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Diseases caused by viruses and virus-like organisms are one of the major problems in
viticulture and grapevine marketing worldwide. Therefore, rapid and accurate diagnosis
and identification is crucial. In this study, we used HTS of virus- and viroid-derived
small RNAs to determine the virome status of Slovenian preclonal candidates of
autochthonous and local grapevine varieties (Vitis vinifera L.). The method applied to
the studied vines revealed the presence of nine viruses and two viroids. All viral entities
were validated and more than 160 Sanger sequences were generated and deposited
in NCBI. In addition, a complete description into the co-infections in each plant studied
was obtained. No vine was found to be virus- and viroid-free, and no vine was found to
be infected with only one virus or viroid, while the highest number of viral entities in a
plant was eight.

Keywords: Vitis vinifera L., preclonal candidates, HTS, viruses, viroids

INTRODUCTION

Grapevine is one of the most important fruit crops by acreage and economic importance
(Torregrosa et al., 2015). According to the International Organization of Vine and Wine
Intergovernmental Organization (OIV), 7.4 million hectares around the world were planted with
grapevines in 2018, and vineyards in Spain, China, France, Italy, and Turkey represented 50% of
the total world cultivated grapevine area. According to the OIV, the world production of grapes in
2018 was 77.8 million tons. In Slovenia in 2018, grapevines occupied an area of 15,630 hectares and
annual production of grapes was 126,958 tons.1

Grapevine may harbor more than 86 viruses and viroids, belonging to different families
and genera (Fuchs, 2020). Viruses and virus-like organisms cause severe damage to grapevine
production worldwide. They cause leaf degeneration, malformation, puckering, leaf rolling,
chlorosis, necrosis, ringspots, line patterns, mosaic patterns, vein-banding, vein-clearing, stunting,
wilting, shortened internodes, fasciation, zigzag growth, grooving, cracking, and pitting of wood

1https://pxweb.stat.si/SiStat/en
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(Credi et al., 1981; Mavrič et al., 2003; Andret-Link et al., 2004;
Bouyahia et al., 2005; Al Rwahnih et al., 2009; Lunden et al.,
2010; Giampetruzzi et al., 2012; Mavrič Pleško et al., 2014;
Sudarshana et al., 2015). They impact vine yield and wine quality,
as viral entities delay ripening, affect grape quality, decrease
sugar content, affect the content of pigments, various aromatic
components and other metabolites, and increase the acidity of
wines (Lee and Martin, 2009; Vega et al., 2011; Alabi et al., 2016;
Girardello et al., 2020; Lee et al., 2021). Viral entities eventually
lead to the death of chronically infected plants.

Therefore, rapid and accurate diagnosis and identification is
very important. Most methods for detection and identification
require prior knowledge of the potential pathogens (e.g., use
of antibodies in serological methods or virus specific primers
in PCR amplification), with the exception of the metagenomic
approach called high-throughput sequencing technology (HTS).
HTS is a powerful technology that enables rapid detection of
viral entities in plant tissues, including unknown as well as
known viruses and viroids in symptomatic and asymptomatic
plants, without the need for prior knowledge (Al Rwahnih et al.,
2009; Kreuze et al., 2009; Fajardo et al., 2020). HTS of small
RNAs (small RNA sequencing; sRNA-seq) has been shown to
be efficient in detecting plant viruses or viroids (Kreuze et al.,
2009; Kashif et al., 2012; Vives et al., 2013; Jakse et al., 2015;
Singh et al., 2020). This approach exploits a natural antiviral
defense mechanism called RNA silencing or RNA interference
(RNAi). The silencing mechanism is initiated by RNase III-like
enzymes called Dicer-like enzymes (DCL) which cleave long
double-stranded RNAs (dsRNAs) into short interfering (si)RNA
and miRNA precursors with a hairpin or stem-loop structure
into miRNA duplexes (miRNA/miRNA∗) (Bernstein et al., 2001;
Bartel, 2004; Baulcombe, 2004). During the process of viral
infection small RNAs (sRNAs) accumulate abundantly in plants
and can be detected by deep sequencing of infected plants. sRNA-
seq provides a unique opportunity to easily detect and identify
grapevine viruses and viroids due to the abundance of sRNAs
(Navarro et al., 2009; Giampetruzzi et al., 2012; Eichmeier et al.,
2016; Czotter et al., 2018; Demian et al., 2020; Li et al., 2021).

Slovenia is a traditional wine-growing country with many local
and indigenous grapevine varieties revitalized in current clonal
selection programs, according to the rules on the marketing of
material for the vegetative propagation of vine (Official gazette,
N◦93/05 and 101/20) and OIV process for the clonal selection
of vines (Resolution oiv-viti-564a-2017). In the past, propagation
material was controlled just visually, which led to uncontrolled
spread of viruses.

The aim of the presented work was to investigate the virome
status of Slovenian preclonal grapevine candidates and to study
their genetic diversity and co-infections using identification by
sRNA-seq and confirmation by RT-PCR and Sanger sequencing.

MATERIALS AND METHODS

Plant Material
A total of 82 dormant cuttings of 6 preclonal grapevine
varieties (Vitis vinifera L.)—2 reds, “Refošk” (“Terrano”) and

“Pokalca” (“Schioppettino”), and 4 whites, “Laški rizling”
(“Welschriesling”), “Rebula” (“Ribolla Gialla”), “Malvazija”
(“Malvasia d’Istria”), and “Zeleni Sauvignon” (“Sauvignon
Vert”), were collected from the 3 vineyards [Pouzelce (P); Base
(B) and Genebank (G), referenced to Table 1)] maintained
by Centre of grapevine selection (STS Vrhpolje, Vipava) in
Primorska wine-growing region in Slovenia in February 2019.
After 3–4 weeks in water at room temperature one-bud cuttings
started bud-bursting and the obtained leaves were collected and
stored at –80◦C for further analysis.

High-Throughput Sequencing of Virus-
and Viroid-Derived Small RNAs
Eighty-two grapevine samples were pooled into 12
bulks/libraries, each bulk representing samples of the same
variety; some varieties were represented with more than
one bulk (Table 1). sRNAs were extracted by an enrichment
procedure using a mirVana miRNA Isolation Kit (Ambion, Life
Technologies) according to the manufacturer’s instructions.
sRNA libraries were prepared using the Ion Total RNA-Seq
kit and checked for quality using an Agilent 2100 Bioanalyzer
(Agilent Technologies). Barcode-labeled cDNA libraries were
sequenced on an Ion PI chip v3 using an Ion Proton Sequencer
(Ion Torrent; Life Technologies) according to the manufacturer’s
instructions. According to the Ion Torrent sequencing pipeline,
raw reads had removed adapter sequences and they were
deposited in the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) database under BioProject
accession number PRJNA765925.

Analysis of High-Throughput Sequencing
Data
Raw sequence reads were filtered based on quality score and
read length using cutadapt tools (Martin, 2011). VirusDetect2

(Zheng et al., 2017), an automated bioinformatics pipeline, was
employed for further analysis of obtained sequences. VirusDetect
is a highly sensitive and enables efficient analysis of sRNA
datasets for viral identification. The software package first
align sRNA reads to viral GenBank references using Burrows-
Wheeler Aligner (BWA). The mapped sRNA reads are then
assembled into contigs according to the viral reference. This
program also maps the sRNA reads to host reference sequences
to discard host-derived sRNAs. VirusDetect performs de novo
assembly of sRNAs using Velvet with automated parameter
optimization. Contigs obtained from de novo assemblies were
aligned to the grapevine genome and all contigs with nucleotide
identity greater than 90% with the grapevine genome were
discarded. De novo assembled contigs were concatenated with
reference-guided generated contigs and then all redundancies
were removed, according to the employed iAssembler pipeline.
The obtained contigs were then compared with the viral GenBank
references for their identification. This automated pipeline
used the BLASTN algorithm to compare the contigs to the
reference virus nucleotide sequences and BLASTX algorithm to

2http://virusdetect.feilab.net
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TABLE 1 | Viruses and viroids detected in 12 libraries using the VirusDetect approach.

Library labels Samples Detected viruses
and viroids

Reference
sequence

Reference
length

Consensus
length

Reference
coverage (%)

No. of contigs Sequencing
depth

005 Laški rizling 3/34B RBDV (RNA1) AB948214 5,449 5,449 100 2 1556.2

Laški rizling 3/45B RBDV (RNA2) AB948215 2,231 2,202 98.7 4 513.8

Laški rizling 3/56B GPGV KP693444 7,172 6,957 97 8 487.4

Laški rizling 3/64B GRSPaV AY881627 8,743 7,434 85 66 9.8

GFkV AJ309022 7,564 6,210 82.1 55 49.3

GRVFV KY513701 6,730 2,669 39.7 55 15.5

GSyV-1 KP221269 334 150 44.9 3 20.9

HSVd KJ810551 309 309 100 3 2223.0

GYSVd-1 AB028466 368 368 100 5 971.9

006 Refošk 9/3B GPGV FR877530 7,259 7,257 100 7 123.3

Refošk 10/1B GRSPaV KX035004 8,743 8,666 99.1 41 16.6

Refošk 10/2B GRGV KX171166 6,863 4,362 63.6 40 53.0

Refošk 10/3B GRVFV KY513702 6,716 3,420 50.9 34 46.3

HSVd KJ810551 309 309 100 2 1856.0

GYSVd-1 KP010010 389 389 100 3 1505.9

007 Rebula 15/1B GPGV FR877530 7,259 7,248 99.8 8 53.5

Rebula 15/2B GFkV KT000362 7,564 5,814 76.9 60 13.2

Rebula 15/3B GRVFV KY513702 6,716 2,483 37 40 14.6

Rebula 16/1B HSVd KJ810551 309 309 100 3 490.5

Rebula 16/2B GYSVd-1 KP010010 389 389 100 3 374.2

Rebula 16/3B

Rebula 19/1B

Rebula 19/2B

008 Rebula 19/3B GPGV KY747494 7,156 7,135 99.7 9 56.5

Rebula 20/3B GRSPaV KR054734 8,753 7,168 81.9 70 5.6

Rebula 22/1B GFkV AJ309022 7,564 5,815 76.9 46 29.0

Rebula 22/2B GRVFV KY513702 6,716 5,706 85 55 93.3

Rebula 22/3B HSVd KY508372 316 314 99.4 3 650.5

Rebula 24/2B GYSVd-1 AB028466 368 368 100 6 298.8

Rebula 26/1B

Rebula 26/2B

Rebula 26/3B

009 Malvazija 32/1B GPGV FR877530 7,259 7,259 100 5 142.5

Malvazija 32/2B GRSPaV KX035004 8,743 7,838 89.6 70 7.0

Malvazija 32/3B GSyV-1 KP221256 6,482 3,160 48.8 25 29.4

Malvazija 32/9B HSVd KJ810551 309 309 100 4 1462.5

GYSVd-1 KJ466324 367 367 100 5 2201.1

010 Refošk 9/3P GPGV FR877530 7,259 7,248 99.8 16 93.5

Refošk 9/4P GRSPaV KX035004 8,743 7,595 86.9 76 6.5

Refošk 9/5P GLRaV-3 GQ352631 18,498 18,234 98.6 23 39.6

Refošk 10/2P GFkV AJ309022 7,564 6,137 81.1 52 69.5

Refošk 10/3P GRGV KX109927 6,863 3,144 45.8 36 22.9

Refošk 10/5P GRVFV KY513702 6,716 4,752 70.8 90 33.1

Refošk 11/2P HSVd KJ810551 309 309 100 5 889.0

Refošk 11/3P GYSVd-1 KP010010 389 389 100 4 694.1

Refošk 11/4P

011 Refošk 12/1P GPGV FR877530 7,259 7,246 99.8 6 83.2

Refošk 12/3P GRSPaV KX274274 8,725 7,663 87.8 65 6.3

Refošk 12/6P GFkV KF417610 532 177 33.3 3 6.8

Refošk 12/18P GRVFV KY513701 6,730 1,852 27.5 30 5.4

Refošk 12/19P HSVd KJ810551 309 309 100 3 503.7

Refošk 12/20P GYSVd-1 KP010010 389 389 100 2 565.2

(Continued)
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TABLE 1 | (Continued)

Library labels Samples Detected viruses
and viroids

Reference
sequence

Reference
length

Consensus
length

Reference
coverage (%)

No. of contigs Sequencing
depth

012 Zeleni Sauvignon 14/2P GPGV FR877530 7,259 7,240 99.7 11 119.6

Zeleni Sauvignon 14/5P GRSPaV KT008379 780 486 62.3 8 6.7

Zeleni Sauvignon 14/6P GFkV AJ309022 7,564 5,984 79.1 54 28.5

Zeleni Sauvignon 14/7P GRVFV KY513701 6,730 2,927 43.5 47 9.0

Zeleni Sauvignon 15/1P HSVd KJ810551 309 309 100 3 279.5

Zeleni Sauvignon 15/2P GYSVd-1 KP010010 389 389 100 2 452.0

Zeleni Sauvignon 15/3P

Zeleni Sauvignon 16/1P

Zeleni Sauvignon 16/2P

013 Zeleni Sauvignon 16/3P GPGV KY747494 7,156 7,135 99.7 14 122.9

Zeleni Sauvignon 24/3P GRSPaV MG938309 8,753 4,240 48.4 63 9.5

Zeleni Sauvignon 24/9P GFLV (RNA1) JX513889 7,340 6,752 92 31 149.6

Zeleni Sauvignon 24/10P GFLV (RNA2) JX559643 3,769 3,417 90.7 12 214.9

Zeleni Sauvignon 24/11P GRVFV MH544692 494 149 30.2 3 5.6

Zeleni Sauvignon 26/1P HSVd KJ810551 309 309 100 3 412.4

Zeleni Sauvignon 26/2P GYSVd-1 AB028466 368 368 100 6 97.4

Zeleni Sauvignon 26/3P

014 Malvazija 20/2P GPGV FR877530 7,259 6,917 95.3 38 10.7

Malvazija 20/6P GFkV AJ309022 7,564 2,302 30.4 41 5.3

Malvazija 20/7P GRVFV KY513702 6,716 3,227 48 64 11.0

Malvazija 20/46P HSVd KY508372 316 314 99.4 2 232.1

Malvazija 20/47P GYSVd-1 KP010010 389 389 100 2 394.9

Malvazija 20/48P

Malvazija 20/50P

015 Malvazija 21/6P GPGV FR877530 7,259 7,247 99.8 12 33.2

Malvazija 21/7P GRSPaV FJ943281 780 635 81.4 9 7.3

Malvazija 21/8P GFkV AJ309022 7,564 2,432 32.2 36 6.4

Malvazija 21/20P GRVFV KY513701 6,730 4,364 64.8 94 20.7

Malvazija 23/2P HSVd KJ810551 309 309 100 5 473.3

Malvazija 23/3P GYSVd-1 AB028466 368 368 100 5 394.1

Malvazija 23/4P

016 Pokalca 3/4P GPGV FR877530 7,259 7,243 99.8 12 40.7

Pokalca 3/5P GRSPaV KX958435 8,743 5,728 65.5 86 5.3

Pokalca 3/6P GFLV (RNA1) KX034843 7,347 5,268 71.7 21 737.3

Pokalca 9/2G GFLV (RNA2) GQ332370 3,773 3,475 92.1 18 752.5

Pokalca 9/3G GRVFV KY513702 6,716 4,627 68.9 84 28.9

Pokalca 9/26G HSVd KJ810551 309 309 100 2 371.0

Pokalca 9/27G GYSVd-1 AB028466 368 368 100 4 116.2

compare the contigs to the reference virus protein sequences
(Zheng et al., 2017).

Validation of Predicted Infections by
RT-PCR, Direct Sanger Sequencing and
Cloning, Sequence Analysis and
Phylogenetic Studies
Validation of HTS results of predicted infections was performed
by RT-PCR and Sanger sequencing. Total RNAs for all individual
samples were extracted from 70 to 100 mg of frozen leaves
using Monarch RNA Total Miniprep Kit (New England Biolabs)
following recommended instructions. The RNAs concentration
and purity were assessed with NanoVue Plus spectrophotometer

(GE Healthcare Life Sciences). Due to the low RNA concentration
and purity, three samples (Malvazija 20/2P, Malvazija 21/7P
and Malvazija 23/4P) were excluded from further analysis.
RT−PCRs were performed using a two−step protocol, where
total RNAs were first reverse transcribed using High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems) according
to the manufacturer’s instructions followed by PCR with specific
primers (Supplementary Table 2). The PCR reaction mixture
(20 µL total) contained 10.7 µL nuclease-free water, 4 µL
5 × PCR buffer (Promega), 1.6 µL MgCl2 (Kapa Biosystems),
1.6 µL dNTP mix (10 mM each of the 4 dNTPs) (Promega),
0.5 µL of each primer, 0.1 µL KAPA Taq DNA polymerase
(Kapa Biosystems), and 1 µL of cDNA. RT-PCR products
were analyzed by electrophoresis on a 1.4% agarose gel,
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stained with ethidium bromide, and visualized under a UV
transilluminator and remaining reaction was cleaned by Exo-Sap
treatment. RT-PCR products of a predicted sizes were sequenced
directly in both directions for all viruses and viroids, except
for Grapevine rupestris stem pitting-associated virus (GRSPaV),
where RT-PCR products were ligated into the pGEM-Teasy
Vector Systems cloning kit (Promega) and then transformed into
Escherichia coli DH-5α competent cells. Blue/white screening
was performed on the LB/carbenicillin/IPTG/X-gal/agar plates.
The positive clones were randomly picked and then colony
PCR was performed using specific primers (RSP 52/RSP 53)
(Supplementary Table 2). After purification, direct RT-PCR or
cloned products were sequenced using an Applied Biosystems
3130 Genetic Analyzer. After sequencing, the forward and reverse
traces were trimmed and assembled using CodonCode Aligner
9.0.1 (CodonCode Corporation). All sequences generated in
this study were deposited in the NCBI GenBank database.3

The generated virus and viroid sequences were compared using
the ClustalW program (Thompson et al., 1994) implemented
in MEGA X software (Kumar et al., 2018). A p-distance
model was applied for nucleotide (nt) and deduced amino
acid (aa) divergence sequence analysis. Phylogenetic trees
were constructed using MEGA X software. The Modeltest
implemented in MEGA X was applied to investigate the
best-fitting model of nt substitution. The reliability of the
obtained trees was evaluated using the bootstrap method
based on 1,000 replicates and bootstrap values lower than
50% were omitted.

RESULTS AND DISCUSSION

Viruses and Viroids Detected by
High-Throughput Sequencing of Virus-
and Viroid-Derived Small RNAs
sRNA-seq from the pooled grapevine samples yielded 4,206,135–
17,668,261 reads. In VirusDetect pipeline 3,643,531–13,905,492
reads per pool were processed (Supplementary Table 1).
Additional results of the detection pipeline are presented in
Supplementary Table 1. Using the described approach, nine
viruses: Raspberry bushy dwarf virus (RBDV), Grapevine Pinot
gris virus (GPGV), Grapevine rupestris stem pitting-associated
virus (GRSPaV), Grapevine fanleaf virus (GFLV), Grapevine
leafroll-associated virus 3 (GLRaV-3), Grapevine fleck virus
(GFkV), Grapevine Red Globe virus (GRGV), Grapevine rupestris
vein feathering virus (GRVFV), Grapevine Syrah virus-1 (GSyV-
1), and two viroids: Hop stunt viroid (HSVd) and Grapevine
yellow speckle viroid- 1 (GYSVd-1) were identified. GRGV,
GRVFV, and GSyV-1 were detected for the first time in Slovenia
(paper in review).

The highest number of viral entities in a library was eight
(in libraries 005 and 010), the lowest number was five (in
libraries 007, 009, 014), while the remaining libraries contained
six viral entities. The genomes of RBDV and GFLV are bipartite
and consist of two single-stranded positive-sense RNAs (RNA1

3www.ncbi.nlm.nih.gov

and RNA2), therefore the consensus length, reference coverage,
number of contigs and sequencing depth for both, RNA1 and
RNA2 are shown (Table 1). GPGV, HSVd, and GYSVd-1 were
detected in all analyzed libraries. RBDV and GLRaV-3 were
detected in only one library, 005 (“Laški rizling” variety) and 010
(“Refošk” variety), respectively (Table 1).

Validation of Predicted Infections by
RT-PCR, Direct Sanger Sequencing and
Cloning, Sequence Analysis and
Phylogenetic Studies
Raspberry Bushy Dwarf Virus
The natural occurrence of RBDV in grapevine was first confirmed
in Slovenia in “Laški rizling” and “Štajerska belina” using DAS-
ELISA and IC-RT-PCR (Mavrič et al., 2003). Reports that this
virus infecting grapevines are rare, except in Slovenia it has also
been reported in neighboring Sebria and Hungary (Jevremovic
and Paunovic, 2011; Pleško et al., 2012; Czotter et al., 2018).
In our study, RBDV was found only in “Laški rizling” variety
(005 library). It was found in this variety in all Slovenian wine-
growing regions (Mavrič Pleško et al., 2009). Complete or almost
complete reference coverage of both RNA1 (100%) and RNA2
(98.7%) was obtained (Table 1). All four samples were confirmed
positive with RT-PCR and partial RNAs2 were Sanger sequenced
and deposited in NCBI (GenBank accession no. OK139039-
OK139042). The MP sequences of our isolates shared 100% nt
identity (100% aa identity), while in the CP gene region they
shared 98.18–99.55% nt identities (97.95–100% aa identities).
Considering phylogenetic analysis of partial sequences of the CP
gene (438 bp), our isolates clustered among other isolates of
Vitis sp. retrieved from NCBI and they were clearly separated
from isolates of Rubus sp. (Supplementary Figure 1), which was
also reported in other studies (Mavrič Pleško et al., 2009, 2020;
Valasevich et al., 2011).

Grapevine Pinot Gris Virus
GPGV is an emerging virus associated with grapevine leaf
mottling and deformation (GLMD) disease (Giampetruzzi
et al., 2012), but has not yet been included in certification
programs in Europe. In Slovenia, the first symptoms (shortened
internodes, mottling, deformation, and poor leaf development)
were observed in 2001, and samples were tested for eight viruses
(ArMV, CLRV, GFLV, RBDV, SLRSV, TBRV, ToRSV, and TRSV),
but none was confirmed by DAS-ELISA (Mavrič Pleško et al.,
2014). In 2012, GPGV was discovered in Italy using sRNA-
seq (Giampetruzzi et al., 2012), and in 2014 its occurrence was
reported also from Slovenia (Mavrič Pleško et al., 2014). These
authors reported that GPGV seems to be widespread in the
Primorska wine-growing region, but they also observed it in
different parts of Slovenia. In addition to Italy, the virus seems to
be widespread in other neighboring countries, Hungary (17 out of
18 libraries) and Croatia (61.97%) (Czotter et al., 2018; Hančević
et al., 2021). Based on HTS data, GPGV was the most prevalent
virus in our study. It was found in all 12 libraries (95.3–100%
coverage of complete reference sequences) (Table 1). Seventy-
two out of 79 samples were positive (91.14%) (Figure 1). Forty
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sequences were generated and deposited in NCBI (GenBank
accession no. OK139043-OK139082). A polymorphism showing
C/T variation introducing a premature termination codon was
observed in the MP sequence. The C/T polymorphism was
observed in 13 samples making MP shorter by 18 nt (6 aa).
This polymorphism was also observed for isolates analyzed in
some other studies (Reynard, 2015; Saldarelli et al., 2015; Czotter
et al., 2018; Abou Kubaa et al., 2020). The MP sequences of
40 Slovenian isolates shared nt identities of 93.94–100% (87.79–
100% aa identities). 40 Slovenian CP sequences shared pairwise
nt identities of 94.53–100% (97.86–100% aa identities). The
phylogenetic tree was constructed using part of the sequences of
the MP gene and CP gene (718 nt) and it showed partitioning
of our isolates into two clades with isolates from geographically
relatively close countries (Supplementary Figure 2).

Grapevine Rupestris Stem Pitting-Associated Virus
Using the HTS approach, GRSPaV (member of the rugose wood
complex) was detected in 10 libraries (Table 1). In eight libraries
complete reference sequences were covered 48.4–99.1%, while
in other two libraries, 012 (“Zeleni Sauvignon” variety) and
015 (“Malvazija” variety), only partial genome sequences were
covered 62.3 and 81.4%, respectively. In all libraries GRSPaV
had a low sequencing depth (5.3X–16.6X). It was confirmed in
all libraries where it was predicted with RT-PCR, and even in
two other libraries (007 and 014), where it was not detected by
sRNA-seq/VirusDetect pipeline. In library 007 (“Rebula” variety)
all eight samples were infected, while in library 014 (“Malvazija”
variety) only two samples were infected. In Hungary, using
sRNA-seq approach, the same contradictory results were reported
by three independent studies (Czotter et al., 2018; Demian et al.,
2020; Turcsan et al., 2020). The authors indicated that this could
be due to technical issues, the possibility that concentrations were
under detection threshold due to the bulk sequencing strategy or
deeper biological aspects, as a possible long coexistence between
grapevine and GRSPaV resulted in mutual adaptation (Gambino
et al., 2012), and potentially the plant immune response was
not activated. The reason why GRSPaV was not detected by
sRNA-seq in some libraries in different studies conducted in
different countries requires further studies. Overall, 70 out of
79 samples were tested positive (88.61%), making GRSPaV the
second most abundant virus (Figure 1). The selected RT-PCR
products were directly sequenced, but due to different genetic
variants in the same sample, we were not able to generate high
quality sequences, therefore cloning was performed. One RT-PCR
product was selected from each variety. Three white colonies were
randomly picked from each variety, and after colony PCR, three
products were obtained for Laški rizling 3/45B, Rebula 16/1B,
Zeleni Sauvignon 14/2P, and Malvazija 20/48P, and one product
for Refošk 10/3B and Pokalca 9/27G. In total, 14 products were
sequenced (GenBank accession no. OK138921–OK138934), and
all were different from each other, even when originating from
the same plant. The highest overall mean distance was revealed
for three variants of Laški rizling 3/45B (17.14%), and the lowest
overall mean distance for Malvazija 20/48P (6.32%). While the
overall mean distance for all 14 sequenced variants was 14.06%.
It can be concluded that at least three genetic variants exist in

the selected samples which differ extensively in the analyzed
genome region. The high genetic diversity could be due to
the lack of proofreading activity of RdRp, errors in genome
replication, frequent recombination, and grafting of individual
plants onto differentially infected rootstocks and scions (Glasa
et al., 2017). The phylogenetic tree also showed that the genetic
variants, even if from the same plant, clustered in different clades
(Supplementary Figure 3).

Grapevine Fanleaf Virus
GFLV, responsible for a fanleaf degeneration disease and one
of the viruses causing the most significant damages on vines
(Andret-Link et al., 2004), was detected in two of our libraries,
013 (“Zeleni Sauvignon” variety) and 016 (“Pokalca” variety)
(Table 1). RNA1 was covered 92 and 71.7%, respectively, while
RNA2 was covered 90.7 and 92.1%, respectively. Validation by
RT-PCR using published primers resulted in one sample positive
from bulk 013 and three samples from bulk 016. All positive
samples were sequenced (GenBank accession no. OK139035–
OK139038). Three isolates from “Pokalca” variety shared 99.67
or 99.84% nt identities (99.5 or 100% aa identities), whereas the
isolate Zeleni Sauvignon 16/3P differed greatly from the Pokalca
isolates with 87.27 or 87.44% nt identities (96.49 or 96.99% aa
identities). In addition to the differences between our isolates they
also differed from the isolates deposited in NCBI. Pokalca isolates
shared the highest identity, 90.62 or 90.79%, with the isolate
from France (MG731624), while Zeleni Sauvignon 16/3P shared
the highest identity 91.29% with the isolate from Switzerland
(MG731616). High sequence variation between GFLV isolates of
partial or complete RNA2 (2AHP, 2BMP, and 2CCP) has been
reported in several studies (Naraghi-Arani et al., 2001; Fattouch
et al., 2005; Pompe-Novak et al., 2007; Elbeaino et al., 2014).
This virus does not possess proofreading activity of RdRp and
the large genetic variability indicates that the GFLV genome
consists of quasispecies populations (Naraghi-Arani et al., 2001).
Phylogenetic analysis showed that our isolates differed in the
region of partial RNA2 from isolates retrieved from NCBI, even
from the previously characterized isolates from Slovenia (Pompe-
Novak et al., 2007), but they were the closest to the isolates
from Italy and France (Supplementary Figure 4). Due to the
differences observed among sequences, we designed new primers
based on our sequencing data and repeated analysis. Positive
amplifications were observed for additional two samples from
bulk 013 and for four samples from bulk 016.

Grapevine Leafroll-Associated Virus 3
GLRaV-3 is the major causal agent of one of the most detrimental
grapevine diseases named as grapevine leafroll disease (GLD)
(Maree et al., 2013). GLRaV-3 was detected only in library
010 (“Refošk” variety). The reference sequence GQ352631 was
98.6% covered and a sequencing depth of 39.6X (Table 1).
With the primer pair amplifying the CP gene region, only
one sample (Refošk 11/4P) was positive, therefore we used
the primer pair amplifying the HSP70h gene region and the
same result was obtained. The sequencing of CP gene region
of Refošk 11/4P (GenBank accession no. OK138920) showed
the highest nt identity (99.76%) with 15 sequences originating
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FIGURE 1 | Prevalence of nine viruses and two viroids in analyzed samples.

from Greece, Portugal, United States, Canada and Pakistan and
3 sequences of unknown origin. Phylogenetic analysis showed
that our isolate clustered together with the isolate from Portugal
(Supplementary Figure 5). GLRaV-3 was the least prevalent
virus in our sample set. Other grapevine leafroll-associated
viruses, members of Ampelovirus or Closterovirus genus, were not
detected. The main reason for the lack of detection of leafroll-
associated viruses can be explained by the fact that after the
mass selection, all selected vines (potential preclonal vines—
ELITE) were screened with ELISA tests, which have a fairly good
detection for viruses of GLD, therefore at that step, all infected
vines were excluded by further selections and propagation. We
are aware that serological tests can have quite large deviations in
the detection of viruses, but in this case, it seems that we have
been quite successful in the leafroll-associated viruses detection
with the ELISA test.

Grapevine Fleck Virus
GFkV was detected in eight libraries. In five libraries (005,
007, 008, 010, and 012) complete genome reference sequences
(AJ309022 or KT000362) were covered with 76.9–82.1%, while
in two libraries of “Malvazija” variety (014 and 015), reference
sequence AJ309022 was covered only with 30.4 and 32.2%,
respectively, and in library 011 partial sequence KF417610 was
covered with 33.3%. GFkV was validated in all predicted libraries
and for 34 samples we got positive RT-PCR result. All samples
were sequenced, but the results showed that seven products
belonged to GRVFV, which is consistent with reports from
Czotter et al. (2018) from Hungary, indicating high similarity
between these two viruses and possible cross-amplification with

primers. Sequences of two samples, Laški rizling 3/56B and
3/64B had lower quality, therefore they were excluded from
further analysis. Twenty-five GFkV sequences were generated
and deposited in NCBI (GenBank accession no. OK139010–
OK139034). They shared nt identities of 91.6–100% (93.7–
100% aa identities). GFkV is phloem-limited, not mechanically
transmissible, and spreads by grafting and infected propagating
material (Sabanadzovic et al., 2017). Our isolates shared the
highest nt identities with isolates from Bosnia and Herzegovina,
North Macedonia, Hungary and the United States. Phylogenetic
studies showed that the sequenced isolates clustered in different
clades depending on the variety, except “Laški rizling,” with
isolates from neighboring countries, while all samples of “Refošk”
variety cluster together with isolate from the United States
(Supplementary Figure 6). A few decades ago the predecessors
of our samples were grafted onto untested rootstocks imported
from neighboring countries and from Davis University in
California (Hrček, 1977). It seems that with the rootstocks
GFkV was imported, but also a lot of grafts produced in
Slovenia were exported in neighboring countries, especially in
former Yugoslavia.

In addition to GFkV, three fleck-like viruses (GRGV, GRVFV,
and GSyV-1) were detected for the first time in Slovenia
(paper in review).

Hop Stunt Viroid
HSVd has a wide natural host range from different botanical
families. Slovenia is one of the major hop producers, and the
first report that HSVd infects hops in Slovenia was published
in 2012 (Radisek et al., 2012), while it was recently confirmed
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on grapevines in co-infection with GV-Sat, GLRaV-1, GLRaV-2,
GRSPaV, GPGV, and GYSVd-1 (Miljanić et al., 2021). According
to the HTS results, HSVd was present in all libraries (Table 1).
In ten libraries the reference sequence KJ810551 was covered
100%, while in the other two libraries (008 and 014) the reference

sequence KY508372 was covered 99.4% (Table 1). It was validated
by RT-PCR and all samples were positive. Forty complete genome
sequences were generated and deposited in NCBI (GenBank
accession no. OK138935–OK138974). Thirty-eight isolates were
100% identical to each other, while two isolates (Pokalca 3/4P

FIGURE 2 | Percentages of co-infections in analyzed samples.

FIGURE 3 | Percentages of mixed infections in analyzed samples.
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and Pokalca 3/6P) were identical and shared 98% identities with
other isolates. In the genome of Pokalca 3/4P and 3/6P isolates,
insertions were observed at positions 123 and 257, while SNPs
were observed at positions 171, 172, 238, 244, 259, and 260
(Supplementary Figure 9). Also, phylogenetic tree showed that
this two isolates clustered completely different from other isolates
(Supplementary Figure 7).

Grapevine Yellow Speckle Viroid-1
According to our analysis GYSVd-1 was found in all analyzed
libraries with 100% references coverage (Table 1). According
to RT-PCR, 71 samples were positive (89.87%) (Figure 1).
To our knowledge, nine GYSVd-1 sequences of Slovenian
autochthonous grapevine varieties have been deposited in NCBI
so far (Štajner et al., 2019). In this study, 35 complete
genome sequences were generated and deposited in NCBI
(GenBank accession no. OK138975–OK139009). GYSVd-1 was
less prevalent and showed higher genetic diversity than HSVd.
Slovenian GYSVd-1 sequences had 95.35–100% nt identities.
Multiple alignment with ClustalW revealed InDel mutations
at four positions in the genome (63, 92, 163, and 287)
(Supplementary Figure 10). Phylogenetic analysis showed that
analyzed GYSVd-1 isolates clustered in different clades regardless
of variety (Supplementary Figure 8).

Co-infections in Analyzed Samples
GPGV, GRSPaV, HSVd, and GYSVd-1 were the
most prevalent in our sample set (Figure 1) and
their co-infection were the most common (18.99%)
(Figure 2). The second most prevalent co-infections were
GPGV + GRSPaV + GRVFV + HSVd + GYSVd-1 and
GPGV + GRSPaV + GFkV + GRVFV + HSVd + GYSVd-1
(16.46%) (Figure 2). There were no vines that were free of viruses
or viroids, and there were no vines that were infected with
only one viral entity. The highest number of tested plants were
infected with five viral entities (37.97%), followed by six (24.05%)
and four viral entities (22.78%), while one sample (Laški rizling
3/45B) was infected with eight viruses/viroids (Figure 3).

CONCLUSION

The main advantage of using the HTS approach is the complete
insight into virome of the analyzed samples (Czotter et al., 2018).
When screening the virome status of selected plants the HTS
approach is considered method of choice. The HTS approach
used for virome screening is mainly based on bulked samples,
which is cost effective, because in the analysis usually a lot of
samples are included, and the main limitation is the possibility
that due to the bulk sequencing strategy viral concentrations
may be under detection threshold in some cases. In our study
all individual samples were tested with RT-PCR for each HTS
predicted infection, and all obtained results were consistent,
except for GRSPaV, but due to the fact that similar results related
to inconsistent detection of GRSPaV were obtained in different
studies, it may have deeper biological aspect and required further
analysis which are discussed.

The present study gives us a detailed insight into the virome
status of preclonal candidates of autochthonous and local
grapevine varieties in the Primorska wine-growing region
of Slovenia. In this study significant number of sequences
were generated for different viral pathogens and could
further improve their routine diagnostics, which is especially
important as they cannot be controlled by conventional plant
protection methods.
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