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ABSTRACT
Background: Snow leopards, Panthera uncia, are a threatened apex predator, scattered
across the mountains of Central and South Asia. Disease threats to wild snow leopards
have not been investigated.
Methods and Results: Between 2008 and 2015, twenty snow leopards in the South Gobi
desert of Mongolia were captured and immobilised for health screening and radio-collaring.
Blood samples and external parasites were collected for pathogen analyses using enzyme-
linked immunosorbent assay (ELISA), microscopic agglutination test (MAT), and next-
generation sequencing (NGS) techniques. The animals showed no clinical signs of disease,
however, serum antibodies to significant zoonotic pathogens were detected. These patho-
gens included, Coxiella burnetii, (25% prevalence), Leptospira spp., (20%), and Toxoplasma
gondii (20%). Ticks collected from snow leopards contained potentially zoonotic bacteria from
the genera Bacillus, Bacteroides, Campylobacter, Coxiella, Rickettsia, Staphylococcus and
Streptococcus.
Conclusions: The zoonotic pathogens identified in this study, in the short-term did not
appear to cause illness in the snow leopards, but have caused illness in other wild felids.
Therefore, surveillance for pathogens should be implemented to monitor for potential longer-
term disease impacts on this snow leopard population.
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Introduction

While the overall decrease in biodiversity is often attrib-
uted to environmental changes such as land clearing,
habitat d estruction, feral pests and climate change,
emerging infectious disease can also act as a primary
or contributory cause [1–3]. Pathogens can particularly
impact endangered and threatened species where popu-
lations are already depleted and genetic diversity may be
low [4]. The rarity of endangered species makes them
challenging to sample systematically, but constant sur-
veillance and collection of baseline health data with
ongoingmonitoring will aid in determining the impacts
of disease in threatened species.

Snow leopards (Panthera uncia) are a rare and threa-
tened species, occurring in the high mountains of South
and Central Asia including the Himalayas in the south,
through the Pamirs, Tien Shan and Altay in the north.
The population of reproductive snow leopards is believed

to be fewer than 4500 and is continuing to decline [5,6].
In 2008, the Snow Leopard Trust and Snow Leopard
Conservation Fund initiated an ongoing, long-term eco-
logical study of snow leopards in the South Gobi
Province of Mongolia. During 2011 the field team
recorded four snow leopard carcasses on separate loca-
tions, three within the study area in the Tost Mountains
and one in the Gurvan Saikhan Mountain range, an
adjacent range to the northeast. The causes of mortality
were not established. There were no signs of trauma or
starvation therefore other potential causes of death
included infectious diseases. Two of the dead snow leo-
pards were radio-collared territorial males with no over-
lap in their home ranges, suggesting independent causes
of death. The finding of these dead snow leopards
prompted the initiation of this disease study.

Despite the range of investigations into threats to
snow leopards, none have addressed the prevalence
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or impacts of disease in the wild. All prior reports on
diseases in snow leopards are restricted to zoo ani-
mals and include common feline viruses such as
feline parvovirus, calicivirus, feline infectious perito-
nitis (a viral disease caused by a strain of feline
coronavirus), feline immune deficiency virus and
canine distemper virus, and a papillomavirus specific
to snow leopards [7,8]. Non-viral diseases have
included veno-occlusive disease, ocular colobomas,
tumours and Tyzzer’s disease [9–12]. Several zoono-
tic diseases such as, leptospirosis, tuberculosis and
Toxascaris infection have also been recorded [13,14].

Threatened species are not likely to support the
circulation of species- specific infectious agents
because densities of threatened species are generally
low and intra-species interactions are in many cases
infrequent [15]. As snow leopard numbers are low,
detecting pathogens specific to felids and determining
their effects would be challenging and limited.
However, pathogens with several species of reservoir
hosts, as in the case of zoonotic pathogens, may be
readily detected and can impact species at low abun-
dance through disease spill-over [16].

The most prevalent zoonotic infections reported in
Central Asian Mountain livestock are rabies, anthrax,
plague, leptospirosis, Q fever, brucellosis, toxoplasmosis
and echinococcosis [17–19]. Endemic zoonoses are
often under-reported due to a lack of public awareness
and public health services and so the disease threat may
be greater than what is reflected in the literature [20].
Snow leopards live alongside nomadic herders and their

livestock throughout their range [21], which may be
sources of infection to snow leopards and vice versa.

This study aimed to investigate important zoonotic
pathogens that may impact the conservation of snow
leopards in Mongolia. Due to the low numbers of snow
leopards available for sampling, combined with the
possibility of other species endemic to the area that
could act as reservoir hosts for pathogens combined
with the closeness of the nomadic herders to all com-
ponents of their environment, we decided to target
zoonotic pathogens that can circulate between different
host species and hence also impact the health of snow
leopards. The zoonotic pathogens selected to sample for
were based on prior occurrence in Mongolia, patho-
genicity, the potential to infect snow leopards and
potential economic losses for the herders. These patho-
gens included Coxiella burnetii, Toxoplasma gondii and
Leptospira spp. Two of the most severe zoonoses,
anthrax and rabies, are known to occur within the
study area but were not tested for as we were looking
at prior exposure and not active infection. The potential
of identifying positive results for those two pathogens
would have been highly unlikely because of their
extreme pathogenicity [22,23].

Methods

Study area

This study was conducted in the Tost Mountains (43°
N, 100° E) in the Gobi Desert in southern Mongolia

Figure 1. Location of the study area in the South Gobi Desert of Mongolia. Insert shows the topography of the region with
trapping areas delineated in red. Grey lines are small roads and tracks that traverse the area [27].
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from 2012 to 2015 (Figure 1). The Tost Mountains
cover an area of approximately 1700 km2 and the
population of snow leopards, estimated annually,
was between 10–14 adults during our study [24].
The area is also home to approximately 90 herder
families, their goats (Capra aegagrus hircus), sheep
(Ovis aries), horses (Equus caballus), camels
(Camelus bactrianus) and domestic dogs (Canis
lupus familiaris). Other wild species in the area
include the grey wolf (Canis lupus), corsac fox
(Vulpes corsac), red fox (Vulpes vulpes), Pallas cat
(Otocolobus manul), Eurasian lynx (Lynx lynx),
Eurasian wildcat (Felis silvestris) and several members
of the mustelid family [24,25]. Ungulates include the
Siberian ibex (Capra sibirica) and Argali sheep (Ovis
ammon), which are a major component of the snow
leopard’s diet, along with livestock [26].

Handling and measurements

Twenty snow leopards were captured and sampled in
conjunction with an ongoing radio telemetry study
(see [27] for detailed capture methods). Captures
were performed under permits from The Mongolian
Ministry of Environment and Green Development.
Snow leopards were darted and chemically immobi-
lised with a combination of medetomidine and tile-
tamine-zolazepam with a mean dose rate of
0.02 ± 0.004 mg/kg body mass medetomidine and
2.17 ± 0.45 mg/kg tiletamine-zolazepam [27].

Sedation lasted approximately one hour, which per-
mitted fitting of a radio-collar for monitoring snow leo-
pards movements for 12 to 18 months, physical
examination and collection of blood samples and external
parasites. Atipamezole hydrochloride (Antisedan vet
5 mg/mL, Orion Pharma Animal Health, Espoo,
Finland) reverses the effects of medetomidine and was
administered intramuscularly to aid a smooth recovery
from the sedation when handling was completed [27].
Thorough clinical examinations ascertained the general
health and body condition of the snow leopards as out-
lined below.

Due to lack of a standard method for measuring
body condition in snow leopards and limited descrip-
tions for other wild felids [28] we developed
a consistent field technique for measuring body con-
dition. This technique was based on the amount of
muscle over the shoulders and hips and whether the
outline of ribs, scapular spine and iliac crest were
visible and could be palpated. If scapular spine and
iliac crest of hip bones were prominent, then the
body condition was ‘poor‘; if bony prominences
were difficult to palpate the body condition was
rated ‘good‘. In between these two extremes, body
condition was scored as ‘moderate’. Pelage was exam-
ined for thickness, signs of rubbing, alopecia and
wounds. Eyes were examined for any sign of injury

or defects. The oral cavity, including tongue and
gingiva, were inspected for inflammation, ulcers or
other lesions. Teeth were also examined as one of the
indicators of age, or to see if broken or infected. Age
estimation was based on body mass and tooth wear
and tooth colouration [27]. The animals develop
a darker cream tooth colour as they age. Scarring of
the face in males was also used as an approximate
indicator of age as younger males (<two-three years)
have few or no scars [27]. Presumably older males
obtain facial scars from territorial or resource fights.
Females that had not apparently reproduced (< three
years of age) typically had nipples that were lighter in
colour and smaller than those of known reproductive
females.

Body weight was recorded and heart rate,
respiratory rate, body temperature and oxygen
saturation was measured at 10-minute intervals
during the sedation, to collect physiological data
and as a routine measure of physiological stability
while sedated. A pulse oximeter was attached to
one ear to measure the oxygen saturation. Many
of the captures took place at night at low ambient
temperatures and as thermoregulation can be
compromised by sedation, body temperature was
closely monitored while the animal was sedated to
ensure it did not drop below physiologically
accepted levels [29].

Blood collection and storage

Twenty millilitres of blood was collected from the
cephalic vein. Two millilitre aliquots were placed
into three separate, two millilitres blood serum
separating tubes (Interpath Services PTY Ltd,
Heidelberg West, Australia) for later serology ana-
lyses. Five millilitres of blood was placed into
a tube with ethanol for DNA analyses and one
millilitre into a lithium heparin tube for haematol-
ogy and biochemistry. The remainder of the blood
sample was placed on Nobuto strips (10 per ani-
mal), which hold 0.1ml of whole blood or 0.04ml of
serum (Toyo Roshi Kaisha, Ltd., Tokyo, Japan) and
Whatman FTA cards (one per animal) (GE
Healthcare UK Limited, Little Chalfont, UK). The
advantage of both the Nobuto strips and Whatman
FTA cards are they can be stored at room tempera-
ture. The FTA cards and Nobuto strips were air
dried and stored in paper envelopes.

Blood smears were made in the field from each
blood sample collected, then fixed in Diff Kwik fixa-
tive at our campsite (Fronine Laboratory Supplies,
Riverstone, Australia). Serum tubes stood overnight
to separate cells and serum. Serum was decanted into
sterile cryovials and held at −18°C until transport to
the National Veterinary Institute in Uppsala, Sweden
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for storage at −80°C until they were tested six to
twelve months later.

External parasites

External parasites were collected during physical
exam of the pelage and placed in ethanol for later
testing for bacterial pathogens as explained below.

Haematology

Blood smears were stained with Diff Kwik (eosin and
methylene blue) and microscopically examined at 40x
and 100x (oil) magnification for cellular abnormal-
ities and haemoparasites.

Laboratory analyses

Snow leopard serum samples were tested for the
presence of antibodies against Toxoplasma gondii,
Coxiella burnetii and Leptospira spp. utilising
Enzyme-Linked-Immuno-Assay (ELISA). If positive
results were obtained for Leptospira spp. the samples
were then tested using Microscopic agglutination test
(MAT) against a panel of serovars. Next Generation
Sequencing (NGS) was used to screen ticks for bac-
teria (Table 2.). Details of these analyses are outlined
below.

Elution of sera from Nobuto strips

Serum was removed from the Nobuto strips following
the manufacturer’s instructions (Toyo Roshi Kaisha,
Ltd.,Tokyo, Japan). The strips were cut into small
pieces and placed in one ml Eppendorf tubes.
Serum was eluted and diluted to 10% by placing in
200ul or 400ul phosphate buffer solution (PBS)
depending on whether one or both sides of the strip
were saturated with blood. After incubating for
one hour to allow the serum to enter the PBS, the
serum in the Eppendorf tubes was inactivated at 60ºC
for one hour, centrifuged and the filter paper
removed from the tubes. The resultant sera were
stored at −80ºC until analysis.

Toxoplasma gondii
Antibodies against T. gondii were detected using
a commercially available ABNOVA IgG antibody
ELISA kit (ABNOVA, Taipei City, Taiwan). As
this was a human kit, the methods were modified
accordingly. The enzyme conjugate in the kit was
changed to an Alkaline phosphatase-conjugated
affinipure Goat Anti-Cat IgG (H + L). The meth-
ods also called for a 1:40 dilution of the test sam-
ple, but as the samples were already diluted 1:10,
they only required an additional four-time dilution.
All ELISA plates were read on a Multiskan FC

microplate photometer, Thermo Scientific machine
at 450 nm. Results were calculated by methods
outlined in the kit guide.

Leptospira spp
Leptospira antibodies were first identified using
a commercially available ELISA kit Leptospira IgG (LS-
IgG) ELISA kit, (MBS036971, Mybiosource, San Diego,
USA). As this was a rodent test kit the conjugating
enzyme was replaced with an alkaline phosphatase-
conjugated AffiniPur Goat Anti-Cat IgG (H + L)
(Jackson ImmunoResearch Laboratories Inc. West
Grove, USA) Leptospira serovars were then identified
using the Microscopic Agglutination Test- MAT [30].
The MAT panel the samples were tested against con-
sisted of Leptospira serovars: L. interrogans sv Australis,
L. kirschneri sv Grippotyphosa, L. interrogans sv
Icterohaemorrhagiae, L. interrogans sv Pomona,
L. interrogans sv Hebdomadis and L. interrogans sv
Canicola. These serovars were chosen as they had pre-
viously been reported to occur in other regions of
Mongolia [31,32]. The antigens used were live cultures
of referenced strains. All sera that gave a positive reac-
tion at a 1:100 dilution were further titrated in serial
two-fold dilutions to titre endpoint that is 50% aggluti-
nation. A titre ≥ 100 was therefore deemed positive to
exposure to leptospires.

Coxiella burnetii
Antibodies against C. burnetii were detected using an
Innovative Diagnostics Q Fever Indirect Multi-
species ELISA kit. The ELISA was performed follow-
ing the manufacturer’s instructions. The plate results
were read at 450 nm, with positive or negative results
calculated as described in the kit instructions (Idvet,
310, Grabels. France).

Ticks were analysed using Next Generation
Sequencing (NGS) [33]. These analyses detect bacterial
genera present, as well as endosymbionts or opportu-
nists. Each tick was manually minced with a sterilized
scalpel. Three treatments were performed to allow
a better harvest of gram-positive bacterial DNA. First,
samples were immersed for 1 hour at 37°C in an enzy-
matic lysis buffer consisting of 20 mM Tris·Cl, pH 8.0,
2 mM sodium EDTA, 1.2% Triton® X-100 and 20 mg/
ml of lysozyme as described in the Dneasy™ Tissue Kit
handbook. Second, samples were submitted to three
freeze-thaw cycles [34]. Finally, 25µl of proteinase
K and 200µl of buffer A was added to the sample before
an overnight shaking incubation at 56°C. Two hundred
µl of this mix was then introduced in a QIAcube
(Qiagen®, Hilden) following the manufacturer’s proto-
col for purification of total DNA from animal tissues.
After the extraction step, we performed an Illumina
amplicon sequencing following a modified Miseq pro-
tocols (16S Metagenomic Sequencing Library
Preparation). One extraction of the negative control
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was added to every batch of 24 samples and two addi-
tional negative controls were added to the PCR steps.
A mock community sample (HM-783D, BEI resources)
containing genomic DNA from 20 bacterial strains at
concentrations ranging between 0.6 and 1400pg/µl was
also added in triplicate to confirm the reliability of our
method. Purified products were quantified using
Quant-iT™ PicoGreen® dsDNA Assay Kit following the
manufacturer protocol on a fluorimeter (FilterMax F3,
Molecular Devices). Quantified products were then
pooled in equimolarity and sent to the GIGA
Genomics platform (Ulg) for sequencing on an
ILLUMINA MiSeq V2 benchtop sequencer [35,36].

Results

Health and physiological data

All of the captured snow leopards appeared to be in
good physical condition and healthy except for one
adult female (ID F9) that weighed 32 kg and that was
scored to be in poor to moderate body condition. Her
body weight was lower than recorded averages for adult
females in this study (Table 1) with bony prominences
(scapular spine, ribs and iliac crest) were easily palpable.
From her tooth wear, she was determined to be an older
animal. Despite the poor to moderate condition, she
was negative for antibodies to the tested pathogens and
was reproducing. She was later detected on camera trap
records together with two cubs and survived for at least
15 months before her collar dropped off and she could
no longer be monitored. No ocular lesions or eyelid
deformities were present in the animals examined.
Oral cavities were clear of ulcers, other visible lesions
or gingivitis. Physiological parameters measured from
the snow leopards are presented in Table 1. This table
combines data reported in Johansson et al. [27] with
data from two snow leopards that has not been pre-
viously reported.

Survival of collared snow leopards

Known survival times for snow leopards after the first
capture and sample collection was based on how long
collars stayed on and how many times they were

recaptured. The length of time that the snow leopards
were collared ranged from four to 58 months with an
average of 20.1 months. Seven of the collared snow
leopards had died by the end of this study. Four of
these were suspected to have been killed by people
when raiding night-time corrals and their collars
destroyed. The remaining three animals died of
unknown causes

Haematology

All cellular components in each of the blood smears
(red blood cells, white blood cells and platelets) were
normal in appearance when viewed under
a microscope at 40 x magnification and 100 x (oil
immersion). Extra- or intra-cellular haemoparasites
were not observed.

Serology

Four of 20 snow leopards (20%) were seropositive for
T. gondii (M1, M9, M11 and F7). Five snow leopards
(25%) (M4, M10, F1, F7 and F8) were seropositive for
Coxiella burnetii and four leopards (20%), (F5, M6,
M11, M7) were seropositive for Leptospira spp.
L. interrogans sv. Australis was identified in two
snow leopards in 2013 (F5, M7) but the other two
samples (M6, M11) were not positive in MAT.

Tick analyses

Four ticks were collected, from four different snow
leopards (F8, M4, M7, M1). One hundred and sixteen
genera of bacteria were identified in total from the
ticks, with the potentially significant zoonotic bac-
teria listed in Table 2.

Discussion

All but one of the snow leopards in this study
appeared to be clinically healthy and in good physical
condition. The only animal that was below optimum
body condition was a female that was later observed
in camera trap photos together with two cubs. The
energetic cost of feeding the cubs could have

Table 1. Summary of physiological measurements of snow leopards captured in the Tost Mountains, Mongolia in
2008 to 2015 (mean ±SD). For detailed individual measurements see [27].

Sex
Body weight (kg)

(Range)
Heart rate (beats per minute)

(Range)
Body temperature

(°C) (Range)
Respiratory rate (breaths per minute)

(Range)

Male (adult)
n = 10

43.1 ± 2.3
(40.7–45)

97.5 ± 10.6
(87–110)

37.3 ± 1.1
(36.9–39.2)

27 ± 4.2
(24–36)

Female (adult) n = 8 36.0 ± 2.9
(32–41.5)

107 ± 5.6
(89–113)

38.4 ± 0.14
(37.2–39.1)

27 ± 4.2
(24–36)

Male (subadult) n = 4 34.8 ± 2.9
(34–39)

98 ± 1.4
(93–101)

37.25 ± 1.1
(36.9–39.3)

21 ± 1.1
(20–22)

Female (subadult) n = 3 28.3 ± 2.8
(25–30)

108 ± 23.3
(100–122)

38. 38.1 ± 0.
(37.9–39)

25.5 ± 2.12
(23–50)
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accounted for her decreased body condition. Ibex
numbers in that year were reported to be lower by
the local herders due to the previous harsh winter
decreasing vegetation availability for the ibex. The
apparent reduction of prey numbers, perhaps exacer-
bated by the need to provide for the cubs may have
contributed to her lower body condition.

We collected novel physiological data on heart
rate, respiratory rate and body temperature for wild
(sedated) snow leopards (Table 2). This reference
data is useful for future health assessments of wild
populations and also for monitoring captive animals
undergoing similar examinations. Due to the low
number (18) of wild snow leopards for which phy-
siological data has been reported, it was deemed
important to add the data obtained from the two
new animals to those published by Johansson
et al. [27].

In captive snow leopards, the presence of ocular
coloboma (defects affecting many regions of the eye)
has been reported on several occasions with the cau-
sative aetiology unknown [10,37]. This condition was
not observed in any of the 20 wild snow leopards
sampled or four additional cubs that were also exam-
ined outside of this study (Esson unpub).

We detected antibodies to T. gondii, L. interrogans
serovar Australis and C. burnetii in the snow leopards
from the Tost Mountains of Mongolia. These patho-
gens have not been identified in wild snow leopards
before. They can cause serious infections [38–42],
even if all snow leopards in this study appeared
healthy. Data from radio telemetry showed that the
individuals that were seropositive for these pathogens
survived for at least 12 to 24 months after collection
of samples. This findings show that snow leopards
can survive infections by these pathogens without
apparent adverse long-term effects. However, we can-
not rule out unobserved adverse impacts from these
or other pathogens, if the health of animals is reduced
for other reasons. It could also be that some animals
succumbed to the effects of infection prior to capture
and sampling. These pathogens may also have sub-

lethal effects on reproduction that are difficult to
quantify. Infections in wild animals may be exacer-
bated by complex co-factors that reduce health. For
example, immune suppression due to stressors such
as nutritional compromise, wounds from fighting
followed by secondary bacterial infection, other trau-
mas and extreme environmental conditions may
affect the pathogenicity of disease. An example is
canine distemper virus (CDV) causing a fatal out-
break in lions (Panthera leo) [2]. Lion deaths were
associated with a heavy co-infection of the haemo-
parasite Babesia combined with the immunosuppres-
sive effects of CDV. In that study, there were
increased ticks, vectors of Babesia, on ungulate prey
due to an extreme drought followed by heavy
rains [2].

Should the snow leopard populations decrease in
the region, there will be a higher risk of inbreeding
depression as has been observed in tiger (Panthera
tigris) populations [43]. An increase in inbreeding
depression can have an impact on the immune
system response (for example, a decrease of the
variability of the major histocompatibility complex
genes as seen in the endangered European mink
(Mustela lutreola) [44,45]. This could impair the
snow leopards’ immune system and hence ability
to resist infection, therefore, increasing the risk of
mortality linked to these pathogens. This is an
extinction vortex, where a species is subjected to
multiple stressors (associated with poaching, habi-
tat destruction extreme weather conditions), which
will accelerate mortality rates because of the impact
of a lower resistance of the immune system to
disease and a lower adaptive potentiality to each
stressor [46,47]. Therefore there is a need for con-
tinual, long-term disease surveillance of snow leo-
pards, including necropsies of dead animals to
determine disease impacts. If dead snow leopards
are found in the future, protocols need to be in
place so that appropriate samples can be collected
to determine the cause of death. Due to the risk of
exposure to highly noxious zoonoses such as
anthrax and plague, personnel trained in sample
collection along with a necropsy kit complete with
personal protection gear for sampling must be
used.

The origin of the identified pathogens is unknown.
Nor is it known if snow leopards can act as reservoirs
of infection or whether they are dead-end hosts or
part of a transmission cycle. Rodents, dogs and goats
sampled within the study area were positive for expo-
sure to the same pathogens (i.e. C. burnetii, T. gondii
and Leptospira spp.) in concurrent studies in the
region (Esson et al. unpublished data). The snow
leopards also overlapped with scavengers, such as
raptors and foxes at kill sites, allowing for indirect
interactions with other potential hosts and the

Table 2. Bacterial genera identified in ticks carried by wild
snow leopards in the South Gobi in Mongolia (+ denotes
bacteria presence, – denotes bacteria absence).

Snow leopard ID

Bacteria genera M1 M4 M7 F8

Aeromonas + - - -
Bacillus + + + +
Bacteroides + + + -
Bordetella + - - -
Clostridium + + + +
Corynebacterium + + - +
Coxiella burnetii - + + +
Legionella + + + -
Pandorea + + + +
Rickettsia + + + +
Staphylococcus + + + +
Streptococcus + + + +
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pathogens they shed. These indirect interactions
could include sharing environmental resources that
are contaminated with pathogens such as water
bodies and thereby being parasitised by common
water-borne pathogens. Again this warrants long-
term studies on this population of snow leopards to
elucidate the source(s) of the pathogens identified in
the study and other pathogens that may be present
that were not tested for.

Felids are the definitive hosts for T. gondii, an obli-
gate intracellular protozoan with a complex life cycle
[40,41,48]. Broadly, transmission occurs when oocysts
are shed in the faeces by the definitive host and then
consumed by an intermediate host, which can be
a rodent or another mammal [40]. Antibodies to
T. gondii occurred in 20% of the snow leopards tested,
including males and females and across all years of the
study. The cub (F8) of F7 was negative to T. gondii,
suggesting that F7 did not have an active infection
during pregnancy or the pathogen did not cross the
placenta in this case. Toxoplasma gondii can be trans-
mitted horizontally via an intermediate host or verti-
cally from the mother [49]. F7 may also have acquired
the infection after giving birth. These results indicate
that snow leopards in this region may be acting as
a reservoir host for this parasite. Toxoplasma gondii
was identified in Pallas cats in an amaig (Province)
north of the study area in 2005 [50] and has only
recently been identified in humans in Mongolia [51].
We could not find any other report or publication about
T. gondii in other species inMongolia, so the prevalence
of this parasite across the country is unclear. The snow
leopards in our study did not appear to be impacted
negatively by this parasite, however, negative effects
have been observed to occur in other wild felids from
infection with T.gondi. These include the death of
a juvenile bobcat (Lynx rufus) from acute toxoplasmo-
sis, and a juvenile cheetah (Acinonyx jubatus) a Siberian
tiger (Panthera tigris altaica) and two lions, which all
died from acute disseminated toxoplasmosis [15,50,52–
54]. Pallas cats also inhabit the same area as snow
leopards, are extremely susceptible to infection with
T. gondii [50]. This pathogen therefore can have detri-
mental effects on members of the definitive host family
[55] so it would be prudent to continue long-term
monitoring of the snow leopards to determine if nega-
tive impacts do occur. The snow leopards may also act
as a reservoir for this pathogen for contamination by
intermediate hosts. Toxoplasmosis is a severe zoonosis,
that can cause neurological problems in the foetus and
adults of its intermediate hosts and spill-over hosts
including humans [38,39]. This could pose a public
health risk to the nomadic people of the region.

Coxiella burnetii, the aetiological agent of Q fever, is
common in Mongolian domestic animals [50] but has
not been reported inwildlife in this region. Therefore, the
role wildlife plays in transmission or as a reservoir host of

this pathogen is unknown. Antibodies to this pathogen
were detected in five of 20 snow leopards including both
males and females. This is the first time C. burnetii has
been recorded in this species in the wild. Although very
few species of wild felids have been tested for this patho-
gen, it has been detected in the European wildcat (Felis
silvestris silvestris) [56,57]. These studies provide an over-
view of the level of infection in free-roaming felines and
highlight their potential zoonotic risk to humans.
Fourteen wild caught Pallas’ cats near the Russian-
Mongolian border were reported to be negative for
C. burnetii in 2010 [50]. However, C. burnetii has been
detected in other felid species in captivity, such as in
aclinical lions in a zoo [58]. Felids, including domestic
cats (Felis catus), have been identified as potential reser-
voir hosts for the bacteria and a source of infection for
humans and other animals [59–61]. The presence of
C. burnetii antibodies in the snow leopards suggests
they may function as a part of the epidemiological cycle
of C. burnetii just as domestic cats have been reported to
do in other regions [62]. Assessment of the role of wild
and domestic hosts as potential reservoirs of misdiag-
nosed zoonoses, such as Q fever by C. burnetii, is an
important public health issue today both for wildlife
conservation and management of disease in the
human–livestock–wildlife interface [56,63]. Coxiella bur-
netii can cause abortions, mainly in ruminants, however,
its pathogenicity in cats has not been established to date
[64]. F8whowas positive forC. burnetiiwas the cub of F7
who was also positive for C. burnetii suggesting vertical
transmission of the pathogen or common and continual
exposure of this pathogen. Continued monitoring of this
population is necessary to assess potential effects on
reproduction. As DNA was collected from all animals,
parentage of future captures can be determined which in
turn can reveal possible effects of C. burnetii on subse-
quent reproduction. The snow leopards may have been
exposed to C. burnetii when preying on domestic goats,
ibex or rodents that also inhabit the area. These species
also tested positive for exposure to this pathogen in con-
current studies (Esson unpublished). Coxiella burnetii is
extremely resistant to environmental conditions being
able to withstand cold temperatures and UV light so
that it could remain viable in theMongolian environment
for extended time-periods [65]. Ruminants are the pri-
mary carriers of this pathogen and shed it in their milk,
blood, placenta and faeces [58,61]. However, ticks can act
as vectors and other mammals such as rodents can also
carry C. burnetii [57,66,67]. Vaccinating domestic stock
would help control transmission among livestock and
potential spill over to native ungulates such as ibex and
Argali sheep by reducing the deposition of pathogens
onto shared grazing regions. Vaccinating against
C. burnetiiwould also potentially helpmitigate the poten-
tial risk of spill-over to people, dogs and other wildlife,
including snow leopards. Ticks from three of the snow
leopards tested positive for unidentified species of
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Coxiella but were not from those snow leopards that were
seropositive forC. burnetii. It is possible that the hosts did
not have time to develop antibodies prior to sampling
during the study. The role of ticks in the transmission of
C. burnetii is unknown [67] and thus warrants further
research.

Four snow leopards tested positive for Leptospira
antibodies via ELISA, two of which were positive for
L. interrogans Australis via MAT. Mean agglutination
test is considered the ‘gold standard’ for identification
of Leptospira serovars [68]. Leptospira interrogans
Australis is considered one of the pathogenic serovars
of the genus Leptospira [68]. Leptospira interrogans
Australis has not previously been identified in any
Mongolian species so the finding of previous expo-
sure in snow leopards is important from a public
health point of view. The identification of this patho-
gen indicates there is a potential reservoir in the area
that the snow leopards and other wildlife, domestic
animals and people can be exposed to. Other
Leptospira serovars than Australis have been reported
in other wild felid species, but the effects are still
unclear [69]. Two of the snow leopards that were
positive for T. gondii were also positive for
Leptospira, showing they have been exposed to multi-
ple pathogens. No typical clinical signs of infection
were observed for either of these two individuals (e.g.
pyrexia, jaundice), similar to results from captive
neotropical felids in Brazil where an ocelot
(Leopardus pardalis) and a female marguay
(Leopardus wiedii) tested positive to two different
serovars of Leptospira without showing clinical signs
of disease [69,70]. Leptospira spp. are spirochaete
bacteria that reside in the kidney tubules, with
rodents being a significant reservoir for the bacteria,
exhibiting no clinical signs of disease [71], however
other mammals including cats have also been
reported as reservoirs of the pathogen [72].
Leptospira interrogans Hardjo was the most common
serovar in cattle and horses reported in two other
provinces of Mongolia [32,73] and ten other serovars
were identified in dogs in other provinces of
Mongolia [31]. Wild and domestic carnivores in
Spain with Leptospira spp. antibodies commonly
had interstitial glomerular nephritis upon necropsy,
despite not exhibiting clinical signs of disease [15]. It
was suggested that these carnivores were terminal
hosts, unable to transmit the disease [15].
Leptospirosis could, therefore, potentially shorten
the lifespan of the animals that were positive for
Leptospira in our study, if sufficient renal damage
has occurred. Leptospira spp. are readily transmitted
to humans and is a zoonosis of global impor-
tance [42].

Bacterial genera, both zoonotic and non-zoonotic,
were identified in the ticks collected from the snow
leopards. The genus of major concern comprised

Bacillus spp., which can include B. anthracis that
causes anthrax and B. piliformis that causes Tyzzer’s
disease. The latter has previously been described in
captive snow leopards where it caused fatal infections
[12]. Other genera identified were Coxiella spp. and
Rickettsia spp. that include species that cause anaplas-
mosis and ehrlichiosis, both intracellular bacteria that
infect and destroy white blood cells, plus
Staphylococcus spp. and Streptococcus spp [74–76].
For the majority of these pathogens, there are no
previous reports of occurrence in snow leopards in
the wild or in captive settings. However, based on our
results it would be prudent to test for the presence of
these bacteria in future health-screening studies on
this and other snow leopard populations. In our
study, the snow leopards that tested positive for
C. burnetii antibodies showed no clinical signs of
illness and survived for at least 12 to 24 months.
The presence of Coxiella spp. in ticks may indicate
a mechanism of transmission of the pathogen
between snow leopards and other hosts as it has in
other species [63,67].

Conclusions

Disease threats to endangered species tend to be over-
looked in light of more apparent threats such as
habitat destruction and poaching [72]. This study is
the first to detect exposure of wild snow leopards to
zoonotic pathogens. Potential sources of the three
pathogens identified that is Coxiella burnetii,
Toxoplasma gondii and Leptospira interrogans
Australis, include snow leopard prey such as wild
and domestic ungulates and overlap with scavengers,
such as raptors and foxes at kill sites, allowing indir-
ect interactions with other potential hosts and the
pathogens they shed. Such potential indirect interac-
tions could include sharing of common resources that
are contaminated with pathogens such as water
bodies and being parasitized by water-borne
pathogens.

There was no evidence of adverse impacts of the
zoonotic pathogens on the health and reproduction
of the snow leopards in the Tost Mountains.
Identification of these pathogens was based on anti-
body identification from prior exposure and not an
active infection. For species where there is limited
information, such as the snow leopard, there is
a distinct need to continue long-term monitoring of
their health to generate comprehensive baseline
knowledge of what are normal parameters.
Monitoring the survival and condition of animals
over time can be achieved through radio-collaring,
continual collection and testing of samples as per this
study. Only through continued monitoring, including
disease surveillance, can we start to understand the
threats to this endangered species.
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