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Multi-scanner and multi-modal 
lumbar vertebral body and 
intervertebral disc segmentation 
database
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Marcel Breeuwer   1, Thomas Baum   2 & Nico Sollmann   2,3,4,6 ✉

Magnetic resonance imaging (MRI) is widely utilized for diagnosing and monitoring of spinal disorders. 
For a number of applications, particularly those related to quantitative MRI, an essential step towards 
achieving reliable and objective measurements is the segmentation of the examined structures. 
Performed manually, such process is time-consuming and prone to errors, posing a bottleneck to 
its clinical applicability. A more efficient analysis would be achieved by automating a segmentation 
process. However, routine spine MRI acquisitions pose several challenges for achieving robust and 
accurate segmentations, due to varying MRI acquisition characteristics occurring in data acquired from 
different sites. Moreover, heterogeneous annotated datasets, collected from multiple scanners with 
different pulse sequence protocols, are limited. Thus, we present a manually segmented lumbar spine 
MRI database containing a wide range of data obtained from multiple scanners and pulse sequences, 
with segmentations of lumbar vertebral bodies and intervertebral discs. The database is intended for 
the use in developing and testing of automated lumbar spine segmentation algorithms in multi-domain 
scenarios.

Background & Summary
Magnetic resonance imaging (MRI) is the modality of choice for detecting and visualizing almost all spinal 
disorders, as it provides non-invasive soft tissue visualization with excellent contrast, more detailed compared to 
other modalities1–5. Thus, it is widely utilized in orthopedic and neurosurgical diagnostics, ranging from dedi-
cated imaging in scoliosis, intervertebral disc disease, and osteoporosis to injuries including vertebral fractures 
as well as to computer-assisted surgical intervention planning and guidance1–4,6.

Visual image reading represents the standard approach in the clinical setting for evaluation of routine spine 
MRI. Reporting derived from visual image assessment by the radiologist may be enhanced by using the approach 
of structured reporting (e.g., use of predefined formats and terms to create radiological reports, using a high 
level of standardized and organized information in template context7–9) and by implementing semi-quantitative 
grading schemes (e.g., Pfirrmann classification for lumbar disc degeneration10). Going one step further, gener-
ating quantitative measures for specific anatomical structures along the spine would be welcome to be able to 
provide meaningful objective markers related to spinal disorders, which could facilitate patient phenotyping, 
clinical management, and adequate treatment selection. A robust and precise segmentation of vertebral bodies 
and intervertebral discs is a major step towards a reliable diagnosis of various conditions in automated and 
computer-assisted systems, as well as for quantitative MRI regarding extraction of image-based markers11–15.

1Biomedical Engineering Department, Eindhoven University of Technology, Eindhoven, The Netherlands. 
2Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, 
Technical University of Munich, Munich, Germany. 3TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical 
University of Munich, Munich, Germany. 4Department of Diagnostic and Interventional Radiology, University 
Hospital Ulm, Ulm, Germany. 5Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum 
rechts der Isar, Technical University of Munich, Munich, Germany. 6Department of Radiology and Biomedical 
Imaging, University of California San Francisco, San Francisco, CA, USA. ✉e-mail: nico.sollmann@tum.de

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-022-01222-8
http://orcid.org/0000-0003-0646-7026
http://orcid.org/0000-0002-7557-0003
http://orcid.org/0000-0003-4922-3662
http://orcid.org/0000-0003-1822-8970
http://orcid.org/0000-0002-4574-5212
http://orcid.org/0000-0002-8120-2223
mailto:nico.sollmann@tum.de
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-022-01222-8&domain=pdf


2Scientific Data |            (2022) 9:97  | https://doi.org/10.1038/s41597-022-01222-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

However, automated spine segmentation has not yet made the transition to clinical routine and remains 
a challenging problem due to the variable and complex shape of the spine anatomy, as well as the presence of 
noise and other artefacts in imaging data6,16. Moreover, routine spine MRI acquisitions pose several challenges 
for achieving robust and accurate segmentations, which is mostly due to some unavoidable MRI acquisition 
characteristics and pitfalls. Specifically, these include the presence of partial volume effects related to anisotropic 
spatial resolution, non-homogeneous intensities between central and marginal areas of the spine due to bias 
field artefacts, and the non-existence of standardized measurement units (unlike Hounsfield Units as used for 
computed tomography [CT])6. This is additionally highlighted in large multi-site studies, where variations in 
scan parameters often produce images that vary significantly in contrast and quality, especially in cases where 
multiple diagnostic MRI sequences are used among different clinical practices17,18.

Up to now, diagnostic and analysis methods of MRI data predominantly rely on manual annotation of ana-
tomical objects, such as vertebrae and intervertebral discs. This process is time-consuming and subjective, and 
often prone to intra- and inter-annotator variability17,19. Of note, the high time expenditure of manual segmen-
tation may hamper direct use, particularly when multi-level segmentations are desired (e.g., segmentation of the 
entire lumbar spine). Thus, automating the segmentation process would strongly benefit clinicians and scien-
tists, especially for large-scale and multi-site studies targeting quantitative MRI. However, a reliable automated 
segmentation method, which has the potential to be included in standard clinical routines in the future, has to 
be able to generalize to the large variety of MRI sequences and parameter settings, while being reasonably fast 
and not overly complex to operate. This remains a difficult challenge, despite the surge in recent developments 
of automated segmentation techniques18,20.

ID Gender Age Clinical indication Clinical indication code*
02 Female 51.1 FU resection ependymoma 1

04 Male 38.3 Postop resection neurinoma 1

05 Female 30.0 FU resection ependymoma 1

07 Male 77.2 LBP and radiculopathy 2

10 Female 73.6 FU resection neurinoma 1

11 Female 40.1 Mamma-Ca with spinal metastases 3

12 Male 48.1 FU resection ependymoma 1

13 Female 52.3 Screening spinal tumor 3

14 Male 57.2 FU inflammatory lesion 4

15 Female 82.4 LBP 2

16 Male 61.2 Thymus-Ca with spinal metastases 3

17 Female 70.0 Spondylodiscitis 4

18 Female 61.1 LBP and radiculopathy 2

19 Female 71.7 Lung-Ca with spinal metastases 3

20 Male 48.9 Radiculopathy S1 left 2

21 Male 71.0 Radiculopathy L4 (both sides) 2

22 Female 86.5 FU resection meningioma 1

23 Male 45.9 Radiculopathy S1 right 2

24 Female 72.1 Sacral fracture 5

25 Female 52.9 Lung-Ca with spinal metastases 3

26 Female 40.9 LBP and radiculopathy 2

27 Female 49.1 LBP and radiculopathy 2

28 Male 64.0 Spondylodiscitis 4

29 Female 88.1 Mamma-Ca with spinal metastases 3

30 Male 81.7 LBP and radiculopathy 2

31 Male 55.7 LBP and radiculopathy 2

32 Male 39.8 Postop resection meningioma 1

33 Male 62.3 LBP and radiculopathy 2

34 Female 57.2 Radiculopathy L5 left 2

35 Male 69.6 Spondylodiscitis 4

36 Female 56.0 FU resection ependymoma 1

37 Female 79.1 LBP and radiculopathy 2

38 Female 75.8 LBP and radiculopathy 2

39 Female 43.1 Spondylodiscitis 4

Table 1.  Patient characteristics with clinical indications. *Clinical indication code legend: 1 Postoperative/
follow-up (FU) imaging for tumor after resection, 2 Low back pain (LBP) with or w/o radiculopathy due 
to degenerative changes, 3 Malignancy with (suspected) spinal metastases, 4 Spondylodiscitis or other 
inflammation/infection, 5 Trauma/fracture.
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Most existing methods focus on one particular pulse sequence, which is not sufficient to adequately acknowl-
edge the frequent multi-sequence acquisitions in clinical routine, or they may suffer from considerably long 
computational time, as well as the requirement for user input and navigation21,22. Other methods require exten-
sive prior knowledge, such as shape information, to construct a representative preliminary model of anatomical 
shape from training data and to approximate optimization to new data16,23,24. Such methods are clearly limited by 
prior knowledge, which – in the case of large-scale and multi-site studies – should contain enough representative 
information to handle all possible variations in data. Current constraints in data collection and data sharing 
pose a challenge in acquiring enough of such data, thus producing highly specific models that are often only 
applicable to a small variety of cases. Automated medical image analysis algorithms should be robust enough to 
inherent data variability to ensure their successful integration into existing infrastructure, with the long-term 
perspective of becoming clinically feasible. However, without enough representative data comprising all of the 
diverse variations in spine MRI, algorithm generalizability is hard to achieve.

Recent advances in deep learning-based segmentation methods hold a lot of promise to alleviate the chal-
lenges described above21,25–28. This seems especially true for improving the generalization on multi-site and 
multi-scanner data. However, used algorithms require large datasets annotated by experts for both development 
and testing. Yet, publicly available datasets of annotated vertebrae and intervertebral discs, collected from mul-
tiple scanners and different acquisition protocols, are very limited. Therefore, the purpose of this article and its 
related dataset is to provide a reference database containing a wide range of MRI data obtained from multiple 
scanners and involving various pulse sequences, along with the segmentations of lumbar vertebral bodies (L1 to 
L5) and intervertebral discs.

ID No. of scans MRI 1 vendor/model MRI 1 sequence*
02 1 Philips Achieva T1-w, nc T1-w, T2-w Dix.

04 2 Siemens Espree T1-w, nc T1-w, STIR

05 2 Philips Achieva T1-w, nc T1-w

07 2 Siemens Avanto nc T1-w, T2-w, STIR

10 2 Siemens Verio nc T1-w, T1-fs, T2-w

11 1 Philips Achieva T1-w, nc T1-w, T2-w Dix.

12 2 Philips Ingenia T1-w, nc T1-w

13 1 Philips Achieva T1-w, nc T1-w, T2-w Dix.

14 1 Philips Achieva T1-w, nc T1-w, T2-w Dix.

15 2 Siemens Symphony nc T1-w, T2-w

16 2 Siemens Avanto nc T1-w, T2-w, STIR

17 1 Philips Achieva T1-w, nc T1-w, T2-w Dix.

18 1 Philips Achieva nc T1-w, T2-w Dix.

19 2 Siemens Avanto nc T1-w, T2-w

20 1 Philips Achieva nc T1-w, T2-w Dix.

21 2 Siemens Amira nc T1-w, T2-w

22 2 Siemens Verio T1-w, nc T1-w, T2-w

23 1 Philips Achieva T1-w, nc T1-w, T2-w Dix.

24 1 Philips Elition nc T1-w, T2-w Dix.

25 1 Philips Achieva T1-w, nc T1-w, T2-w Dix.

26 1 Philips Achieva nc T1-w, T2-w Dix.

27 1 Philips Achieva T1-w, nc T1-w, T2-w Dix.

28 2 Siemens Verio nc T1-w, T2-w, STIR

29 2 Philips Achieva T1-w, nc T1-w, T2-w Dix.

30 2 Siemens Espree nc T1-w, T2-w

31 1 Philips Ingenia nc T1-w, T2-w Dix.

32 2 Philips Elition T1-w, nc T1-w, T2-w Dix.

33 2 Siemens Aera nc T1-w, T2-w

34 2 Philips Achieva nc T1-w, T2-w Dix.

35 2 Philips Elition nc T1-w

36 2 Siemens Magnetom T1-w, nc T1-w, T2-w

37 2 Philips Achieva nc T1-w, T2-w

38 2 GE Signa nc T1-w, T2-w

39 2 Siemens Avanto T1-w, nc T1-w, T2-w, STIR

Table 2.  Scan characteristics with image sequences per scanner vendor and model type for the first scan. *T1-
w, nc T1-w, T2-w, T1-fs, STIR, and T2-w Dix. stand for T1-weighted contrast-enhanced, T1-weighted non-
contrast-enhanced, T2-weighted, T1-weighted fat-saturated, short tau inversion recovery, and T2-weighted 
Dixon sequences.
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Using a database like the herein presented, automatization in image analysis and processing could be further 
facilitated, which could directly influence the field of radiology and pave the way towards semi-automated and 
fully-automated algorithms for radiological diagnostics. As such, over the recent years, automated spine image 
analysis has seen a growing interest, particularly for the detection of vertebral fractures29, assessment of spinal 
deformities21, and computer-assisted surgical interventions30. As the lumbar spine is a particularly common site 
for various spinal disorders that can cause chronic low back pain (LBP), segmentation of anatomical structures 
along the lumbar spine is of considerable interest. While many factors can contribute to spinal disease and defor-
mation, such as fractures, accidental injuries, osteoporosis, vertebral neoplasm or scoliosis31, the primary cause 
of chronic LBP in most patients is believed to be related to spinal degeneration, particularly of lumbar interver-
tebral discs and endplates32–37. Spinal degeneration is a natural consequence of aging, but it can be accelerated 
by trauma, repetitive stress, systemic disease, and other factors35,38–41. Thus, investigating the relevance between 
chronic LBP pathology and lumbar vertebrae and intervertebral disc morphology and composition using spe-
cific segmentations could aid in developing appropriate methods to assist early diagnosis, provide better surgical 
planning, and facilitate individualized treatment strategies and patient phenotyping.

In summary, we offer a database of manually segmented lumbar vertebral bodies and intervertebral discs 
in MRI datasets collected from a variety of scanners and using different pulse sequence protocols. Besides the 
images that are part of standard scanning routines, such as non-contrast-enhanced and contrast-enhanced 
T1-weighted, T2-weighted, and short tau inversion recovery (STIR) images, we provide the access to images 
obtained with a DIXON turbo spin-echo (TSE) sequence. Thus, combined with other available imaging 
sequences, this data could help in the development of more efficient and robust methods of segmenting mus-
culoskeletal structures, and it could facilitate quantitative MRI by achieving automated segmentation and anal-
ysis of datasets, which is useful for assessing vertebral bodies (e.g., fat fraction42–46), cartilage endplates (e.g., 
T2* 47,48), and intervertebral discs (e.g., T1rho mapping44,48,49). The data including segmentations can be used 
as training and test datasets for (semi-)automated algorithms, which can potentially benefit from the heteroge-
neous character of this study’s database, as it fosters the development of approaches that are more generalizable 
to data derived from multiple sites and scanners, which is known to be a major challenge for models that are 
typically trained on highly homogeneous data.

Methods
Patient cohort.  This retrospective study was approved by the local Institutional Review Board 
(Ethikkommission der Technischen Universität München). The requirement for written informed study consent 
was waived due to the retrospective character of the specific analyses used for this publication. Yet, all patients 
provided standard informed consent for MRI scanning during clinical routine and agreed on the day of visit for 
MRI acquisition on an opt-in basis that their data may be used for scientific purposes. The patients were informed 
that their data may be anonymously publicly shared without any personal identifiable information, and the anal-
yses for this study were performed on de-identified data.

ID T* MRI 2 vendor/model MRI 2 sequence**
04 2.8 Philips Ingenia T1-w, nc T1-w, T2-w Dix.

05 15.6 Siemens Verio T1-w, nc T1-w, T2-w, STIR

07 13.7 Philips Achieva nc T1-w, T2-w Dix.

10 4.5 Philips Ingenia T1-w, nc T1-w, T2-w Dix.

12 9.3 Philips Achieva T1-w, nc T1-w, T2-w Dix.

15 1.6 Philips Achieva T1-w, nc T1-w, T2-w Dix.

16 0.7 Philips Achieva T1-w, nc T1-w, T2-w Dix.

19 2.8 Philips Achieva T1-w, nc T1-w, T2-w Dix.

21 6.1 Philips Elition nc T1-w, T2-w Dix.

22 8.7 Philips Elition nc T1-w, T2-w Dix.

28 0.5 Philips Achieva nc T1-w, T2-w Dix.

29 6.2 Philips Ingenia T1-w, nc T1-w, T2-w Dix.

30 12.2 Philips Achieva T1-w, nc T1-w, T2-w Dix.

32 0.7 Philips Achieva T1-w, nc T1-w, T2-w Dix.

33 13.7 Philips Achieva nc T1-w, T2-w Dix.

34 7.1 Siemens Avanto nc T1-w, T2-w, STIR

35 2.7 Philips Ingenia T1-w, nc T1-w, T2-w Dix.

36 2.8 Philips Achieva nc T1-w, T2-w Dix.

37 1.6 Philips Achieva nc T1-w, T2-w Dix.

38 60.8 Philips Achieva nc T1-w, T2-w Dix.

39 1.1 Philips Achieva T1-w, nc T1-w, T2-w Dix.

Table 3.  Scan characteristics with image sequences per scanner vendor and model type for the follow-up scan. 
*T is the time interval between the two scans. **T1-w, nc T1-w, T2-w, T1-fs, STIR, and T2-w Dix. stand for 
T1-weighted contrast-enhanced, T1-weighted non-contrast-enhanced, T2-weighted, T1-weighted fat-saturated, 
short tau inversion recovery, and T2-weighted Dixon sequences.
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Thirty-four patients (mean age: 60.4 ± 15.2 years, age range: 30.0–88.1 years, 58.8% females) with the follow-
ing medical indications for MRI acquisition during the clinical routine were included in this study: 1) LBP with 
or without radiculopathy due to suspected spinal degeneration (41.3% of patients), 2) postoperative or follow-up 
imaging after resection of a spinal tumor (23.5% of patients), 3) known malignancy with (suspected) spinal 

Fig. 1  Segmented lumbar vertebral bodies (L1 to L5) and intervertebral discs (L1_2, L2_3, L3_4, and L4_5) per 
sequence. One middle slice of each sequence is shown in (a) with corresponding segmentation masks in (b).
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metastases (17.6% of patients), 4) spondylodiscitis or other spinal inflammatory/infectious diseases (14.7% of 
patients), and 5) spinal fracture (2.9% of patients). Patient characteristics (sex and age) and medical indications 
are listed in Table 1.

The database contains MRI datasets collected from these 34 patients, whereby 21 patients were rescanned 
at a second time point using a different MRI scanner model and/or sequence protocol (mean interval between 
first and second MRI scan: 8.3 ± 12.6 months, interval range: 0.5–60.8 months). From the remaining 13 patients 
only MRI datasets of one imaging time point were used. MRI scans acquired between August 2014 and October 
2019 were considered in this study, with the data being acquired either on institutional-intern scanners or on 
scanners of other institutions, thus being available after image transfer due to clinical requests. A detailed list 
of pulse sequences and MRI vendors per patient, together with the time intervals between scans, are shown in 
Tables 2 and 3.

Magnetic resonance imaging.  Various scanner models from different vendors were utilized for collecting a 
number of images, including non-contrast-enhanced T1-weighted, contrast-enhanced T1-weighted, T2-weighted, 
STIR, T2-weighted DIXON, and T1-weighted fat-saturated (fs) images. 70.9% of included datasets were derived 
from Philips scanners (Achieva, Ingenia, and Elition), 27.3% were derived from Siemens scanners (Avanto, Verio, 
Espree, Symphony, Amira, Aera, and Magnetom). One dataset (1.8%) was taken from a GE scanner (Signa).

The field of view (FOV) covered at least the lumbar spine. Only scans that were performed in supine position 
were included. Each patient had at least one MRI scan performed on a Philips system with the following refer-
ence sequences:

•	 Sagittal non-contrast-enhanced T1-weighted sequence: repetition time (TR)/echo time (TE) = 600/8 ms, 
FOV = 180 × 275 × 49 mm, acquisition voxel size = 0.80 × 1.00 × 3.00 mm3, acquisition duration = 3 min 3 s.

•	 Sagittal T2-weighted DIXON TSE sequence: TR/TE = 2,500/100 ms, FOV = 180 × 275 × 49 mm, acquisition 
voxel size = 0.70 × 0.98 × 3.00 mm3, acquisition duration = 3 min 25 s.

Image segmentation.  Non-contrast-enhanced T1-weighted images were used for obtaining the segmen-
tations of lumbar vertebral bodies (L1 to L5) and intervertebral discs (L1/2 to L4/5) for each patient and each 
respective MRI dataset. Segmentations were performed manually and without (semi-)automatic software sup-
port. Specifically, non-contrast-enhanced T1-weighted images were successively opened in MITK, an open-access 
image viewer software package that allows a simultaneous visualization of the images in all three image planes 
([http://mitk.org/wiki/The_Medical_Imaging_Interaction_Toolkit_(MITK)]; German Cancer Research Center, 

Fig. 2  Segmented lumbar vertebral bodies (L1 to L5) and intervertebral discs (L1_2, L2_3, L3_4, and L4_5) per 
sequence acquired from two different scanner vendors. Significant qualitative differences arise due to scanner 
and protocol variation. One middle slice of each sequence is shown in (a) with corresponding segmentation 
masks in (b).
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Division of Medical and Biological Informatics, Medical Imaging Interaction Toolkit, Heidelberg, Germany). The 
manual segmentations were done in the sagittal plane for each vertebral body and intervertebral disc, respec-
tively. Segmentation was performed by a medical doctor. Regions of interest (ROIs) were carefully drawn at the 
boundaries of the vertebrae and intervertebral discs, respectively. The other image planes were used to check 
for accidentally included structures not belonging to the vertebral bodies or intervertebral discs. In these cases, 
ROIs were corrected accordingly. For lumbar vertebral bodies, each vertebrae was separately enclosed in sag-
ittal slices, avoiding any inclusion of paraspinal tissue or fluid. Posterior elements were not considered, thus 
restricting the segmentations to the vertebral corpora only. Analogously, lumbar intervertebral discs were also 
separately segmented in sagittal slices, considering the entire disc of the whole circumference. All segmentations 
were supervised by a radiologist with eleven years of experience. Segmentation time per one T1-weighted image 
series amounted to 60–90 min.

The obtained segmentation labels, generated in non-contrast-enhanced T1-weighted images of all patients 
of one or two MRI sessions, were then overlaid over the rest of the available sequences acquired with different 
MRI scanners and pulse protocols. Due to the differences in imaging and scanning parameters, the original 
images were registered to the non-contrast-enhanced T1-weighted images using the 3D linear registration tool 
in ITK-SNAP (https://www.itksnap.org), ensuring that labels were accurately overlaid. We resampled each scan 
in the space of the respective non-contrast-enhanced T1-weighted image using linear interpolation with an 
identity transform50,51, given that we have the case of two or more scans of the same patient with different 

Fig. 3  Segmented lumbar vertebral bodies (L1 to L5) and intervertebral discs (L1_2, L2_3, L3_4, and L4_5) per 
sequence acquired from two different scanner models belonging to the same vendor. One middle slice of each 
sequence is shown in (a) with corresponding segmentation masks in (b).

https://doi.org/10.1038/s41597-022-01222-8
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coordinate transformations to patient space. Once resampled, additional verification was performed to ensure 
all segmentation masks are accurately overlaid over all available sequences per patient. The verified data were 
subsequently uploaded to the database.

Examples of segmented lumbar vertebral bodies and intervertebral discs are shown in Figs. 1–4. In detail, 
Fig. 1 shows two scans acquired on scanners from differing vendors (Philips and Siemens) per each available 
sequence. Similar is shown in Fig. 2 for another vendor (Philips and GE). Furthermore, Fig. 3 shows the dif-
ferences between scans of the same patient acquired from the same vendor’s scanners (Philips), which differ in 
models. Figure 4 provides three exemplary patient cases with segmentations shown on T1-weighted imaging in 
presence of pathological findings that may render manual segmentations particularly demanding (e.g., vertebral 
fracture, spondylodiscitis, and metastatic bone lesions).

The manual segmentations of each vertebral body and intervertebral disc are available as separate binary 
masks, where pixels with an intensity value of 1 correspond to the tissue of interest, while pixels of an intensity 
value of 0 belong to the background. Each mask of each image volume was stored as a separate *.nii file. In total, 
each available volume is accompanied with the corresponding segmentations of lumbar vertebral bodies and 
intervertebral discs.

Data Records
The database is available online within the OSF Repository, including the different imaging datasets, segmen-
tation files, as well as metadata comprising patient characteristics and details on the available pulse sequences 
and used MRI systems per patient (Identifier: https://doi.org/10.17605/OSF.IO/QX5RT)52. Furthermore, Python 
scripts to read and visualize the data by utilizing open-source image analysis libraries – SimpleITK (https://
simpleitk.org/) and NiBabel (https://nipy.org/nibabel/) – are provided.

Non-contrast-enhanced and contrast-enhanced T1-weighted, T2-weighted, STIR, and T1-weighted fs 
images are stored as separate datasets for each patient per scanner model. In the case of the T2-weighted DIXON 
sequences, sagittal water, fat, and in-phase images are deposited as separate datasets for each patient, if available. 
The segmentation maps of each vertebra (L1 to L5) and intervertebral discs (L1/2 to L4/5) are stored as *.nii files. 
All imaging data, as well as the segmentation maps, are saved using the Neuroimaging Informatics Technology 
Initiative (NIfTI) format (https://nifti.nimh.nih.gov/). NIfTI files have several features, such as raw data saved in 
3D, containing two affine coordinates to relate voxel to spatial index, as well as additional data such as key acqui-
sition parameters, encoding directions, and grid spacing, saved as a part of the header. NIfTI files can be directly 
read in a number of programming environments, such as Python, Matlab, and R, as well as directly visualized using 
tools such as ImageJ (https://imagej.nih.gov/ij/), ITK-SNAP (http://www.itksnap.org/), FSL (https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki), AFNI (https://afni.nimh.nih.gov/), and FreeSurfer (https://surfer.nmr.mgh.harvard.edu/).

Datasets of patients and corresponding segmentation masks are labeled with the same patient ID. Masks 
of each vertebra are labeled as L1 to L5, while the masks for each intervertebral disc are labeled as L1_2, L2_3, 
L3_4, and L4_5.

Technical Validation
Acquisition of MRI was medically indicated and image quality control was performed during and/or immedi-
ately after completion of the exam by the technologist and radiologist in charge. Furthermore, inclusion of image 
data in the current study was performed by a board-certified radiologist with eleven years of experience based 
on a sufficient image quality.

Fig. 4  Segmented lumbar vertebral bodies (L1 to L5) and intervertebral discs (L1_2, L2_3, L3_4, and L4_5) 
using sagittal T1-weighted sequences in a patient with a fractured vertebral body L1 (a), a patient with 
spondylodiscitis of the segment L4/L5 (b), and a patient with diffuse metastatic lesions in vertebral bodies (c). 
Individual segmentation masks for single vertebral bodies and intervertebral discs are outlined in red.
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Code availability
The database is available online within the OSF Repository, including the different imaging datasets, segmentation 
files, as well as metadata comprising patient characteristics and details on the available pulse sequences and used 
MRI systems per patient (Identifier: https://doi.org/10.17605/OSF.IO/QX5RT)52. We additionally provide Python 
scripts to read and visualize the data by utilizing open-source image analysis libraries – SimpleITK (https://
simpleitk.org/) and NiBabel (https://nipy.org/nibabel/), available within the repository wiki page.
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