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Abstract
We study how international flights can facilitate the spread of an epidemic to a 
worldwide scale. We combine an infrastructure network of flight connections with 
a population density dataset to derive the mobility network, and then we define an 
epidemic framework to model the spread of the disease. Our approach combines 
a compartmental SEIRS model with a graph diffusion model to capture the clus-
teredness of the distribution of the population. The resulting model is characterised 
by the dynamics of a metapopulation SEIRS, with amplification or reduction of the 
infection rate which is determined also by the mobility of individuals. We use simu-
lations to characterise and study a variety of realistic scenarios that resemble the 
recent spread of COVID-19. Crucially, we define a formal framework that can be 
used to design epidemic mitigation strategies: we propose an optimisation approach 
based on genetic algorithms that can be used to identify an optimal airport closure 
strategy, and that can be employed to aid decision making for the mitigation of the 
epidemic, in a timely manner.

Keywords  COVID-19 · SEIRS compartmental model · Genetic algorithm · Network 
analysis · Human mobility

1  Introduction

In recent years, the extensive development of the transportation infrastructure has 
radically changed how connected our world is. International flights allow individu-
als to travel around the globe in just a few hours or days. This has important negative 
implications on the spread of diseases, whereby epidemics can reach a worldwide 
scale before effective responses are set in place. The recent COVID-19 outbreak [1] 
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has clearly raised and emphasised this problem. As a response to the emergency, 
many countries have taken drastic measures to contain and slow down the spread 
of the virus by imposing lockdowns and airport closures [2]. While these measures 
have been successful in confining the epidemic, the immediate and chaotic response 
has blurred the actual role played by the topology of the infrastructure network on 
the spread of the virus.

The main goal of this paper is to create a model-based framework that can inform 
decision making regarding airport closures as a means to slowing down a potential 
epidemic without causing excessive economic damage. In particular, we introduce 
a new framework to study networks of international flights as potential vehicles for 
the spread of diseases.

In this paper, we first propose an in-depth analysis of the Open Flights network 
dataset [3], which describes a large number of flight connections between more than 
3000 airports. We calculate a number of descriptive statistics from the data, in order 
to study the underlying topology of this infrastructure network and essentially to 
understand how individuals can move between distant locations. We use various 
centrality measures to identify key airports, and we test the resilience of the network 
when these key airports are removed.

Then, we fit a Stochastic BlockModel (SBM) to partition the airports into homo-
geneous groups. The SBM, originally introduced and studied by [4], is a fundamen-
tal model and tool for statistical network analysis, since it can highlight groups of 
nodes that exhibit similar connectivity patterns. Inference for the SBM can be per-
formed using both classical and Bayesian approaches [5]. One fundamental aspect 
of this model is that it can be interpreted as a finite mixture model for networks 
[6], and thus, it borrows many concepts and tools from this related research area. In 
this context, a useful by-product of the SBM framework is that it allows us to com-
pare the connectivity and clustering of the airports with their actual geographical 
location.

After the exploratory data analysis, we use the infrastructure network to create a 
model for the simulation of epidemics. An essential aspect of this task is the devel-
opment of a statistical network model that can combine these flight routes data with 
the geographical distribution of the population. Our aim is to give a model-based 
quantification of the epidemic risk which is amplified by the travelling of individu-
als, and to possibly identify effective interventions that can mitigate this risk. [2] 
propose an approach similar to ours, in that they combine the infrastructure network 
with the gridded population data to study the effects of the airport closure interven-
tions that were actioned at the beginning of this year. [2] use a tool called GLEAM 
[7, 8] which can combine data from different sources to predict the behaviour of the 
epidemic using an individual-based compartmental SEIRS model. While they focus 
on the effects following the actual airport closures, in this paper, we aim at defin-
ing a framework to take new decisions that can lead to optimal airport closures, or 
potential future airport re-openings.

Our approach relies on epidemic compartmental models [9] and in particular 
on a SEIRS model. This framework postulates that the population is divided in 4 
ordered compartments (susceptible, exposed, infectious, recovered) and that differ-
ent rates determine the flow of individuals from one compartment into the next and 



454	 Statistics in Biosciences (2022) 14:452–484

1 3

eventually back into the first compartment. This family of models has been largely 
employed in various research fields to model the evolution of epidemics, and it has 
been also successfully used within the context of COVID-19 [2, 10–13].

One fundamental aspect of our epidemic model is that, similarly to [2, 14, 15], 
we consider a metapopulation where each subpopulation is centred at an airport 
location, and whereby the local epidemic is determined by a SEIRS model. We use 
a graph diffusion process to describe the flows between the various subpopulations, 
which in turn affect the local dynamics. Not only this allows us to observe the epi-
demic both locally (for each subpopulation) and globally, but it also allows us to 
appreciate the spatio-temporal progression of the virus.

We calibrate the parameters of our model so that our predictions are similar to 
the recent spread of COVID-19. Our method is flexible and it can be used for a 
diverse range of epidemic parameters, hence encompassing other relevant diseases, 
or COVID-19 variants of interest. We do not claim that our results are specific to 
the COVID-19 epidemic nor that they should be used within this context; rather, 
we provide a general methodology that could be employed in any epidemic setting, 
and, for example purposes, we recreate realistic situations that resemble the recent 
COVID-19 epidemic. In fact, we test the sensitivity of our model by running a num-
ber of simulations that encompass a variety of possible real epidemic scenarios.

The fundamental contribution of this work regards the study of optimal epidemic 
mitigation strategies. Once we possess a model which is calibrated to a realistic set-
ting, we explore an optimisation approach to identify what could be the optimal air-
port closure strategies that should be implemented. We use the predictions from our 
epidemic model to construct an objective function that takes into account measures 
for the spread of the disease as well as economic losses. We perform the optimisa-
tion using Genetic Algorithms (GAs) [16]. GAs are heuristic stochastic optimisation 
algorithms that explore new candidate solutions by selecting and transforming a set 
of current solutions using some basic principles of evolution and natural selection. 
In our context, GAs are especially convenient since the problem that we address is a 
combinatorial one, where we want to find the optimal subset of airports that should 
be closed to minimise our objective function.

The software that we have used in this paper is maintained by the authors and is 
available from the GitHub repository: [17].

2 � Network Topology

In this section, we propose an exploratory data analysis and basic statistical mod-
elling of the Open Flights dataset [3]. The Open Flights dataset contains informa-
tion on 3425 airports globally, including a database of 37,594 commercial routes 
between these airports collected in 2014. The dataset is transformed into an adja-
cency matrix with nodes representing airports and directed edges representing 
whether there exists a direct route between any two airports. In Fig. 1, we present 
the network visually, and, on initial inspection, it is clear that the network exhibits 
extremely high degree of connectivity, with the plot of degree distribution indicating 
that over 20% exhibit a degree greater than 10.
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Identifying airports which are important to the overall connectivity of the net-
work is crucial in gaining a better understanding of the network’s topology. We 
consider several metrics to measure the importance of nodes. These include the 
Page-Rank centrality, betweenness centrality, coreness ranks, as well as the in-
degrees and out-degrees of nodes [18]. We present a table of the 20 most impor-
tant airports according to Page-Rank in Table 1. Airports with high Page-Rank 
are clearly major international destinations, and they form an extremely well-
connected subnetwork with a coreness of over 60, meaning that every airport in 
this subnetwork has 60 or more connections, or, equivalently, since the graph is 
approximately symmetric (the majority of air routes run return flights), we can 
say that every airport in this subnetwork has an out-degree close to, or exceeding, 
30. It is interesting to note that airports with high betweenness centrality (Charles 
De Gaulle, Dubai, Beijing, Amsterdam, Los Angeles, Toronto, Frankfurt) are also 
major connecting flight hubs, exhibiting out-degrees of over 200.

We identify homogeneous subgroups of airports within the network by 
employing a SBM framework: we use a Python implementation of an efficient 
Markov chain Monte Carlo method, which is suitable for inferring SBMs in large 
networks, as described by [19]. The optimal SBM partition and the corresponding 
block matrix are shown in Fig.  2a and b, respectively. It is clear that the com-
munities found are very strongly associated with the geographical location of the 
airports and with their region or province. This is quite surprising as this infor-
mation is not encoded explicitly in the data provided to the algorithm. This would 
strongly suggest a high degree of connectivity of airports not only globally but 
also within regions or geographical areas. We also note from the block matrix 
in Fig.  2b that the majority of connections are not only within relatively large 
communities representing the geographic clustering observed in Fig. 2a, but also 
towards the lower right corner there is significant disassortative behaviour, likely 
these nodes are large international hubs such as the small community of London, 
Frankfurt, Amsterdam, Charles De Gaulle which share connections to many cities 
across the world.

Fig. 1   Open Flights Network Visualisation and its in-degree distribution
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We continue our exploratory analysis by studying the percolation properties of 
the network [18]. We percolate the network by sequentially removing the nodes 
(one at a time) and their connections, and observing how the connectivity of the 
graph changes. We remove the nodes following both a random order and fol-
lowing a decreasing order of the out-degree and other centrality measures. The 
results are shown in Fig.  3. The network is highly resilient to random attacks, 
since the removal of almost all nodes is required in order to disrupt network con-
nectivity. However, we note that the network is moderately more vulnerable to 
targeted (degree-based) attacks, yet this would still require more than half of all 
airports to be removed for the single giant component to disappear. Similarly, the 
network is moderately vulnerable to targeted attacks according to other ranking 
factors (Page-Rank, betweenness, coreness). We note that these procedures are 
also averaged over many trials to account for the removal of vertices of equal 
rankings in different orders, however, we find these results very quite similar to 
percolation by degree.

In conclusion, the Open Flights network summary statistics show that airports 
which are large regional destinations, or hubs for connecting flights, tend to have 
high importance to network connectivity. Furthermore, it is observed that some 
nodes in the network are extremely well connected, both at regional and global level, 
with significant geographical community structure. The network is also highly resil-
ient to random or deterministic attacks.

Table 1   Summary Statistics for the top 20 airports, sorted according to Page-Rank centrality values

Additional node statistics and centralities are shown in the other columns, including in-degree ( ���(+) ) 
and out-degree ( ���(−))

Airport Page-Rank Betw. Coreness ���(+) ���(−) Country

ATL 0.0047 0.0294 60 216 217 United States
IST 0.0044 0.0412 62 230 227 Turkey
ORD 0.0043 0.0474 60 203 206 United States
DEN 0.0043 0.0262 60 168 169 United States
DFW 0.0042 0.0251 60 185 187 United States
DME 0.0041 0.0294 62 189 189 Russia
CDG 0.0039 0.0617 62 233 237 France
FRA 0.0038 0.051 62 238 239 Germany
PEK 0.0038 0.0492 60 206 206 China
DXB 0.0036 0.0594 62 182 188 United Arab Emirates
AMS 0.0036 0.0427 62 231 232 Netherlands
IAH 0.0035 0.023 60 168 169 United States
LAX 0.0033 0.0662 60 148 149 United States
SYD 0.0032 0.0326 45 83 85 Australia
YYZ 0.003 0.0425 60 146 147 Canada
JFK 0.003 0.0258 62 160 162 United States
BOG 0.0029 0.0248 40 74 74 Colombia
PVG 0.0029 0.0221 56 153 152 China
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In the context of epidemics, these initial findings provide a very solid evidence 
that the flight connections can sadly be a very efficient vehicle to facilitate the 
spread of diseases, and, more importantly that substantial network “damage” (e.g. 
airport closures) is required to ensure that an epidemic does not spread to a world-
wide scale. This evidence motivates our work, in that we aim at finding optimal 

Fig. 2   Fitted SBM results
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mitigation strategies that can reduce the pace of the epidemic to a much smaller 
scale, without causing excessive disruption to economies and to this particular infra-
structure network.

3 � Model Specification

3.1 � Theoretical Underpinnings

Before we develop the main model of this paper, we must first introduce two exist-
ing models which can be found in the domains of applied mathematics and epide-
miology [18]. First, we specify the graph diffusion model, which describes the flow 
of a fluid across a network, driven by pressure differences between adjacent nodes. 
This can be expressed as a vector of differential equations denoting changes of fluid 
volumes at each node and time step:

We use the notation � to represent the vector of fluid volumes at every node, A to 
denote the adjacency matrix of the network, D to denote a diagonal matrix of con-
taining the degrees of every node, and c is called the diffusion constant. A full deri-
vation of this can be found in [18].

Additionally, we introduce the SEIRS compartmental epidemiology model. Each 
letter of the model name denotes a compartment of the system (Susceptible ( S ), 
Exposed ( E ), Infectious ( I ) and Recovered ( R)), in which some number of indi-
viduals from the total population ( M ) reside. Figure  4 illustrates the direction of 

d�

dt
= c(� − �)� .

Fig. 3   Percolation on the Open Flights dataset via a variety of ranking criteria (results are averaged over 
100 independent simulations)
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progression from state to state, while (1) indicates the exact rates at which the popu-
lation in each compartment changes.

The epidemic parameters � , � , � and � are non-negative scalars and can be esti-
mated or calibrated to match the characteristics of some observed epidemic. Once 
the system’s initial condition and the epidemic parameters are specified, we can find 
a numerical approximation to the solution of this system, hence, obtaining the num-
ber of individuals in each compartment, at each time t > �.

3.2 � Model Definition

In order to model the transmission of disease through the international flights net-
work, we opt to use the SEIRS model combined with a graph diffusion model as 
described in the previous section. We will refer to the airports’ adjacency matrix 
as A and denote airport nodes as vj , for j = �,… ,N. The total number of nodes in 
the network is N and the associated population at each node is Mj . Let us define the 
local epidemic state vector as �j(t) = (Sj Ej Ij Rj)

⊤

, , which represent the compart-
ments of the SEIRS model for airport population at any given time. A condition of 
the SEIRS model constrains the total population of all compartments to equal the 
total population, at each time t:

We assume that the local population is fully mixed (i.e. everyone has equal chance 
of being infected), as this is a standard assumption of compartmental epidemic mod-
els; however, we assume this only to be true at the individual airport level and not 
for the entire global system. Additionally, we introduce �j as the proportion of the 
population which can travel, and c as the probability that an individual departs from 
an airport on any given day. The proportions allow us to define an additional vari-
able � j(t) = �j�j(t) which corresponds to the mobile epidemic state.

We can now define, at a high level, our simulation procedure, which we use to 
generate the SEIRS data conditionally on a specific set of epidemic parameters: 

(1)

dS

dt
= �R −

S�I

M

dE

dt
=

S�I

M
− �E

dI

dt
= �E − �I

dR

dt
= �I − �R

Sj(t) + Ej(t) + Ij(t) + Rj(t) = Mj(t),

Fig. 4   SEIRS compartmental 
flow diagram
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1.	 At each time step, we must first initiate community spread of the disease through 
each airport’s local population. This is represented by the compartments of its 
SEIRS model denoted by the local epidemic state vector �j . Using a fourth-order 
Runge-Kutta approximation technique, we update each compartment’s value in 
accordance with the dynamics of the SEIRS model. The new state of the compart-
ments after community spread is denoted �∗

j
 as opposed to the previous state �j , 

for all js.
2.	 Now take this new local epidemic state �∗ and split it into two types of popula-

tion members: a base population denoted �B , who are permanent residents to 
the local area (i.e. the locals); and a second group �T , identifying the transient 
population who are temporary visitors, who have arrived at the airport on busi-
ness or holidays and will return home after a short period. This differentiation is 
necessary to ensure that the local populations remain stable over time (we assume 
no permanent migration in our model).

3.	 Next, we compute the proportions of �B and �T who can fly (in each compart-
ment), these are �+ = �+�B and �− = �−�T , describing the number of outbound 
passengers and returning travellers, respectively.

4.	 Use a diffusion model to compute the changes of �B and �T at each airport. The 
diffusion model is tuned to take into account several factors including the dif-
ferences between outbound and returning passengers at every connected airport, 
the relative importance of the airports in the network, and the airport’s number 
of connections. These guarantee that the diffusion model can affect the SEIRS 
statuses without changing the distribution of the population across locations.

5.	 Recombine the updated values of �B and �T into the aggregate populations � and 
repeat the whole procedure for the number of iterations (“days”) required.

For completeness, we include both a diagrammatic form of the algorithm (Fig. 5) 
as well as the full algorithm (Table 2) which reflects the high-level overview above. 
A full derivation is provided in Appendix A.1.

3.3 � Modelling assumptions

In this section, we provide further information on the parameters of our model, on 
their interpretation, and on how we have used different data sources to identify a 
range of plausible values for these parameters. We specifically focus on the dataset 
that have been used and where they come from, and how we have transformed these 
datasets to obtain the key elements for our study.

Our framework requires information on airports, routes, demographics, wealth, 
which is difficult to obtain and use. A summary of the model’s parameters is pro-
vided in Table 3, for convenience.

The international flights network introduces and analysed in Sect. 2, is the foun-
dation for the diffusion part of our model. From this network of route connections, 
we aim at constructing a migration matrix connecting more than 3,000 locations. 
One fundamental transformation that we apply is the following: let P be the vector 
of Page-Rank values obtained from earlier analysis and A be the adjacency matrix of 
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flight connections. Then, we define and work with the matrix C , which is the relative 
centrality matrix with elements defined by Cij =

AijPj
∑

k AikPk

 . The interpretation of this 
new matrix is that the positions of its non-null entries are identical to those of A , 
except now the edges have been assigned weights based on the relative importance 
of adjacent nodes. This transformation ensures that the flows of individuals between 
airports are scaled so that they reflect higher traffic to major airports and less traffic 
to smaller airports, thus, preventing the system from diverging towards unrealistic 
configurations as the simulation progresses.

With regard to the distribution of the population into a metapopulation structure, 
we must define the number of individuals that have access to and are served by, 
each of the airports. This corresponds to estimating the initial state of the system, 
� , in that we are estimating the counts M for each airport location. For this task, we 

Fig. 5   Diagram of the epidemic diffusion model steps

Table 2   Simulation pseudocode, where with � we indicate a matrix representation of the SEIRS process

Algorithm pseudocode for T days

for t = 𝟏,… ,T ∶

   �∗(t− 1) = �(t − 1) +� �(t− 1) Community spread
   �∗(t− 1) = �∗

B
(t− 1) + �∗

T
(t− 1) Preparation for diffusion

   �∗
+
(t− 1) = �∗

B
(t− 1) �+

   �∗
−
(t− 1) = �∗

T
(t− 1) �−

   𝜟𝝍+(t) = −c+𝝍
∗
+
(t − 1)

(

I − C⊤
) International spread

   𝜟𝝍−(t) = −c−𝝍
∗
−
(t − 1)

(

I − C⊤
)

   �B(t) = �∗

B
(t− 1) +Min

(

��+(t), 0
)

+Max
(

��−(t), 0
)

   �T(t) = �∗

T
(t− 1) +Max

(

��+(t), 0
)

+Min
(

��−(t), 0
)
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use the gridded population of the world dataset [20], and we assign a value for total 
population at each airport location. In order to perform this assignment, there is an 
immediate problem because many airports are often in close proximity of each other 
(for example, some cities are served by multiple airports). We assume that the maxi-
mal distance that anyone will travel to reach an airport is 240 km ( 60 km/h * 4 hours 
= 240km). Using this assumption, for each cell of the grid of the population dataset, 
we search all the airports that are within this radius. Then, we assign a population 
contribution to each, proportionally to their Page-Rank values. This metric is cho-
sen because it provides a reasonable indication of which airport the travellers will 
tend to use. Note that this approach will automatically exclude population grid cells 
which are not within 240 km of any airport. These populations are excluded from 
the simulation as they are unlikely to be flying regularly, yet we note that this cor-
responds to less than 3% of the total population.

Finally, we estimate the percentage of each population who can fly �+ . It is 
obvious that this percentage will vary across countries, depending on a number of 
factors, primarily wealth. To find a reasonable value for this model parameter, we 
acquire passenger estimates by country as supplied by the World Bank and divide 
these through by the total airport populations for the given country. We then assume 
the proportion by airport is the same as at country level1.

One further fundamental modification that we make regarding �+ , is that the 
infectious individuals in the I compartment are not allowed to travel. This assump-
tion is motivated by the fact that individuals suffering from the disease, especially if 
symptomatic, may be incapacitated to fly, or would likely be identified as infectious 
by mandatory testing procedures, hence their contributions to the epidemic would 
be under some reasonable control. Still, this assumption does not stop the disease 
from spreading between locations, since the exposed individuals in each of the E 
compartments would still be carrying the disease.

The SEIRS model, as well as the graph diffusion model, relies on several strong 
assumptions that inevitably impact the results. For clarity, we list and summarise 
below these assumptions, to highlight the specific features that our approach will 
exhibit and that should be kept in mind. 

1.	 Fully mixed local populations: within any given node, every member of the popu-
lation has equal chance of contact, and, thus, equal chance of passing on the 
disease.

2.	 Maximal travel distance: we assume that the maximum distance someone will 
travel is 240 km to get to an airport, and thus, anyone who is based outside of all 
airport radiuses is assumed to be isolated and excluded from the model.

3.	 Air transit only: we assume that the only way for the disease to spread between 
nodes is via air routes and that spread via other means are negligible.

1  Sometimes this proportion is greater than 1 particularly for major hubs, where annual traffic through 
the airport may exceed the size of the local population assigned. In these cases, we replace our estimate 
by the average global proportion, clearly this is imperfect but is likely as accurate as we will be able to 
obtain given the fact that a more correct information is not readily available.
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4.	 Fully mixed wealth: the proportion of population which may fly is the same for 
all airports in the same country.

5.	 Heavy symptoms: the infectious individuals do not travel.
6.	 No permanent immigration: outbound and inbound air traffic volume are bal-

anced for each location.
7.	 Universal rates: we assume that the parameters of the SEIRS model are universal 

and do not vary between countries.

While it is obvious that each of these assumptions can have a non-negligible 
effect, we do argue that our simulations can show a remarkable resemblance with 
a realistic epidemic, such as the recent COVID-19 one. However, as we will show 
in the next sections, we consider a variety of different epidemic framework to 
ensure that our results can be generalised and to provide a tool that can be used in 
an arbitrary epidemic setting.

4 � Simulations

4.1 � Visualisation of Unmitigated Spread

Now that we have outlined the theory and processes to develop our model, we 
proceed to simulate and visualise an unmitigated epidemic (i.e., no measures to 
decrease the infection rate). One crucial decision that we need to make regards the 
calibration of the epidemic parameters. The previous study by [10] used a SEIRS 
model and estimated � = 0.14 , � = 0.048 and � = 0.4 , with � = 1∕730 set con-
servatively as there is uncertainty as to how long recovered individuals will remain 
immune to COVID-19. Since we aim at recreating a realistic epidemic resembling 
the recent COVID-19 spread, we consider parameter ranges around the above values 
and run a sensitivity analysis to explore the various different outcomes.

The SEIRS model parameters that we consider are as follows: 

⋅	� � = 1∕7 : individuals remain in E for an average of 7 days;
⋅	� � = 1∕730 : recovered individuals remain immune for an average of two years;
⋅	� � ∈ {1∕5, 1∕25, 1∕50} : three possible scenarios where individuals remain 

infectious for an average of 5 , 25 or 50 days on average;
⋅	� �(t) = 3e−�t∕365 , for t = 0, 1, 2,… : each infectious individual has an average of 

3 contacts; however, this number is scaled down with an exponential decay as 
time progresses. This is a reflection of the fact that the response to an epidemic 
will play a crucial role in slowing down or stopping the disease, and that such 
response will improve over time, due to a variety of factors including social dis-
tancing, testing, better understanding of the disease and treatments.

⋅	� � ∈ {0, 2.5, 5, 7.5, 10} : the exponential decay can have different slopes, the value 
0 corresponds to no slope and, thus, a constant � , whereas 10 gives a dramatic 
decrease, and thus, it corresponds to a very effective response.
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 As a default configuration, we set � = 5 , � = 1∕7 , � = 1∕25 and � =
1

730
.

In terms of initial conditions, we setup the model such that the first cases occur 
in the Wuhan Airport metapopulation, for similarity with the COVID-19 outbreak 
[1]. In the initial state of the system, all of the metapopulations are in the susceptible 
compartment, with the exception of Wuhan Airport where we have 0.001% of the 
local population in the infectious compartment.

As an initial example, we run the model with the default configuration and show 
a qualitative analysis of the results. This simulation corresponds to an unmitigated 
scenario, because all the airports remain fully operational throughout the simulation, 
and the only response to the epidemic is the one implied by the parameter � = 5 , i.e. 
a fairly slow exponential decay of the average number of contacts.

The simulation’s results, shown in Fig. 6, are clearly tragic, in that the epidemic 
easily escalates into a pandemic and affects almost all individuals. While unrealistic, 
this worst case scenario example illustrates how airport closure interventions can 
potentially play a crucial role in slowing the epidemic, but it also allows us to visu-
alise the spatio-temporal spread of the disease. Figure 7 is an illustrative sketch of 
the spread through the network which is derived from our simulations. There is evi-
dence of a gradual dispersion of the virus across the world starting in China, mov-
ing onward into other areas including South East Asia, Japan, Russia, India, South 
Africa and Middle East. Some of the last places to be infected are the Americas, 
Nordic Countries, Alaska and Turkey.

4.2 � Sensitivity Analysis of Key Parameters

In this section, in order to obtain a better understanding of the impact of these 
SEIRS parameters on our results, we conduct a sensitivity analysis. As per the 
epidemic parameters considered in Sect.  4.1, here we run the simulations for the 

Fig. 6   Aggregated SEIRS compartments’ sizes, for the unmitigated scenario under the default configura-
tion
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epidemic parameters varying in their respective ranges, for the unmitigated scenario. 
This means that the outcome of the epidemic is solely determined by the epidemic 
parameters, because there are no airport closures. When extracting the results, we 
focus on a few key airport locations, and we also consider a benchmark scenario 
where there is no network structure (i.e. all population is in the same location).

In Table 4, we report the max and the argmax of the I compartment, for each 
of the locations, and for the various combinations of � and � . The max of the I 
compartment is a crucial measure of the impact of an epidemic, since it is directly 
related to the stress caused to the local health institutions. As regards the argmax of 
the I compartment, this can be used as a measure of the speed of the disease: if the 
disease progresses slowly, the epidemic curve is flat and it is easier to keep the situa-
tion under control until better solutions or treatments are found.

We can see in the results in Table 4 that, as � increases, the max of I tends to 
decrease and the argmax of I tends to increase. This means that actioning an effec-
tive response makes the epidemic curve flatter, in that its peak is reduced and 
delayed.

The different values of � correspond instead to a different duration of the disease 
in individuals. In most cases, we see that a smaller value of � , which signals a longer 
duration of the disease, causes higher peaks of infections indicating a more difficult 
situation. The relation of � with the timing of the peak seems less clear, possibly 
because if the peak decreases then it might also be reached sooner, but this would 
not indicate a more difficult situation, in general.

The table also shows that the two parameters jointly affect the results: the impact 
of � on the results is stronger when � is large, and, vice versa, � has less of an effect 
when � is small. If the duration of the disease is short (large � ), then we see a rela-
tively low number of cases, which (for most locations) drops down to 0.0 when � 
decays at a fast rate. The situation is different when the duration of the disease is 
long (small � ): in this case, we see more infections overall, and the number of infec-
tions does not decrease for faster decays of � . In fact, for the major airports that 
we consider, we observe a counter intuitive scenario where the peak of infections 

Fig. 7   Illustrative sketch of the epidemic based on the simulations of Fig. 6
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Table 4   Sensitivity analysis. The tables on the left column show the time until the peak of I is attained, 
at that particular location. The tables on the right column show the max value of I (in millions) at that 
particular location. The simulations were run for 200 days. Local populations (in millions) served by 
these airports are 8.34 for London Heathrow Airport, 3.97 for Dubai International Airport, 28.39 for 
Hong Kong International, 8.08 for JFK International

London Heathrow Airport: London Heathrow Airport:

Days until peak of infections Peak of infections (millions)

� �

� 0 2.5 5 7.5 10 � 0 2.5 5 7.5 10
0.2 57 65 78 105 105 0.2 3.1 3.0 2.6 1.2 0.0
0.04 60 62 70 80 101 0.04 6.8 6.9 7.1 7.2 6.3
0.02 65 65 75 85 100 0.02 8.4 8.6 8.9 9.1 9.1

Dubai International Airport: Dubai International Airport:

Days until peak of infections Peak of infections (millions)

� �

� 0 2.5 5 7.5 10 � 0 2.5 5 7.5 10
0.2 57 65 79 106 105 0.2 3.9 4.0 3.7 1.8 0.0
0.04 60 65 70 81 105 0.04 8.7 9.1 9.7 10.2 9.6
0.02 65 70 80 85 105 0.02 10.9 11.6 12.3 13.3 14.0

Hong Kong International: Hong Kong International:

Days until peak of infections Peak of infections (millions)

� �

� 0 2.5 5 7.5 10 � 0 2.5 5 7.5 10
0.2 46 51 58 70 87 0.2 9.4 9.0 8.2 6.3 2.1
0.04 47 50 54 60 68 0.04 20.4 20.5 20.6 20.6 19.9
0.02 51 55 57 62 70 0.02 24.8 25.0 25.2 25.4 25.5

JFK International: JFK International:

Days until peak of infections Peak of infections (millions)

� �

� 0 2.5 5 7.5 10 � 0 2.5 5 7.5 10
0.2 59 67 81 109 105 0.2 2.8 2.7 2.2 0.8 0.0
0.04 60 63 70 82 105 0.04 6.1 6.2 6.2 6.1 5.0
0.02 61 66 75 85 105 0.02 7.4 7.6 7.7 7.8 7.4

Benchmark (no network): Benchmark (no network):

Days until peak of infections Peak of infections (millions)

� �

� 0 2.5 5 7.5 10 � 0 2.5 5 7.5 10
0.2 30 32 34 37 41 0.2 0.7 0.6 0.6 0.6 0.5
0.04 33 34 35 37 39 0.04 1.4 1.4 1.4 1.4 1.4
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increases when � decays at a faster rate. This is motivated by travelling: the airports 
that we consider are hubs in the network, meaning that they have a substantial and 
constant in-flow of exposed individuals, which then switch to infected while staying 
in the major city. Clearly this situation does not occur in the no-travelling bench-
mark framework; however, even in this case, we can notice that the peak of infection 
is essentially unaffected by the decay rate of �.

5 � Mitigation Strategies

In this section, we examine potential mitigation strategies in the context of epidem-
ics on international flight networks. We introduce several mitigation strategies and 
test them on our SEIRS model. The strategies that we consider are the following: 

⋅	� Nth day rule: close-all airports after a prefixed number of days.
⋅	� Threshold rule: close an airport if the number of infected reaches a prefixed 

threshold.
⋅	� Limited Nth day rule: sort the airports based on some nodal attribute, and then 

close a number of them after a prefixed number of days.
⋅	� Optimisation approach: use a genetic algorithm to determine which airport is 

best to close after a prefixed number of days.

 In order to evaluate these strategies, we must first select some performance metrics. 
We decide to select metrics which are easy to interpret by policy makers and by the 
general public, while also being useful in the context of managing hospital intensive 
care unit capacity and overall impact of the epidemic. Specifically, we will measure 
the peak number of infections and the total cases (measured as the peak of recovered 
individuals), as these are transparent and can easily be measured from our simula-
tions. We will report these values in relation to a baseline, which is provided by the 
unmitigated scenario of Sect. 4.1, whereby no airports are closed.

In all simulations, we use the default configuration of the SEIRS parameters, but 
for some of the models, we also vary � to provide more complete results. We argue 
that the results can be generalised and that the same qualitative results are obtained 
with alternative realistic configurations of the SEIRS parameters.

Table 4   (continued)

Benchmark (no network): Benchmark (no network):

Days until peak of infections Peak of infections (millions)

� �

0.02 36 37 38 40 41 0.02 1.7 1.7 1.7 1.7 1.7
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5.1 � Nth Day Rule

The first mitigation strategy that we consider is defined by the permanent closure 
of air routes from the nth day after the initial outbreak. Our simulations in Fig. 8 
demonstrate that closing routes early reduce the peak number of infections but does 
not significantly reduce the total number of cases, unless all airports are closed by 
the end of day 2 . While a substantial mitigation can be achieved through airport clo-
sures, the time to action these changes is extremely limited, highlighting the impor-
tance of timely interventions. In Table 5, we further study some of the aspects of the 
mitigation strategy from a global perspective, in conjunction with different decay 
values of � . We note that closing airports immediately after day 1 would have a sig-
nificant impact, reducing the total number of cases by almost 80% for the default 
configuration. This demonstrates the high level of connectivity within the network, 
with cases of infections proliferating across every continent within just the first 3 
days of the outbreak.

One fundamental aspect of the epidemic, which is especially apparent in 
the unmitigated scenario of Table  4, is that the actual spread of the disease only 
becomes noticeable after several weeks, when the number of infections starts peak-
ing in some of the locations. This reflects well how the recent COVID-19 was able 
to spread across the world unnoticed for months before it was identified and treated 
as a pandemic.

Our interpretation of these results is that the graph diffusion model spreads tiny 
portions of the epidemic in each of the seed’s neighbours, thus, seeding also these 

Fig. 8   Impact of worldwide permanent airport closures from nth day since first infection
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new locations. These “seeds” could be interpreted as local patient zeros. Then, if 
the SEIRS parameters guarantee a local escalation of the epidemic, we inevitably 
observe an increasing number of cases even a long time after the airport closures. 
Once the airports are closed, the escalation of local epidemics becomes independ-
ent of one another and solely dependent on the local epidemic parameters, i.e. on 
the decay � . This is in fact a very positive message, since in these cases, the local 
escalations can be mitigated or even reversed if the number of infectious individuals 
is small enough, and if � decays rapidly. We can see this clearly in 5, where faster 
decay rates lead to much greater mitigation, with smaller numbers of total infections 
and recoveries.

We also notice that the impact of closures is more relevant when there is no 
decay, whereas the effect is less noticeable for faster decays. This suggests that local 
interventions aimed at reducing the parameter � can play a fundamental role and 
potentially replace airport closures.

5.2 � Threshold Rule

A further modification to the previous results involves dynamically closing airports 
whenever the total number of cases exceeds a given percentage of the local popula-
tion. This differs from the previous method in which we implemented blanket global 
closures. The results of this new experiment, which are shown in Table 6, indicate 

Table 5   Nth day rule. Mitigation level of the disease measured as a percentage reduction with respect to 
the baseline which has no airport closures (reported on the last column). The results are reported for vari-
ous decay parameters (on the rows) and for permanent airport closures happening on different days since 
the start of the epidemic (over the columns)

���������� ∶ ���� ���������� % affected population

% reduction wrt to worst scenario in the worst scenario

Day
1 2 3 4 5 200
�

0 84.1 38.3 19.1 17.5 16.5 48.3
5 79.8 34.4 33.0 32.0 31.2 37.0
10 60.2 58.8 57.9 57.2 56.7 15.1

���������� ∶ ����� ����� % affected population

% reduction wrt to worst scenario in the worst scenario

Day
1 2 3 4 5 200
�

0 86.9 43.3 4.8 0.9 0.4 94.5
5 86.8 43.2 10.5 8.2 7.0 91.5
10 77.1 76.3 75.1 73.7 72.1 51.0
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that this “wait and see” strategy is totally ineffective under our modelling frame-
work. Even considering a highly unrealistic version of this strategy in where we sup-
pose it is possible to detect cases up to a fineness of 1 in every 10 million people, it is 
already too late to close airports, whereby mitigation is mostly irrelevant unless the 
decay is really fast.

5.3 � Limited Nth Day Rule

In the previous results, we have shown that it is far more effective to close air-
ports preemptively than it is to wait on some threshold level on infections to be 
attained within the local population. However, one could argue that it is imprac-
tical to close-all airports globally, both from an economic and political point of 
view. This motivates the two following strategies that we propose, where we pro-
ceed to examine what performance we can achieve by only closing a subset of 
key airports, where we can carefully choose the particular subset using different 
strategies. Here, we rank the airports using several metrics: population, Page-
Rank and betweenness; then, we propose to close a number of airports following 
the order given by one of these ranking. The resulting strategy is similar to the 
nth day rule; however, in this case, we selectively close fewer airports based on 
their metric score. The main argument and motivation behind this limited nth 
day rule is that closing all airports will inevitably carry a substantial damage, so 

Table 6   Threshold rule

Mitigation level of the disease measured as a percentage reduction with respect to the baseline which has 
no airport closures (reported on the last column). The results are reported for various decay parameters 
(on the rows) and for airport closures happening at different threshold levels (over the columns)

������������� ∶���� ���������� % affected population

% reduction wrt to worst scenario in the worst scenario

Thresh
1e-7 1e-5 1e-3 1e-2 1e-1 no threshold
�

0 2.2 1.5 1.0 0.6 0.3 48.3
5 15.5 10.3 5.5 3.6 1.9 37.0
10 56.8 52.2 32.8 19.8 10.1 15.1

������������� ∶ ����� ����� % affected population

% reduction wrt to worst scenario in the worst scenario

Thresh
1e-7 1e-5 1e-3 1e-2 1e-1 no threshold
�

0 0.0 0.0 0.0 0.0 0.0 94.5
5 0.9 0.5 0.2 0.1 0.0 91.5
10 65.8 48.4 26.8 16.3 8.5 51.0
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we are interested in checking whether good results can also be achieved by clos-
ing fewer airports.

Crucially, we observe in Tables 7, 8 and 9 that even closing just the top 1% of 
airports, we still obtain significantly greater reductions than the threshold rule. 
This further emphasises the point that early intervention is far more important 
in the network than attempting to detect when certain infection thresholds have 
been breached. We also note that the fall-off in the strategy’s performance is 
quite nonlinear both across the rows or columns.

With regard to comparisons between the different metrics, it appears that 
ranking the airports by local population is most effective for first day closures; 
however, the two other centrality-based procedures tend to perform better when 
airports are closed after day 1.

5.4 � Optimisation Approach

In Sect.  4, we explored several mitigation strategies, ultimately finding greatest 
flexibility and mitigation in the limited nth day rule. This strongly suggests that 
we could find a very effective airport closure strategy that will achieve excellent 
mitigation results, without totally disrupting the network connectivity. In this sec-
tion, we employ a genetic algorithm (GA) to search for the optimal combination 

Table 7   Limited nth day rule by local population

���������� �� ���������� ∶���� ���������
 % affected population

% reduction wrt to worst scenario in the worst scenario

Day
1 2 3 4 5 200

Closed airports
 1% 30.1 9.4 8.4 7.8 7.5 37.0
 5% 64.0 21.1 20.1 19.4 19.0 37.0
 10% 79.7 29.6 28.2 27.2 26.5 37.0
 25% 79.8 33.7 32.3 31.3 30.5 37.0
 100% 79.8 34.4 33.0 32.0 31.2 37.0

���������� �� ���������� ∶ ����� ����� % affected population

% reduction wrt to worst scenario in the worst scenario

Day
1 2 3 4 5 200

Closed airports
 1% 24.2 9.5 2.9 2.1 1.7 91.5
 5% 51.7 21.1 6.1 4.6 3.8 91.5
 10% 72.8 28.1 8.2 6.3 5.4 91.5
 25% 86.8 40.5 9.9 7.7 6.6 91.5
 100% 86.8 43.2 10.5 8.2 7.0 91.5



473

1 3

Statistics in Biosciences (2022) 14:452–484	

of airport closures that maximises the utility of the nth Day Rule. GAs, in their 
simplest form, operate on binary strings called chromosomes which are an encod-
ing of the parameters of interest, commonly referred to as genes. Any particular 
instance of a chromosome has a genotype which refers to a specific string of bits 
each with values 1 or 0 representing a particular gene’s allele. Once the problem 
is formulated within this framework, the GA procedure is as follows: 

1.	 Define a fitness function F(X) which evaluates the optimality of a given genotype.
2.	 Initialise a population of chromosomes with randomly assigned genotypes.
3.	 Evaluate the fitness of all members of the population. Individuals will then be 

selected for breeding at a frequency proportional to their fitness (this emulates 
the “survival of the fittest” mechanism).

4.	 In a process known as crossover, pairs of selected genotypes are split uniformly 
at some locus along the chromosome and then recombined, to form new chromo-
somes.

Table 8   Limited nth day rule by Page-Rank centrality. Mitigation level of the disease measured as a 
percentage reduction with respect to the baseline which has no airport closures (reported on the last col-
umn). The results are reported for various levels of airport closures happening on different days since the 
start of the epidemic (over the columns)

Mitigation level of the disease measured as a percentage reduction with respect to the baseline which has 
no airport closures (reported on the last column). The results are reported for various levels of airport 
closures happening on different days since the start of the epidemic (over the columns)

���������� �� ���� − ���� ∶ ���� ����
����� % Reduction wrt to worst 
scenario

% affected population
in the worst scenario

Day
1 2 3 4 5 200

Closed airports
 1% 19.3 11.0 10.0 9.4 8.9 37.0
 5% 74.0 31.7 29.8 28.6 27.8 37.0
 10% 79.5 34.1 32.5 31.4 30.5 37.0
 25% 79.8 34.3 32.9 31.9 31.1 37.0
 100% 79.8 34.4 33.0 32.0 31.2 37.0

���������� �� ���� − ���� ∶ ����� ����� % Reduction wrt to worst scenario % affected population
in the worst scenario

Day
1 2 3 4 5 200

Closed airports
 1% 5.1 1.5 0.8 0.7 0.6 91.5
 5% 52.2 13.2 4.0 3.0 2.5 91.5
 10% 81.5 31.4 8.3 6.2 5.1 91.5
 25% 86.7 42.1 9.9 7.5 6.3 91.5
 100% 86.8 43.2 10.5 8.2 7.0 91.5
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5.	 Mutations are then applied at random to alleles of the recombined chromosomes 
(simply by bit flipping) in order to prevent irrevocable loss of any characteristic.

6.	 The process (3–5) is then repeated so that the fittest members of the population 
are selected.

For a more detailed explanation of the entire process we refer to [16]. We opt to 
use a genetic algorithm for this problem since the solutions of our combinatorial 
problem can be easily represented as binary strings. By contrast, problems of this 
nature are ill suited to classical optimisation methods such as Gradient Descent, 
as it is not possible to analytically compute gradients and our search space is too 
large for approximation methods. Additionally, a fitness function can be easily 
defined from the metrics that we have previously described. In the following para-
graph, we provide more details regarding the setup of the GA into our framework.

GA details. We define the key information required to formulate our problem 
within the GA framework as follows:

–	 Chromosome: instead of optimising which airports to close on each day, we 
choose to optimise which countries should close their airports on each day. 

Table 9   Limited nth day rule by betweenness centrality

Mitigation level of the disease measured as a percentage reduction with respect to the baseline which has 
no airport closures (reported on the last column). The results are reported for various levels of airport 
closures happening on different days since the start of the epidemic (over the columns)

���������� �� ����������� ∶���� ����
����� % Reduction wrt to worst 
scenario

% affected population
in the worst scenario

Day
1 2 3 4 5 200

Closed airports
 1% 17.8 9.4 8.7 8.2 7.8 37.0
 5% 70.9 36.0 33.8 32.3 31.2 37.0
 10% 74.6 36.2 34.3 33.0 32.0 37.0
 25% 79.7 34.9 33.3 32.2 31.4 37.0
 100% 79.8 34.4 33.0 32.0 31.2 37.0

���������� �� ����������� ∶ ����� ����� % Reduction wrt to worst scenario % Affected population
In the worst scenario

Day
1 2 3 4 5 200

Closed airports
 1% 5.6 1.5 0.7 0.6 0.5 91.5
 5% 55.9 19.2 6.5 4.9 4.0 91.5
 10% 78.2 29.3 8.7 6.7 5.6 91.5
 25% 84.8 39.5 10.3 8.1 6.9 91.5
 100% 86.8 43.2 10.5 8.2 7.0 91.5
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This reduces the GA search space by 15 times which is highly desirable for 
convergence and global optimum. This re-framing is also reasonable because 
it reflects the likely course of action that we would observe in epidemics, 
where decisions are often taken at country level.

	    We define the chromosome as a 195-bit string where 1 in the i-th entry 
indicates that the i-th country’s airports are closed, and vice versa 0 s indicate 
closed airports.

–	 Fitness function: in designing the fitness function, we seek to balance the eco-
nomic impacts of airport closures along with the reduction in peak infections 
and peak recoveries, relative to an unmitigated epidemic. Since we have no 
prior biases between the following 3 criteria: 

 we aggregate them into the objective functions as follows: 

 where X represents a simulated SEIRS environment that is obtained for a given 
chromosome.

In order to evaluate the fitness function, we must compute the values of T and P 
(computing A is trivial). This clearly involves inputting the parameters encoded in 
the chromosomes genotype into our simulation developed in previous sections. We 
perform this by first using a lookup table to convert between the 195-bit country 
closures string specified in the genotype to a 3,425 bit string airport closures vector 
required by our model. Next we set to zero the rows and columns of the closed air-
ports within the adjacency matrix at the appropriate time steps (to disconnect an air-
port from the network). Finally, we proceed to run the algorithm for 200 days, which 
is sufficient to capture the first wave of the epidemic under all conditions (Table 11).

5.5 � Optimisation Results and Comparisons

The results of the algorithm are shown in Table 10 in the usual format for consist-
ency. Similarly to the other methods, we see a substantial difference between a 
day 1 closure and a day 5 closure, both with respect to the peak of infections and 
peak of recoveries. The mitigation effect, measured as a percentage reduction of 
the number of cases with respect to the unmitigated scenario, is approximately at 
the same level as the one obtained with the limited nth day rule. Differently from 
the limited nth day rule, the GA approach does not consider airport closures but 
country closures, which is clearly more realistic but also less efficient. However, 
we note that the objective function can be calculated in all of the solutions, and it 
is maximised by the GA solution, for each day.

T = % in reduction of peak infections

P = % in reduction of peak recoveries

A = % airports remaining open

F(X) = T(X) ∗ P(X) ∗ sin
(

�

2
∗ A(X)

)
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We offer a more detailed overview of the comparisons between the different miti-
gation strategies in Figs. 9 and 10. In these figures, we represent the evolution of the 
two main compartments of interest, I and R . We notice that the closure strategies 

Table 10   Genetic algorithm 
strategy

Mitigation level of the disease measured as a percentage reduction 
with respect to the baseline which has no airport closures (reported 
on the last column). The results are reported for permanent airport 
closures happening on different days since the start of the epidemic 
(over the columns). Different airports are closed on different days

GARule ∶ % Affected population

% Reduction wrt to worst scenario In the worst scenario

Day
1 2 3 4 5 200

Measure
Max(I) 79.8 36.9 29.0 29.8 31.1 37.0
Max(R) 86.8 34.1 8.9 7.2 5.6 91.5

Table 11   Genetic algorithm 
strategy

Number of countries that close they airports on each day, according 
to the GA’s solutions. The total number of countries is 220.

GA strategy

Day Number of 
closed coun-
tries

1 83
2 113
3 88
4 109
5 103

(a) I compartment for day 2 closures. (b) I compartment for day 4 closures.

Fig. 9   A comparison of GA strategy versus naive strategies and total inaction
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affect these compartments in a rather non-trivial way, in that, at the global level, they 
can delay the epidemic and fragment it into various waves (i.e. peaks of infections).

In Fig. 9, the line labelled as None refers to the unmitigated scenario: we see 
that in this case, the epidemic peaks very quickly and that the I compartment 
reaches the highest value across all methods. This is the worst scenario that we 
observe, when compared to the other strategies.

For day 2 closures, we see that the GA strategy strictly dominates the central-
ity-based strategy because the infectious cases are fewer at all times. The nth day 
rule, which refers to the closure of all airports from the nth day, naturally gives 
the best results because this also corresponds to the strictest of measures.

The peak of infections is in fact higher than that of the GA strategy: this is 
perfectly reasonable because the different strategies not only affect the peaks but 
also the distribution of infections over time. For day 4 closures, the results are not 
as clear; however, we argue that also in this case, the GA algorithm attains better 
results than the Page-Rank strategy, getting close to the nth day rule but without 
as many closures.

Figure 10 highlights in a more clear way the same message, providing a neat 
ranking of the strategies. For both day 2 and day 4 closures, we can see that the 
GA achieves excellent results without having to resort to full closures; on the 
other hand, the centrality-based strategy provides little improvement over the 
unmitigated scenario.

Our results suggests that the GA learns to leverage the network structure via 
closures in such a way as to accelerate the initial infection rate but achieving a 
lower point of equilibrium. To gain further intuition into the GA behaviour, it is 
best to look at Fig. 11 which exhibits the evolution of the GA strategy as we alter 
the day at which closures occur. What we observe is that it is initially optimal to 
close China and certain other countries such as France which are very well con-
nected to China via air routes. However, as governments delay airport closures, 
we find that the GA shifts focus away from China and starts to establish “fire-
breaks” in other regions such as the Middle East, South America, Europe and Afr
ica.

(a) R compartment for day 2 closures. (b) R compartment for day 4 closures.

Fig. 10   GA results. A comparison of SEIRS compartments for the GA strategy versus the other strate-
gies considered. The limited nth day rule uses Page-Rank centrality and closes 1% of the airports
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In Figs.  12 and  13, we focus on day 3 closures, and we examine the percent-
age change in peak infections and peak recoveries under the GA strategy, compared 
with the unmitigated strategy (i.e. the worst strategy) and nth day rule (i.e. the best 
strategy), respectively. Despite less than half of the airports being closed under the 
GA strategy, the vast majority of countries see a reduction in peak infections and 
peak recoveries relative to the unmitigated case. By contrast, fewer countries see a 
reduction in peak infections and peak recoveries relative to the nth day rule. We note 

Fig. 11   GA solutions for days 1 to 4 . The countries in  orange are the ones that should be closed on day 1 
(top left), day 2 (top right), day 3 (bottom left) and day 4 (bottom right)

Fig. 12   GA method. Cases reductions achieved by the GA solution for day 3 closures, with respect to the 
unmitigated scenario. The peak of infections is shown on the left panel, whereas the right panel shows 
the peak of recoveries. The colours of countries fade from red (GA strategy is favourable) to blue (unmit-
igated strategy is favourable)
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that the countries that are closed in day 3 roughly correspond to the countries that 
will see the best reductions for the number of cases. In particular, we highlight that 
some highly connected countries such as China and the United States, do not benefit 
much from the day 3 GA closure strategy and see little reductions in the number of 
infections and recoveries (see Fig. 12). However, these countries would benefit more 
from a close-all strategy, as per the nth day rule (see Fig. 13). Our results provide 
evidence of the effectiveness of the GA approach over other naive strategies, offer-
ing a useful tool can be used to obtain a model-based perspective in this decision 
problem.

6 � Conclusion

In this paper, we have shown that human mobility infrastructure networks are highly 
complex and highly resilient to node removals. This has important consequences in 
epidemiology, since the high connectivity facilitates the spread of pandemic dis-
eases to a worldwide scale. These observations motivated us to seek and test non-
trivial airport closure strategies that could maintain a good network connectivity 
while slowing down the spread of a potential epidemic.

The main contribution of our work is that we illustrate a useful methodology 
which can be used to study epidemics, predict and analyse possible realistic sce-
narios, and, thus, support decision making with regard to crucial interventions that 
could help in confining the epidemic. We provide an application of our method to 
a variety of scenarios which, to some extent, also resemble recent COVID-19 epi-
demic. Our results do not directly relate to COVID-19, rather we take a more gen-
eral approach and explore a number of realistic circumstances. Our tool is designed 
in a flexible way and can accommodate a variety of epidemic settings.

The framework that we propose is based on a metapopulation SEIRS model, 
where the subpopulations are located in the airports’ locations, and they are com-
posed of the individuals living in those nearby areas. Our simulations allowed us to 

Fig. 13   GA method. Cases reductions achieved by the GA solution for day 3 closures, with respect to the 
nth day rule. The peak of infections is shown on the left panel, whereas the right panel shows the peak 
of recoveries. The colours of countries fade from red (GA strategy is favourable) to blue (nth day rule is 
favourable)
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explore and study a variety of realistic scenarios to understand the dynamics of the 
spread of the disease. We considered several different airport closure strategies, and 
we compared them using measures extracted from our simulations.

One main message that arises from our analysis is that, due to travelling, the dis-
ease is seeded in many locations worldwide with impressive speed. If conditions are 
met for isolated local escalations of the epidemic, then most countries will be hit 
by the seeded disease after a variable delay, regardless of any late interventions on 
travelling restrictions.

Our findings suggest that the first week of dispersion of the disease through the 
network is a critical time period for effective intervention, however interventions in 
the network, such as airport closures, still provide some reductions to peak infec-
tions and total cases if implemented after the initial week. Furthermore, we show 
that policies which reduce community spread can be combined with our proposed 
airport closure strategies to provide greater benefits than if either policy had been 
used separately.

Finally, we explored the application of an optimisation approach to identify 
optimal airport closures within the critical first week of disease spread, in order to 
reduce the global impact of the epidemic while keeping as many airports open as 
possible. This optimisation approach, based on a genetic algorithm, improved upon 
all of the other methods, hence providing a new model-based perspective on the 
decision-making process that leads to the travel restrictions. One very interesting 
aspect of our results is that the algorithm leverages the complex structure of the 
network to place strategic “fire-breaks,” which drastically reduce peak infections and 
total cases.

Appendix

Algorithm Derivation

In this section, we break down the various components of our diffusion and SEIRS 
models to describe in detail the mechanics of the epidemic simulator. The pseudoc-
ode for the full procedure is provided in Table 2.

SEIRS model The algorithm has been vectorised so that � is a 4 × N matrix con-
taining the states for all airports. The rows of � are the N dimensional vectors S , E , 
I and R representing the SEIRS compartments (for each of the airports’ locations) 
with non-negative real numbers.

The fundamental equation for the local SEIRS is given by
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where � , � , � and � are the epidemic parameters. In the pseudocode, we make use of 
matrix notation and, thus, work with

With this notation, one-step forward for the local SEIRS epidemic can be simply 
obtained with the matrix multiplication �� , for a suitable distribution matrix �.

Diffusion model The mechanism for the diffusion model requires more steps and 
transformations which we describe in details here below. One main reference for the 
techniques used here is [18].

If consider our network as a dynamic system, we have N nodes, each with an 
associated amount of fluid �j ≥ 0 . The fluid is transferred from one node to another 
along the weighted edges of the network. The fluid flows from node i to node j at 
a rate proportional to the difference in the amount of fluid at each node c(�i − �j) , 
where c is the constant of proportionality or more commonly referred to as the diffu-
sion constant. This can be translated into matrix notation with

where A is a suitable adjacency matrix. Equation 2 can be rewritten as follows:

where deg(vj) is the degree of node j , and D is the N × N diagonal matrix with 
degrees as entries.

In our context, the fluid � represents the local population available for travel, 
or, more precisely, a the size of a SEIRS compartment which is available for 
travel. In fact, we have 4 contemporaneous “fluids” that are moving through the 
system, corresponding to individuals for each of the compartments travelling 

dS

dt
= �R −

S�I

M

dE

dt
=

S�I

M
− �E

dI

dt
= �E − �I

dR

dt
= �I − �R

,

� =

⎛
⎜⎜⎜⎝

−� 0 0 �

� − � 0 0

0 � − � 0

0 0 � − �

⎞
⎟⎟⎟⎠
.

(2)
d�j

dt
= c

N
∑

i=1

(�i − �j)Aij
,

(3)

d�j

dt
= 𝐜

N∑
i=1

� iAij − c�jdeg(vj)

= c(A− D)�

= −c(D− A)�

,
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between locations. In order to accommodate this, we define a system through 
� ∈ℝ

𝟒xN and redefine the equation as follows:

This completes a first step into defining the diffusion equation provided in the algo-
rithm’s pseudocode.

Equation  4 simply defines how the local populations that are available for 
travelling should travel, by defining the changes in size for each of the SEIRS 
compartments, at each of the locations. However, the equation cannot be used 
as is, since it would create unrealistic travelling patterns. The limitations that we 
address are the following: 

1.	 The migration process will have a stationary distribution, which likely does not 
correspond to the initial state of the system. This means that the populations that 
we observe at each locations will change dramatically over time, which is unre-
alistic. By contrast, we would like to have constant local populations Mj , which 
would be in line with our assumption of “no permanent migration”.

2.	 The total out-flow from a node may exceed the node’s availability. Although unre-
alistic, this becomes possible because the continuous diffusion model becomes 
discretised when implemented. As a consequence, the number of outbound pas-
sengers may exceed the number of individuals that can travel from a location, so 
we need to add a condition to ensure that this does not happen.

3.	 The number of available travellers should not be the only driving factor behind 
migration flows. As an example, Ethiopia has a very large population, which cor-
responds to a large number of potential travellers; however, few routes go through 
this country.

As regards the first problem, we separate � into �B and �T , representing the locals and 
visitors, respectively. This allows us to disentangle outbound and return travels, and 
monitor both. As initial condition, all local populations are in �B , i.e. there are no vis-
itors. We proceed with the first step of the diffusion process by applying (4) on the 
matrix �+ = �B� which gives us the changes of local populations denoted by d�+

dt
 . 

For those local populations that decrease due to outbound individuals, we can write 
�B = �B +min(

d�+

dt
, 0) . As regards the positive entries of d�+

dt
 , which correspond to 

those locations that are supposed to see new individuals arriving, we do not add these 
entries to �B but to �T . This is in agreement with the fact that these travellers will join 
the populations of visitors in their new locations, and not the locals. In mathematical 
terms: �T = �T +max(

d�+

dt
, 0).

Analogously, we apply the diffusion process (4) to the matrix �− = �T� , which 
gives us the changes of visitor populations denoted by d�−

dt
 . Then, the negative entries of 

this term will correspond to the visitors that are departing, whereas the positive entries 
are the visitors that are returning at the end of their travels, thus, flowing back into the 
local populations. The complete updates are then

(4)
d𝝍

dt
= −c𝝍(D− A⊤) ∈ℝ

4xN.
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Note that we have carefully chosen the wording outbound, arriving, departing, 
returning to reflect the sequence of steps all travellers pass through in order. This is 
crucial to ensure logical behaviour of travellers and also to prevent leakage of fluid/
people from the network.

In order to address the second issue, we can simply divide �i by the degree of the 
node which ensures that the outflows computed to every other node will be at most �i . 
This results in the diffusion equation (4) being changed to

This arbitrary operation simply guarantees a rescaling of each individual value, 
so that we can ensure that the entries of � remain non-negative throughout the 
procedure.

As regards the third issue, this cannot be addressed with a simple rescaling as we 
need to ensure that the importance of airport is properly captured by our approach. For 
this reason, we replace the adjacency matrix A with a weighted matrix C to encourage 
flows to more central airports. We construct C by first amplifying the entries of A by 
the centrality of the receiving node, and then we rescale the entries to obtain a row sto-
chastic matrix. The generic element of C is defined as follows:

where Pj is the page-rank centrality of node vj . This makes the migration matrix 
more realistic since it captures better the role played by each airport, while maintain-
ing exactly the same adjacency structure as informed by A . We then simply make 
the matrix replacement in (4), noting that, since C is row stochastic, the matrix D 
becomes the identity matrix and, thus, disappears from the equation. Hence, the dif-
fusion (4) is replaced by

which is equal to the formula provided in the pseudocode.
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