analysis performance of biosensors.

Table 6. Nanocomposites-based electrochemical DNA biosensors for food borne bacterial pathogen detections.

Nanocomposites/Electrode Features Immobilizing
Methods of DNA Targets LOD (mol/L) Ref.

AgNCs/AuNPs/GCE

AgNCs are used as
direct signal
indicator and AuNPs
as carrier for signal
amplification

By the Au-S bonds
between AuNPs and
SH-DNA

Salmonella 1.62 × 10−16 [142]

CTS/V2O5/MWCN/CILE

Great
biocompatibility of
V2O5 nanobelt and
excellent electron
transfer ability of
MWCNTs

CTS can be used for
DNA immobilization
by electrostatic
attraction

Yersinia
enterocolitica 1.76 × 10−12 [122]
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Table 6. Cont.

Nanocomposites/Electrode Features Immobilizing
Methods of DNA Targets LOD (mol/L) Ref.

NiO/GR/CILE

Graphene and nickel
oxide composite
possess high surface
area and strong
affinity with
phosphate groups of
ssDNA

By the strong affinity
between NiO and
phosphate groups of
ssDNA

Salmonella
enteritidis 3.12 × 10−14 [143]

DpAu/GOx/GCE

GOx has fast electron
transfer kinetics and
large specific surface
area. Thi has good
electrochemical
redox active
properties. Au@SiO2
can provide a
microenvironment to
retain the DNA tag
conformation and
make them free in
orientation

By the Au-S bonds
between Au@SiO2
and SH-DNA

E.coli O157:H7 1.0 × 10−11 [144]

Au/GR/CILE

Graphene (GR)
possesses high
thermal conductivity,
good mechanical
strength, high
mobility of charge
carriers, big specific
surface area and
upstanding electrical
properties. The
dendritic nanogold
provides more sites
for the self-assembly
of MAA on the
electrode surface

By the covalent
bonds between the
amine groups of
ssDNA and the
carboxyl group
modified on the
CILE surface

Listeria
monocyto 2.9 × 10−13 [85]

CTS/Co3O4/GR/CILE

The nanocomposite
film has a very large
surface area, good
conductivity and
excellent porous
structure, which lead
to the measurable
currents even for low
concentrations of
ssDNA sequence

ssDNA was
immobilized on the
CTS/Co3O4/GR/CILE
surface by
electrostatic
attraction

Staphylococcus
aureus 4.3 × 10−13 [145]

AuNPs/CS/MWCNT/AuE

CS–MWCNTs greatly
increase effective
surface area and
electron conductivity.
AuNPs provide a
biocompatible
interface for DNA

By the Au-S bonds
between AuNPs and
SH-DNA

Staphylococcus
aureus 3.3 × 10−16 [141]

CeO2NPs/RGO/GCE

RGO has an
extremely large
surface area,
excellent thermal
and electrical
conductivity; CeO2
possesses high
catalytic activity and
biocompatibility

By the Π-Π stacking
between RGO and
DNA bases and
electrostatic
attraction between
CeO2NPs and DNA

Aeromonas
hydrophila 1.0 × 10−16 [140]

3.1.3. Emerging Nanomaterials

In recent years, several emerging nanomaterials were introduced to the design of electrochemical
DNA biosensors for food borne pathogens detection. The emergence of these novel nanomaterials
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provides more choices for improving the sensitivity of electrochemical DNA biosensors and has greatly
promoted the development of nanotechnology in the field of electrochemistry.

A electrochemical DNA biosensor was reported to detect Enterococcus faecalis, which based on a
new gold nanostructure of ice crystals-like as the sensing substrate [80]. The nanostructure provided
a suitable substrate for DNA immobilization and improved the rate of DNA hybridization. ssDNA
was self-assembled on the Au/nano electrode surface by thiol-gold covalent bonds. Toluidine blue
(TB) was used as the DNA hybridization indicator. The DNA biosensor can detect target DNA with a
outstanding LOD of 4.7 × 10−20 mol L−1.

In recent years, some studies have combined other novel nanomaterials with GO to improve
the sensitivity simultaneously. Yan Li et al. developed an electrochemical DNA biosensor to detect
E. coli O157:H7 eaeA gene based on a novel sensing tag of GOx-Thi-Au@SiO2 nanocomposites [144]. In
this study, the combination of Au@SiO2 and GO can not only enhance electronic transfer, but it also
offers a microenvironment to maintain the DNA conformation and free them in orientation. DNA was
immobilized on the electrode surface by the Au-S bonds between Au@SiO2 and SH-DNA. Due to these
merits, the biosensor demonstrated a wide linear response for E. coli O157:H7 eaeA gene in the range
from 0.02 to 50.0 nM and the lowest detection limit was 0.01 nM. The developed biosensor can also
apply to the detection of other pathogens with excellent performance.

3.2. Nucleic Acid-Based Amplification Technologies

Nucleic acid-based amplification technology is another promising alternative for electrochemical
DNA biosensors to improve the sensitivity in the detection of food borne pathogens. The electrochemical
DNA biosensors that integrated the powerful amplification capability of DNA amplification technology,
the high sensitivity of electrochemical assays and various signal amplification strategies, are widely
used in the ultrasensitive detection of trace targets. Here are several amplification methods commonly
used in the construction of electrochemical DNA biosensors (Figure 5).Sensors 2019, 19, x FOR PEER REVIEW 16 of 33 
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3.2.1. Target Cycle Amplification Technique

Exonuclease III-Assisted Target Cycle Amplification

Exonuclease III is a kind of enzyme which catalyze the stepwise removal of mononucleotides
from 3′ terminus of dsDNA in the case of substrate with a blunt or recessed 3′-terminus. Compared
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with the endonuclease, exonuclease III is sequence-independent and can amplify a signal without a
specific recognition site of target DNA, which has been widely applied in nucleic acid detection [117].

A sensitive electrochemical sensing methodology for quantitative detection of Enterobacteriaceae
bacteria was proposed by Caihui Luo et al. [117]. As shown in Figure 6, in this strategy, thiol-modified
capture probes were firstly immobilized on the gold electrode surface by Au-S bonds. MCH was used
to block non-specific adsorption sites on the electrode surface. In the presence of a target, it hybridized
with capture probes to generate dsDNA. The dsDNA possessed unique characteristic 3′-blunt end
at the capture DNA and 3′-overhang end at target DNA. Hereafter, Exo III recognized and digested
the phosphodiester bonds of the 3′ end of capture probes. Then target was released to perform the
next hybridization and cleavage cycle. After finishing the entire amplification, the capture probes
left on the electrode surface hybridized with biotinylated detection probes. ST-AP was indirectly
linked to detection probe through the affinity between biotin and streptavidin, and then enzymatic
electrochemical signal was produced. By DPV technique, the proposed biosensor lead to a superior
LOD of 8.7 × 10−15 mol/L toward Enterobacteriaceae. The strategy was successfully applied to the
detection of Enterobacteriaceae in milk with a ultra-low detection limit of 40 CFU/mL.Sensors 2019, 19, x FOR PEER REVIEW 17 of 33 
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amplification technique for quantitative detection of Enterobacteriaceae bacteria [117]. Copyright 2013.
Reproduced with permission from Elsevier B.V.

According to the similar principle, Qianqian Pei et al. constructed a universal DNA biosensing
platform to detect S. Typhimurium ultra-sensitively [123]. The uniqueness in their works that a duplex
DNA probe was ingeniously designed by hybridizing a Salmonella typhimurium aptamer with a primer.
In the presence of Salmonella typhimurium, the three-dimensional conformation of aptamer changed to
bind with targets. Then primer was released and Exo III-aided amplification reaction was initiated.
Another difference is that MB was used to enhance the electrochemical signal in this platform. An
excellent LOD of 2.8 × 10 CFU/mL was obtained by DPV, which is lower than those of the previously
proposed assays.

Circular Strand-Replacement Polymerization

Circular strand-replacement polymerization (CSRP) performs an isothermal amplification process
under the action of DNA polymerase by utilizing a stem–loop DNA as template and target DNA as
trigger. Firstly, target DNA hybridizes with loop structure, opening the stem–loop DNA, and resulting
in exposure of the primer binding region. In the presence of primer, dNTPs, and DNA polymerase,
the primer extends forward along DNA probe and displaces target DNA. The displaced target DNA
triggered another round of primer extension and strand displacement. CSRP has been widely used to
signal amplification strategies since it does not require any specific recognition sites.



Sensors 2019, 19, 4916 16 of 32

Based on the CSRP principle, Ting Wang et al. developed an ultrasensitive electrochemical DNA
biosensor to detect mecA gene of methicillin-resistant Staphylococcus aureus [146]. From Figure 7, we
can observe hairpin probes modified with MB were firstly immobilized on gold electrode surface by
Au-S bonds. MB is an electrochemically active molecule, a large current will be generated when it
is restricted close to the electrode surface. When targets were present, the stem–loop probes were
opened to expose the primer binding area and its loop area hybridized with targets. In the action of
dNTPs and polymerase, the primers extended along probe DNA to displace the targets. The released
targets induced the next amplification. In the end, a plenty of duplex DNA complexes labeled with MB
were produced. The MB molecules moved away from the electrode surface, resulting in a significant
decrease in current. There was a linear relationship between the varying current and the concentration
of targets. According to this strategy, a low LOD of 6.3 × 10−14 mol/L and a wider detection range
of 7.5 × 10−14–2.0 × 10−10 mol/L were obtained by DPV. The sensitivity of this method is higher than
other methods for detecting Staphylococcus aureus.Sensors 2019, 19, x FOR PEER REVIEW 18 of 33 
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Fenglei Gao et al. [147] proposed an electrochemical biosensor to detection DNA hybridization
by coupling CSRP with AuNPs catalyzed silver deposition on the biosensor surface. The biosensor
possessed an extremely high sensitivity with a LOD of sub-femtomolar level, which attributed to
the efficient amplification performance of CSRP. This approach provided a universal platform for
ultrasensitive detection of DNA in biomedical and bioanalytical applications.

Catalyzed Hairpin Assembly

Catalyzed hairpin assembly of DNA (CHA) requires two hairpin DNA probes H1 and H2. Target
DNA can cleave the hairpin structure of H1, and the opened H1 probes further unclosed the hairpin
structure of H2 probes. Since H1 and H2 have more bases than target DNA, the target DNA is replaced
to trigger next displacement. CHA can be carried out without any enzyme, which reduces the detection
costs greatly.

Yong Qian et al. [148] constructed a signal-on electrochemical DNA to detect DNA based on
target catalyzed hairpin assembly strategy. The principle has been shown in Figure 8. Firstly, the
thiolated modified beacon 1 (MB 1) was immobilized on the gold electrode surface by Au-S bonds. In
the presence of targets, the hairpin probes were opened and targets hybridized to the MB 1. Then the
ferrocene-labeled molecular beacon 2 (Fc-MB 2) bind with the unhybridized area of MB 1 and extended
forward to displace the target DNA. The released targets induced the next amplification. Finally,
a number of duplex DNA complexes labeled with Fc were generated. The current was increased
dramatically because Fc was confined close to the GE surface for efficient electron transfer. Target
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DNA concentration can be measured by the changes in current intensity. The proposed biosensor has
an excellent sensitivity with a LOD of 0.74 fM obtained by DPV. The signal-on biosensor would be
applied widely because it is enzyme-free and simple to perform.Sensors 2019, 19, x FOR PEER REVIEW 19 of 33 

 

 
Figure 8. A signal-on electrochemical DNA sensor to detect DNA based on target catalyzed hairpin 
assembly strategy [149]. Copyright 2014. Reproduced with permission from Elsevier B.V. 

3.2.2. Hybridization Chain Reaction 

Hybridization chain reaction (HCR) is an enzyme-free isothermal amplification technique 
relied on the self-assembly of two DNA hairpins [151, 152], which was proposed firstly by Robert 
M. Dirks et al. in 2004 [153]. In HCR process, the mixture of two DNA hairpins triggers a cascade of 
hybridization events as the introduction of targets, which generates nicked double helices 
analogous to alternating copolymers [154]. In recent years, the ingenious combination of HCR and 
other nucleic acid-based amplification strategies for two-step signal amplification has become a 
research hotspot in the field of electrochemical biosensors.  

Shufeng Liu et al. proposed an isothermal, enzyme-free, and ultrasensitive biosensing strategy 
to detect DNA by integrated HCR and DNA catalyzed hairpin assembly (CHA) for dual signal 
amplification [155]. From Figure 9A, we can see a thiolated hairpin DNA probe (immobilized probe) 
attached to the Au electrode by Au-S bonds firstly. Accompanying the addition of target DNA, it 
opened the stem–loop structure and hybridized with the hairpin DNA probe. The unhybridized 
bases of hairpin DNA probe further opened the stem–loop area of capture probe and hybridized 
with it to displace the target DNA. The released target DNA carried out the successive 
hybridization and assembly process. After CHA, the nicked double-helix of immobilized probe and 
capture probe was generated. In the presence of the signal probe and auxiliary probe, HCR was 
triggered on the electrode surface. Since the signal probe was labeled with MB, as the reaction 
proceeded, more MB were immobilized on the electrode surface, which amplified the 
electrochemical signal largely. By the DPV measuring, the developed biosensor owned a 
predominant specificity and sensitivity with a LOD of 1.0 × 10−16 mol/L, which can be applied to 
other gene-related detections. 

An electrochemical DNA biosensor coupling HCR to circular strand-replacement 
polymerization (CSRP) was constructed by Cui Wang et al. [156]. As depicted in Figure 9B, 
stem–loop capture DNA immobilized on the electrode surface was firstly subjected to CSRP under 
the induction of target DNA to generate numerous DNA duplex. The capture DNA continued to act 
as a template to perform HCR to product nicked double-helix. Since the two hairpin DNA involved 
in the HCR reaction were labeled with biotin, they can combine with streptavidin-alkaline 
phosphatase (ST-ALP). Then the electrochemical signal was generated by catalyzing the substrate 
a-naphthol (a-NP). The biosensor based on the dual amplification resulted in a high sensitivity of 
8.0×10−15 mol/L and a wide dynamic range of 10 fM-1 nM. 

Figure 8. A signal-on electrochemical DNA sensor to detect DNA based on target catalyzed hairpin
assembly strategy [148]. Copyright 2014. Reproduced with permission from Elsevier B.V.

Changli Zhong et al. [149] developed an electrochemical biosensor based on hairpin assembly
amplification to detect specific DNA with high sensitivity and specificity. MCH and BSA were used
to block the non-specific adsorption sites jointly. The presence of DNA target initiated the hairpin
assembly amplification. Eventually, the H1-H2 complex were generated. The 5′ end of biotin-modified
H1 probe hybridized with capture probe immobilized on the GE surface to form capture probe-H1-H2
complex on the electrode surface. The streptavidin-alkaline phosphatase (ST-ALP) bind to biotin and
catalyzed the substrate a-naphthol (a-NP) to generate electrochemical signal. Under the optimized
conditions, the lower detection limit was found to be 20 pM and the linear range was 25 pM–25 nM.

3.2.2. Hybridization Chain Reaction

Hybridization chain reaction (HCR) is an enzyme-free isothermal amplification technique relied on
the self-assembly of two DNA hairpins [150,151], which was proposed firstly by Robert M. Dirks et al.
in 2004 [152]. In HCR process, the mixture of two DNA hairpins triggers a cascade of hybridization
events as the introduction of targets, which generates nicked double helices analogous to alternating
copolymers [153]. In recent years, the ingenious combination of HCR and other nucleic acid-based
amplification strategies for two-step signal amplification has become a research hotspot in the field of
electrochemical biosensors.

Shufeng Liu et al. proposed an isothermal, enzyme-free, and ultrasensitive biosensing strategy
to detect DNA by integrated HCR and DNA catalyzed hairpin assembly (CHA) for dual signal
amplification [154]. From Figure 9A, we can see a thiolated hairpin DNA probe (immobilized probe)
attached to the Au electrode by Au-S bonds firstly. Accompanying the addition of target DNA, it
opened the stem–loop structure and hybridized with the hairpin DNA probe. The unhybridized
bases of hairpin DNA probe further opened the stem–loop area of capture probe and hybridized
with it to displace the target DNA. The released target DNA carried out the successive hybridization
and assembly process. After CHA, the nicked double-helix of immobilized probe and capture probe
was generated. In the presence of the signal probe and auxiliary probe, HCR was triggered on the
electrode surface. Since the signal probe was labeled with MB, as the reaction proceeded, more MB
were immobilized on the electrode surface, which amplified the electrochemical signal largely. By the
DPV measuring, the developed biosensor owned a predominant specificity and sensitivity with a LOD
of 1.0 × 10−16 mol/L, which can be applied to other gene-related detections.
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An electrochemical DNA biosensor coupling HCR to circular strand-replacement polymerization
(CSRP) was constructed by Cui Wang et al. [155]. As depicted in Figure 9B, stem–loop capture DNA
immobilized on the electrode surface was firstly subjected to CSRP under the induction of target DNA
to generate numerous DNA duplex. The capture DNA continued to act as a template to perform
HCR to product nicked double-helix. Since the two hairpin DNA involved in the HCR reaction were
labeled with biotin, they can combine with streptavidin-alkaline phosphatase (ST-ALP). Then the
electrochemical signal was generated by catalyzing the substrate a-naphthol (a-NP). The biosensor
based on the dual amplification resulted in a high sensitivity of 8.0 × 10−15 mol/L and a wide dynamic
range of 10 fM-1 nM.

3.2.3. DNA Isothermal Amplification Technology

Rolling Circle Amplification

Rolling circle amplification (RCA) is an enzymatic, isothermal DNA amplification process which
utilizes a circular DNA template, a single DNA primer, and Phi29 bacteriophage DNA polymerase to
generate a long single-stranded DNA with multiple tandem-repeat sequences [156]. RCA is triggered by
the single primer combining on the circular DNA template. The Phi29 bacteriophage DNA polymerase
then elongates around the template and eventually accomplishes the circle. The amplification
is successive, because the newly product strand continues to displace the previously generated
strand thinks to the strand displacement activity of the Phi29 bacteriophage DNA polymerase [157].
Low temperature (30–60 °C) requirement makes this technology attractive for electrochemical DNA
biosensors and has been successfully applied to food-borne pathogens detection.

A novel electrochemical DNA biosensor was constructed for Salmonella detection by Dan Zhu et al.,
which utilized RCA and DNA-AuNPs probe for dual-signal amplification [81]. As can be seen from
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the Figure 10A, probe 1 was firstly immobilized on the electrode surface by Au-S bond. One end of
target DNA hybridized with the probe 1. With the addition of circularization mixture containing probe
2, the other end hybridized with the probe 2 to form a typical sandwich structure. The presence of
dNTPs and phi29 DNA polymerase initiated the RCA to generate micrometer-long ssDNA. Then
the detection probe (biotin-DNA-AuNPs) recognized and hybridized with the ssDNA product. The
streptavidin-alkaline phosphatase (ST-AP) bind to biotin and catalyzed the substrate a-naphthol (a-NP)
to generate enzymatic electrochemical signal. The proposed biosensor has been applied for Salmonella
detection in real milk sample with a prominent LOD of 6.76 × 10−18 mol/L.
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Copyright 2014. Reproduced with permission from Elsevier B.V. (B) An electrochemical DNA biosensor
based on RCA and target-induced aptamer displacement for S. Typhimurium detection [100]. Copyright
2018. Reproduced with permission from Elsevier B.V.

Chuang Ge et al. [100] developed an electrochemical DNA biosensor based on RCA and
target-induced aptamer displacement on gold nanoparticles to detect Salmonella typhimurium
ultra-sensitively. From Figure 10B, we can see that AuNPs was deposited on the gold electrode
to improve the electrode performance. Thiolated capture probe attached to the AuNPs by Au-S
bonds. MCH was used to block non-specific adsorption sites. The sequence of capture probe was
complementary hybridized with aptamer. In the presence of S. Typhimurium, the specific hybridization
between bacteria and aptamer resulted in the release of aptamer from electrode surface. Thereby,
RCA primer bind to the capture probe, leading to anchoring numerous circular templates on the
electrode surface. In the presence of dNTPs and phi29 DNA polymerase, RCA was initiated to
generate micrometer-long ssDNA. Biotinylated detection probe was then hybridized with the multiple
tandem-repeat sequences of ssDNA. Streptavidin-alkaline phosphatase (ST-AP), as the label enzyme,
combined with biotin to generate enzymatic electrochemical signal by catalyzing enzyme substrate
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α-NP. Finally, the sensitivity of electrochemical DNA biosensor was improved dramatically, and an
outstanding LOD of 8 CFU/mL was obtained by DPV.

Loop-Mediated Isothermal Amplification

Loop-mediated isothermal amplification (LAMP) is a mature method of nucleic acid amplification,
which was developed by Notomi et al. in 2000 [49]. LAMP performs an auto-cycling strand
displacement DNA synthesis under the catalysis of DNA polymerase with high strand displacement
activity. At least four primers (two inner and two outer primers) are required for amplification,
resulting in a high amplification efficiency of 109 copies of target DNA within an hour [122]. LAMP is
especially suitable for DNA amplification of pathogens thanks to the ability to amplify a few hundred
base-pair long template strands of nucleic acids and the tolerance to various inhibitors present in real
food samples [158]. Several electrochemical DNA biosensors based on the high amplification efficiency
of LAMP have been reported for determining food-borne pathogens.

An electrochemical DNA biosensor was established by Wei Sun et al. for Yersinia enterocolitica
gene sequence detection [122]. Carbon ionic liquid electrode (CILE), as the working electrode, was
modified with V2O5 nanobelts, multi-walled carbon nanotubes (MWCNTs), and chitosan (CTS) to form
nanocomposite film. Then sequence-specific ssDNA probes were immobilized on the CILE surface.
The LAMP amplicons, as the target DNA, hybridized with ssDNA probe and the hybridization reaction
was monitored by the electrochemical indictor methylene blue (MB). Under the optimal conditions,
by the DPV measuring, the proposed DNA biosensor showed remarkable stability and sensitivity
with a LOD of 1.76 × 10−12 mol/L and a linear range of 1.0 × 10−11–1.0 × 10−6 mol/L. Minhaz Uddin
Ahmed et al. [159] proposed a biosensing strategy to real-time monitor LAMP amplicons of Escherichia
coli and Staphylococcus aureus genes by using [Ru(NH3)6]3+ as electrochemical indictor and square
wave voltammetry (SWV) as electrochemical technique. The detection can be completed within 30 min,
the LOD of S. aureus and E. coli is 30 copies/uL and 20 copies/uL, respectively.

Strand Displacement Amplification

Strand displacement amplification (SDA) was proposed firstly by Walker G. T. in 1992, which
based on the a strand-displacing DNA polymerase [160]. Four primers are required that possess
bifunction of target recognition and endonucleases target regions. It employs a restriction endonuclease
to nick target DNA and an exonuclease-deficient DNA polymerase to displace the downstream DNA
strand at the nick sites. Then the displaced strands act as templates to perform an antisense DNA
reaction [157]. SDA owns a high amplification efficiency of 108 copies of target DNA within two hours.
Thus, a large number of studies have applied this strategy to the development of electrochemical DNA
biosensors to improve detection sensitivity.

Yuhua Hu et al. [119] designed a electrochemical DNA biosensor to investigate 16S rDNA of Bacillus
subtilis, which based on target-induced strand-displacement mechanism and nicking endonuclease
signal amplification. (Figure 11A). Firstly, capture probes (CP) were immobilized on the gold electrode
by Au-S bonds. Ferrocenecarboxylic acid (FC)-labeled signal probe (SP) was hybridized partly with
CP. In the presence of target DNA, target hybridization displaced the nine hybridized bases at the
5′terminus of SP and released the FC-modified end of SP, allowing FC to approach to the electrode
surface and generate current. Then the nicking endonuclease (N.BstNBI) nick the nicking position,
leading to the cleavage of CP and the release of TD. The free TD performed the second cycle of cleavage.
After many cycles, remarkable FC current can be detected by the DPV in a low concentration target
solution of 8.0 × 10−17 mol/L.
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An label-free and ultrasensitive electrochemical DNA biosensor was proposed by Zhiqiang
Chen et al., which integrating autocatalytic strand displacement amplification (ASDA) and hybridization
chain reaction (HCR) [161]. Interestingly, ASDA strategy relied on the joint activity of nicking
endonuclease (Nt.BbvCI) and Bst DNA polymerase was proposed for the first time. As can be seen
from the Figure 11B, the stem–loop probe (IP) was immobilized on the electrode surface by Au-S bonds.
In the presence of target, the loop part of IP was opened and hybridized with target. AS probe was
designed ingeniously whose 3′ end bind to the stem part of IP. In the presence of Bst DNA polymerase
and dNTPs, AS probe extend forward to displace the target. The replaced target initiated the next
amplification. Thereafter, multiply dsDNA was product on the electrode surface. Then the nicking
endonuclease (Nt.BbvCI) acted on the nicking position (3′ end of AS probe), leading to the release of
target analogy. Under the action of Bst DNA polymerase, AS probe extend forward to form the duplex
DNA structure with 5′ free end of AS probe. H1 and H2 probe were used to initiate HCR reaction
to form a linear DNA concatamer with cytosine(C)-rich loop region, which can promote the in-situ
synthesis of silver nanoclusters (AgNCs) as electrochemical tags for further amplified detection. In the
end, with the ASDA and HCR strategies, DNA detection can be achieved with a desired selectivity
and an excellent LOD of 0.16 fM.

4. Summary and Conclusions

Biosensors have become ideal alternative of traditional methods and molecular detection methods
for food borne pathogens detection. Especially electrochemical DNA biosensors, due to their merits of
low detection limit, wide linear dynamic range, and high reproducibility. In this paper, we overviewed
recent advances in the development of electrochemical DNA biosensors that applied to food borne
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pathogens detection. We mainly discussed from the following three aspects: food borne pathogens,
electrochemical DNA biosensors and two strategies for improving sensitivity of electrochemical DNA
biosensors. In the part of electrochemical DNA biosensor, we highlighted the detection principle
of biosensor, main bioreceptors and immobilizing methods on sensing interface, electrochemical
techniques, and detection methods. In the long term, more sensitive, specific, cost-efficient, and
portable biosensors will be developed to monitor and determine food borne pathogens, thereby further
controlling and preventing food borne epidemics.

5. Future Perspectives

Although biosensors have created a break-through and became mature increasingly in the field of
food borne pathogens detection, there is still a great potential to develop the ‘ideal’ biosensors. Thus,
more efficient and more economical biosensors (offering sensitivity, specificity, and portability) will
be the research focuses in the future [86]. According to personal understanding, new advances of
biosensors have summarized in Figure 12.Sensors 2019, 19, x FOR PEER REVIEW 24 of 33 
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Accuracy is the most basic requirement for the development of biosensors for food borne pathogens
detection. Non-interaction of the bioreceptor with its target should be taken into consideration, because
it will affect directly the accuracy of the detection result [162]. Therefore, selecting more specific
bioreceptors is one of the future research priorities. For example, aptamer is widely recognized due to
its advantages as detailed above. However, it is worth mentioning that the commercial development
of aptamers is still in its infancy [86]. Thus, developing new bioreceptors and improving the existing
bioreceptors to adapt the commercial needs are future trends.

As the world becomes more concerned about the impact of food borne pathogens on human health,
methods with high sensitivity are increasingly in demand to meet the needs of detection. A successful
biosensor system should possess the capability to determine the low concentration (less than 102 cfu
mL−1) of bacterial from the complex food matrix sensitively [47]. Throughout the entire production
process of biosensors, electrode modification is of paramount importance to develop biosensors with
low detection limits. Thus, in the future, the emergence of novel nanomaterials such as metal–organic
frameworks (MOFs) [163–165], nanofiber [166] will open new horizons for improving sensitivity of
biosensors by increasing the surface area of electrode and accelerating electron transfer.

Sample preparation, enrichment, and selection are vital steps for food borne pathogens
detection [51]. Small sample usage, rapid analysis, and automated detection are ideal standards for
the development of biosensors. Microfluidic chip technology was emerging in 1980 and became a
research hotpot in miniaturized total analysis systems, which promised a novel pathway to detect
DNA. The microfluidic chip has the characteristics of controllable liquid flow, minimal consumption
of samples and reagents, and an improvement of analysis speed by factors of hundreds. It can
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perform simultaneous analysis of hundreds of samples in a few minutes or even less. It can realize the
pretreatment and analysis of samples online. Therefore, in the future, the integration of microfluidic
chip technology and biosensors can become a powerful tool to shorten detection time, achieving
automated and high-throughput analysis of samples.

Biosensors offer an unexpected alternative to the traditional and conventional detection methods.
Over recent years, enormous efforts have been made to develop biosensing technology in the field of
food borne pathogen detection. However, the general cost of detection remains high, hindering its
wide-scale application, especially in developing countries. So how to reduce detection costs has always
been the most concerning issue for detection’s industrialization and commercialization. In order to
solve this problem, paper-based biosensors may become an alternative for conventional electrodes
due to its merits of low cost, simple product process, and portability. Over the long run, it is expected
that future studies should focus on further improving the repeatability and sensitivity of paper-based
biosensors by combining them with other signal amplification techniques.

Additionally, even biosensors have been applied widely in the detection field, expensive and large
data display platforms for signal output are still required. This deficiency not only increases the cost of
detection, but also is not conducive to the development of on-site detection. At present, with the ubiquity
of smart-phones, several studies have utilized various mobile devices to output detection signals by
developing applications. The smart-phone possesses stupendous development potential owing to its
high-quality camera, feasibility, and portability. Additionally, smartphones, as reading tools, do not
need any specific dedicated reading device [86]. Mohamed Maarouf Ali Zeinhom et al. designed a
novel approach to read the detection result of E. coli O157:H7 in yoghurt and egg by a smartphone based
on a field-portable fluorescent imager, which exhibited a low noise to background imaging system [167].
Similarly, Lee et al. proposed a bioassay based on smartphone-integrated dual-wavelength fluorescence
to detect biomolecules, which has high accuracy and can obtain clear results [168]. However, few
studies have applied smartphones or other mobile devices to electrochemical DNA biosensors, so in
the future it may become a research direction for developing miniaturized and portable biosensors.
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