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PERSPECTIVE

Membrane Protein Insertion: The Biology–Physics Nexus

Stephen H. White

Department of Physiology and Biophysics, University of California, Irvine, CA 92697

Introduction
Membrane proteins are a greasy lot. Thrown into water 

without detergents, they form intractable aggregates, 

which minimize exposure of their nonpolar transmem-

brane surfaces to water. Aggregation would be their cer-

tain fate if membrane proteins were translated on the 

ribosome in the manner of soluble proteins. But this 

fate is avoided: the elongating polypeptide segment 

from the ribosome exit tunnel (Voss et al., 2006) passes 

into the membrane-dwelling translocon assembly whose 

architecture permits selected segments to enter the 

membrane bilayer to become transmembrane (TM) he-

lices (for review see White and von Heijne, 2004, 2005; 

von Heijne, 2006). The principles underlying this selec-

tion process are beginning to emerge from our recent 

studies of the recognition of transmembrane helices by 

the ER translocon (Hessa et al., 2005a; Meindl-Beinker 

et al., 2006). As Gunnar von Heijne discusses in his Per-

spective (p. 353), one outcome of our experiments 

was a “biological” hydrophobicity scale that describes 

the apparent free energy of insertion (∆Gapp) of each 

of the 20 natural amino acids when located in the 

center of a hydrophobic TM helix. This biological scale 

correlated strongly with the so-called Wimley-White 

(1999) physical hydrophobicity scales, suggesting that, 

somehow, the translocon selection of TM segments fol-

lows general thermodynamic principles that underlie 

partitioning of peptides between water and n-octanol 

(Wimley et al., 1996). The primary goal of this Perspec-

tive is to explore this intriguing nexus between biology 

and physical chemistry.

One of the motivations for this series of Perspectives 

is to gain deeper insights into the connection between 

the biological hydrophobicity scale and physical scales, 

especially the Wimley-White (1999) octanol scale. Our 

current understanding of membranes, hydrophobicity, 

and membrane protein stability originates from the 

Fluid Mosaic Membrane Model (Singer and Nicolson, 

1972). I therefore begin by reviewing the origins of this 

conceptual model, which is built upon the fundamental 

idea that hydrophobic molecules (e.g., membrane pro-

teins) partition between water and immiscible nonpolar 

phases (e.g., lipid bilayers). Because this concept arose 

before our understanding of the structure and dynamics 

of fluid bilayers was complete, I next discuss the mod-

ern view of lipid bilayer structure and dynamics, which 

is essential for connecting the biological and physical 

scales. Implicit in the motivation for this Perspectives 

series is the apparent ability of the translocon to insert 

charge-containing TM helices across the ER membrane. 

I discuss how this might work in the light of the modern 

view of bilayer structure. This sets the stage for consid-

ering why the biological hydrophobicity scale correlates 

so strongly with the Wimley-White octanol scale. I at-

tempt to provide an explanation. To begin to connect 

the biological and physical hydrophobicity scales, I then 

discuss insights into translocon function obtained from 

molecular dynamics (MD) simulations of SecY/Sec61 

heterotrimer in lipid bilayers. I argue that the heterotri-

mer is ideally suited to serve as a thermodynamic switch 

that determines whether or not a polypeptide segment 

passes into the lipid bilayer as a TM segment. Finally, I 

consider whether TM helix recognition by the translo-

con is equivalent to direct partitioning of helices be-

tween water and lipid bilayer.

The Fluid Mosaic Membrane Concept
Hydrophobic solutes partition strongly from water into 

immiscible nonpolar phases. This simple principle is so 

obvious and compelling that we have long thought of 

membranes as thin, immiscible lipid (bilayer) phases 

into which lipid-soluble molecules readily partition 

(Overton, 1895; Gorter and Grendel, 1925). John 

Singer, inspired by the germinal paper of Kauzmann 

(1959) on the role of hydrophobicity in protein stability, 

extended this thinking to membrane proteins (Lenard 

and Singer, 1966; Singer, 1971; Singer and Nicolson, 

1972). His now famous and still infl uential cartoon of a 

transmembrane protein in a lipid bilayer (Fig. 1 A) 

spawned myriad papers on the identifi cation of trans-

membrane segments by hydrophobicity analysis, begin-

ning with Segrest and Feldman (1974). At about the 

same time, Nozaki and Tanford’s (1971) studies of 

amino acid hydrophobicity and Tanford’s (1973) classic 

book on the hydrophobic effect stimulated critical in-

vestigations of the partitioning of amino acid side chains 
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into nonpolar phases. Among the most infl uential of 

these were those of Wolfenden and colleagues, directed 

toward establishing biologically relevant hydrophobic-

ity scales (Wolfenden and Lewis, 1976; Wolfenden et al., 

1981; Radzicka and Wolfenden, 1988).

These classic papers and a critical analysis of the ener-

getics of charge insertion into bilayers (Parsegian, 1969) 

led to a strong focus on the solvent properties of the bi-

layer hydrocarbon interior. Although useful for many 

purposes, the properties of the hydrocarbon interior 

alone could not readily accommodate the suggestion 

of MacKinnon and colleagues that the charge-bearing 

voltage-sensing paddle of voltage-gated K+ channels 

might be exposed directly to the lipid bilayer (Jiang 

et al., 2003a,b). Nor could these properties accommo-

date our observation that the arginine-rich KvAP S4 he-

lix of the voltage sensor can be inserted across the ER 

membrane with high effi ciency (Hessa et al., 2005b).

Lipid Bilayer Structure
The publication of the Fluid Mosaic Model (Singer 

and Nicolson, 1972) gave impetus for many years to 

extensive physical studies of lipid bilayers, summarized 

authoritatively by Small (1986). The fi rst steps toward 

detailed and quantitatively useful bilayer structural 

models began with the advent of neutron diffraction 

methods for studying the transbilayer distribution of 

lipid component groups (Büldt et al., 1978; Büldt et al., 

Figure 1. Proteins in lipid bilayers. 
(A) The Fluid Mosaic Concept of 
Singer and Nicolson (1972) show-
ing “proteins” penetrating deeply 
into (left) or across the lipid bilayer. 
This concept treats the lipid bilayer 
primarily as a thin hydrocarbon 
slab. Image reprinted from Singer 
and Nicolson (1972) with permis-
sion from AAAS. (B) Snapshot 
from a molecular dynamics simu-
lation (Benz et al., 2005) of a dio-
leoylphosphatidylcholine (DOPC) 
bilayer. It stands in stark contrast to 
the bilayer shown in A. The compo-
nent groups represented by the ball 
and stick representations of the lip-
ids are indicated by the color scale. 
Two of the DOPC molecules are 
shown in CPK format. This image 
reveals that the headgroup region 
of the bilayer accounts for a signifi -
cant fraction of the total thermal 
thickness of the bilayer, emphasiz-
ing the likely importance of the 
headgroups in lipid–protein inter-
actions. (C) Snapshot of a molecu-
lar dynamics simulation of a model 
KvAP S4 helix in a POPC bilayer 
(Freites et al., 2005). The S4 helix 
has the same sequence used in the 
translocon-assisted insertion of S4 
across the ER membrane (Hessa 
et al., 2005b): GGPG-L G L F R L V R L L-
R F L R I L L I I -GPGG. Color code: red, 
water; yellow, phosphates; green, 
alkyl chains; gray, S4 hydrophobic 
residues; white, GGPG– and –GPGG 
fl anks; blue, arginines. The S4 pep-
tide is stabilized by phosphates act-

ing as counter-ions and a hydrogen-bonded network of waters that penetrate into the alkyl chain region. The bilayer is highly distorted 
in the vicinity of S4, due to the fl exibility and adaptability of the phospholipid molecules. (D) Snapshot from a molecular dynamics 
simulation of the SecY heterotrimer (Van den Berg et al., 2004) embedded in a POPC bilayer (White and von Heijne, 2005). This image, 
from an MD trajectory provided by Dr. Alfredo Freites, shows that the SecY heterotrimer (translocon) allows polypeptide chains passing 
through its pore to sample the water/bilayer/protein environment, suggesting that the movement of the polypeptide into the bilayer 
is equivalent to a partitioning event. Color code: blue-gray, water; red, lipid headgroups; white, acyl chains; red/white CPK representa-
tions, waters in translocon “hourglass;” pink, hydrophobic residues forming the so-called isoleucine ring that separates the upper and 
lower halves of the hourglass. The images in B and C were created using Visual Molecular Dynamics (VMD) (Humphrey et al., 1996).
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1979; Zaccai et al., 1979) and MD simulation methods 

for visualizing fl uid-bilayer dynamics (van der Ploeg 

and Berendsen, 1982, 1983; Pastor et al., 1991; Heller 

et al., 1993). Wiener and White (1992) built upon the 

early successes of neutron diffraction by developing 

a method for the joint refi nement of x-ray and neu-

tron diffraction data that yielded quantitatively useful 

structural models of a fl uid bilayer. These models con-

sisted of time-averaged transbilayer distributions of all 

the lipid structural components. The most important 

conclusions were that (a) the hydrated headgroups of 

fl uid lipid bilayers account for 50% of the bilayer thick-

ness and (b) the headgroup/hydrocarbon boundary 

is a region of “tumultuous chemical heterogeneity be-

cause of the thermal motion of the bilayer” (Wiener 

and White, 1992).

The shortcoming of diffraction-based models of fl uid 

bilayers is that they are literally one dimensional; the 

transbilayer component-group distributions are time-

averaged projections of the unit cell contents onto an 

axis normal to the membrane plane. This is a conse-

quence of lamellar (one-dimensional) diffraction from 

oriented arrays of lipid bilayers (Franks and Levine, 

1981). It is now possible to use these one-dimensional 

data to arrive at experimentally validated MD simula-

tions that provide accurate three-dimensional, dynamic 

structures (Benz et al., 2005, 2006; Kucerka et al., 2005; 

Klauda et al., 2006). An image of a single frame of an 

MD simulation of the dioleoylphosphatidylcholine 

(DOPC) bilayer studied by Wiener and White (1992) is 

shown in Fig. 1 B. The high thermal disorder and the 

extent of the headgroup regions are apparent in this 

image. A reasonable a priori conclusion is that the head-

group interactions with MPs are likely to be signifi cant. 

Indeed, it is now clear that headgroup phosphates are 

essential for ion channel gating, presumably through 

arginine–phosphate interactions in the case of KvAP 

(Schmidt et al., 2006).

The modern view of bilayer structure, exemplifi ed by 

Fig. 1 B, provides a basis for understanding an intrigu-

ing discovery from our study of the recognition of TM 

helices by the ER translocon (Hessa et al., 2005a); ∆Gapp 

for some residues, notably charged or aromatic ones, 

depended strongly on position within the TM helix, be-

coming more favorable near helix ends. This is remi-

niscent of the statistical preferences of aromatic and 

charged residues in membrane proteins for the mem-

brane headgroup region (Schiffer et al., 1992; Wallin 

et al., 1997; Seshadri et al., 1998; Killian and von Heijne, 

2000; Chamberlain et al., 2004; Ulmschneider et al., 

2005). The position dependence of ∆Gapp suggested 

that the translocon allows TM helices to enter the bi-

layer in a manner that optimizes the positioning of the 

helices to account for the thermodynamic preferences 

of hydrophobic residues for nonpolar phases, aromatic 

residues for the bilayer interface (Yau et al., 1998), and 

charged residues for “snorkeling” (Segrest et al., 1974) 

into the zwitterionic lipid headgroups. The simplest in-

terpretation of our results was that elongating poly-

peptide segments passing through the translocon are 

selected for diversion into the lipid bilayer by thermo-

dynamic partitioning between the translocon channel 

and the lipid bilayer, as proposed by Heinrich et al. 

(2000). This idea and the structure of fl uid lipid bilay-

ers help explain the surprising observation that the ER 

translocon can insert the KvAP S4 helix and its four ar-

ginines across the ER membrane with high effi ciency.

Charge-bearing Transmembrane Helices in Lipid Bilayers
To gain insights into the ability of the translocon to 

insert the KvAP S4 voltage-sensor helix across the ER 

membrane (Hessa et al., 2005b), Freites et al. (2005) 

performed an all-atom molecular dynamics simulation 

of an S4 helix across a POPC bilayer. Assuming that 

S4 was stable across the membrane during the simula-

tion (it was), the objective was to understand how the 

lipid bilayer could accommodate S4 in a transmem-

brane confi guration. The simulation did not address 

the question of thermodynamic equilibrium between 

the inserted and noninserted states for two reasons: the 

tens-of-nanosecond time scale of all-atom simulations 

are impractical for this purpose and the structure and 

location of the noninserted population of S4 peptides 

in the Hessa et al. (2005b) experiment is unknown, 

although it might be surface bound, as observed in 

model membrane systems (Halsall and Dempsey, 1999; 

Mattila et al., 1999). Indeed, a recent coarse-grained 

simulation of the assembly of Kv sensors suggests an 

equilibrium between surface-bound and transmem-

brane states with a ∆Gapp ≈ 0, as in the Hessa et al. 

(2005b) experiment.

Fig. 1 C shows one frame from the Freites et al. (2005) 

simulation. This simulation disclosed that the four argi-

nines of S4 could be stabilized deep within the hydro-

carbon core, because the lipid phosphate groups act as 

counter-ions for the arginines. In addition, the lipids 

apparently rearrange around S4 to optimize hydration 

of the arginines through hydrogen-bonded chains of 

water that dip into the hydrocarbon core. Concerns 

about the physical reality of the MD simulation in this 

dramatic case are quieted by direct physical measure-

ments, which show that the S4 helix can be stably in-

serted across oriented lipid bilayers formed from simple 

mixtures of a synthetic S4 peptide with phospholipids 

(Fernández-Vidal, M., F. Castro-Román, and S.H. White. 

2006. Biophys. J. 90:241a; Castro-Román, F., M. Fernandez-

Vidal, M. Mihailescu, and S.H. White. 2007. Biophys. J. 
92:294a).

Of course, the interactions of the entire sensor (heli-

ces S1–S4) with phospholipids are more complex than 

those of S4 alone, as shown in a recent MD simulations 

of the KvAP sensor in lipid bilayers (Freites et al., 2006; 
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Bond and Sansom, 2007). But phosphate–arginine in-

teractions were still found to be important for the sta-

bilization of the sensor. Are these interactions peculiar 

to arginine? When S4 arginines are mutated to lysines 

one at a time (Aggarwal and MacKinnon, 1996) or 

even to MTS-trimethylammonium reagents (Ahern and 

Horn, 2005), K+-channel gating works just fi ne. It is not 

known if all four arginines can be replaced simultane-

ously by arginines, although a recent report indicates 

that voltage gating is not entirely lost when three of four 

arginines in the voltage sensor of shaker are replaced 

by glutamines (Voets, T., A. Janssens, and B. Nilius. 

2007. Biophys. J. 92:125a). In any case, the insertion of 

the charge-bearing TM helices in the studies by Hessa 

et al. (2005a,b) can be reasonably explained by a com-

bination of charged-residue snorkeling and local lipid 

rearrangements in the immediate vicinity of the charge-

bearing helices.

Peptide Partitioning into n-Octanol
When the complexity of the lipid bilayer and the possi-

bility of headgroup interactions with polar and charged 

amino acids are taken into account, the relevance of hy-

drophobicity scales based upon partitioning of amino 

acid side chains into purely nonpolar phases such as cy-

clohexane becomes doubtful. The presence of a modest 

polar group in the “nonpolar” phase, such as the hy-

droxyl of n-octanol, can profoundly affect partitioning 

free energies. For example, the free energy of transfer 

of arginine from water to octanol is only �2 kcal mol−1 

(Wimley et al., 1996) rather than the value of �15 

kcal mol−1 observed for water-to-cyclohexane transfer 

(Radzicka and Wolfenden, 1988). It is signifi cant that 

the Wimley-White octanol-based whole-residue hy-

drophobicity scale (Wimley et al., 1996) provides very 

accurate detection of TM helices, including those car-

rying charged residues, in hydrophobicity plots of MPs 

(Jayasinghe et al., 2001). There are two likely reasons 

for this success. First, the Wimley-White scale is a whole-

residue scale, because it includes the energetic cost of 

partitioning H-bonded peptide bonds. Second, water-

saturated n-octanol has a micellar structure that allows 

the octanol and water molecules to adapt readily to both 

polar and nonpolar molecular groups as necessary to mini-

mize the free energy of the system (Franks et al., 1993). 

The phospholipids in a bilayer in excess water seem to 

have a molecular adaptability similar to octanol in water-

saturated octanol solutions. But there is a major differ-

ence: cell membrane phospholipids are thermodynami-

cally constrained to a bilayer confi guration that provides, 

in simple terms, a transmembrane “polarity gradient” 

that is not feasible in an octanol micelle. This gradient 

underlies the preference of aromatic and charged resi-

dues for interfacial positions in TM helices and provides 

a basis for understanding the position dependence of the 

∆Gapp values for these residues.

If hydrated octanol cannot geometrically mimic the 

polarity gradient of bilayers, how can hydrophobicity 

values derived from octanol–water partitioning predict 

TM helices with considerable accuracy? One can only 

speculate about the answer to this question. A simple 

explanation may be a convergence of physical chemis-

try and protein evolution. One can suppose that octa-

nol’s molecular adaptability allows optimization of a 

residue’s local environment that yields a free energy 

that is similar, perhaps by coincidence, to the optimal 

local environment of the residue in a lipid bilayer. For 

aromatic and charged residues, the optimal local envi-

ronment is the membrane interface. If TM helices have 

evolved to optimize the local environment of each resi-

due using position dependence as a tool, then the av-

erage partitioning free energy of a helix reported by 

octanol could match the partitioning free energy of a 

helix computed from the biological scale with position 

dependence taken into account.

The Translocon as a Thermodynamic Switch
These considerations suggest how bulk-phase octanol 

measurements could provide a useful hydrophobicity 

scale for membrane proteins in lipid bilayers, and why 

the biological (Hessa et al., 2005a) and the octanol scales 

(White and Wimley, 1999) are similar. Taken at face 

value, the close correlation between the scales implies 

that translocon-assisted insertion involves the equivalent 

of a partitioning measurement. Indeed, Rapoport and 

colleagues proposed several years ago that movement 

of polypeptide segments out of the translocon involved 

partitioning between translocon and bilayer (Heinrich 

et al., 2000). That this is a real possibility becomes evi-

dent from MD simulations of the SecY heterotrimer 

(Van den Berg et al., 2004) embedded in a lipid bilayer 

(White and von Heijne, 2005; Gumbart and Schulten, 

2006; Haider et al., 2006). Fig. 1 D shows a snapshot 

from one such simulation.

The crystallographic structure of Van den Berg et al. 

(2004) revealed that (a) the translocon tunnel is hour-

glass shaped and probably fi lled with water and (b) 

polypeptides traversing a translocon could exit into the 

bilayer only between the so-called gate helices (TM2B 

and TM7, Fig. 1 D). A close look at this region in the 

simulations reveals, as surmised from the x-ray struc-

ture, that the tunnel is fi lled with hundreds of water 

molecules. The top and bottom halves of the hourglass 

are separated by a ring of hydrophobic side chains 

(mostly isoleucine) through which the elongating pep-

tide must pass. Just beyond the TM2B and TM7 helices 

are the phospholipids, which in the MD simulations are 

pounding at the gate. The translocon aqueous pore and 

its guardian gate helices are geometrically well suited 

for allowing a translocating chain to sample, through 

thermal fl uctuations, both the aqueous environment of 

the translocon pore and the heterogenous environment 
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of the lipid bilayer. Because polypeptide chains elon-

gate (Goder and Spiess, 2003) at a rate of about fi ve 

 residues per second, much slower than the thermal 

fl uctuations of the bilayer and translocon, there is likely 

to be ample time for partitioning events to occur. Given 

the intimate spatial relationship between translocon 

and bilayer, one can readily imagine how the translocon 

can “set up” a transiting KvAP S4 segment for release 

into the bilayer.

The translocon thus seems well adapted to the task of 

optimizing the positioning of TM helices across ER 

membranes through a partitioning process at the pro-

tein/water/lipid interface provided by the translocon. 

Many billions of polypeptide chains pass through the 

ER translocons during the expression of a single Lep 

construct in the Hessa et al. (2005a) experiments, which 

means that the probability of diverting a segment into 

the bilayer is accurately defi ned by the experiment. The 

insertion effi ciency, represented by ∆Gapp, measures this 

probability. From this point of view, the translocon acts 

as a thermodynamic switch in the sense that diversion of 

a polypeptide segment from the water-fi lled translocon 

channel into the bilayer is dictated by partitioning prob-

abilities of the sort one measures in a bulk-phase parti-

tioning experiment.

TM Helix Recognition by the Translocon 
and Water-to-Bilayer Partitioning
The recognition of TM helices by the translocon is most 

simply explained as a partitioning process between the 

translocon and the membrane bilayer. But is this par-

titioning quantitatively equivalent to direct water-to-

 bilayer partitioning? If it is, then the ∆Gapp values will 

equal the free energy values obtained from direct water-

to- bilayer partitioning experiments or simulations. The 

ans wer hinges in part on the equivalence of the water-

fi lled translocon tunnel to bulk water. Considering the 

structural and chemical complexity of the translocon–

bilayer complex (Fig. 1 D), complete equivalence seems 

unlikely. Another issue is timing. Cheng and Gilmore 

(2006) have found for Saccharomyces cerevisiae that elon-

gation of nascent polypeptides occurs more rapidly than 

translocon gating, which raises the possibility of signifi -

cant aqueous exposure of TM segments before membrane 

insertion by the translocon. The free energy difference 

between a chain in the translocon and in the water-

exposed state becomes a critical issue in such a case.

Yet another issue is the environment of TM helices 

within the membrane. Is it equivalent to that of a pure 

bilayer? If, for example, the emergent TM helices in-

teracted with other TM proteins, then they could not 

be considered to be in a pure bilayer environment. We 

recently examined the possibility that the engineered 

H-helix in leader peptidase (Lep) used for the determi-

nation of ∆Gapp might interact strongly with the native 

H1 and H2 helices of Lep (Meindl-Beinker et al., 2006). 

To study this question, we replaced H2 with constructs 

(H2’) whose amino acid sequences could be modifi ed 

to include residues with strong hydrogen-bonding po-

tential (Asp or Asn). Signifi cant effects on the insertion 

of H were observed only when there was the possibility 

of two interhelix (H2’ÛH) Asn–Asn or Asp–Asp interac-

tions. But even in these cases only a moderate effect on 

∆Gapp was observed. These results suggest that changes 

in local environment due to helix–helix interactions are 

not of fi rst-order concern in comparisons of biological 

and physical hydrophobicity scales.

Perspective
An important feature of fl uid lipid bilayers is the two in-

terfacial regions that together account for about 50% of 

the total thermal thickness of the bilayer. The ability of 

the bilayer to accommodate the KvAP S4 segment as a 

transmembrane helix attests to the importance the inter-

facial headgroups in lipid interactions with membrane 

proteins. Translocons embedded in bilayers seem well 

adapted to the task of inserting TM segments across the 

bilayer in a manner that optimizes side chain interactions 

with the hydrocarbon core and interfaces. They seem to 

behave as thermodynamic switches that divert nascent 

polypeptides into the bilayer by a thermodynamic parti-

tioning process. The probability of diversion depends on 

the free energy of the nascent chain in the bilayer relative 

to the free energy in the translocon. Because the trans-

locon channel is water fi lled, the membrane insertion 

free energy must be closely related to the free energy of 

helix insertion that could be determined by direct water-

to-bilayer partitioning. This is apparent from the close 

correlation of physical hydrophobicity scales to the bio-

logical scale described by ∆Gapp. However, because of the 

complex and currently ill-defi ned environment of the 

translocon channel, it is not clear that ∆Gapp will be ex-

actly equal in all cases to free energies determined from 

direct water-to-bilayer partitioning experiments or simu-

lations. The thermodynamic comparison may be further 

complicated by the fact that translocon gating (switch-

ing) may be slower than nascent chain elongation. Given 

these complications, the close correlation between the 

Wimley-White octanol scale and the biological scale is 

intriguing. One possibility is that octanol’s molecular 

adaptability allows optimization of a residue’s local envi-

ronment that is similar to the optimal local environment 

of the residue at a specifi c position in a lipid bilayer. If 

TM helices have evolved to optimize the local environ-

ment of each residue through their positions in the he-

lix, then the average partitioning free energy of a helix 

reported by octanol would be similar to the partitioning 

free energy of a helix computed from the biological scale 

with position dependence taken into account.
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