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Abstract: Reduced renal medullary oxygen supply is a key factor in the pathogenesis of acute kidney
injury (AKI). As the medulla exclusively receives blood through descending vasa recta (DVR), dilating
these microvessels after AKI may help in renoprotection by restoring renal medullary blood flow.
We stimulated the NO-sGC-cGMP signalling pathway in DVR at three different levels before and
after hypoxia/re-oxygenation (H/R). Rat DVR were isolated and perfused under isobaric conditions.
The phosphodiesterase 5 (PDE5) inhibitor sildenafil (10−6 mol/L) impaired cGMP degradation
and dilated DVR pre-constricted with angiotensin II (Ang II, 10−6 mol/L). Dilations by the soluble
guanylyl cyclase (sGC) activator BAY 60-2770 as well as the nitric oxide donor sodium nitroprusside
(SNP, 10−3 mol/L) were equally effective. Hypoxia (0.1% O2) augmented DVR constriction by
Ang II, thus potentially aggravating tissue hypoxia. H/R left DVR unresponsive to sildenafil, yet
sGC activation by BAY 60-2770 effectively dilated DVR. Dilation to SNP under H/R is delayed. In
conclusion, H/R renders PDE5 inhibition ineffective in dilating the crucial vessels supplying the
area at risk for hypoxic damage. Stimulating sGC appears to be the most effective in restoring renal
medullary blood flow after H/R and may prove to be the best target for maintaining oxygenation to
this vulnerable area of the kidney.

Keywords: descending vasa recta; hypoxia; re-oxygenation; soluble guanylyl cyclase; nitric oxide

1. Introduction

Despite its energy-intensive functions of resorption and concentration, the renal
medulla receives a considerably small amount (~10%) of the renal blood flow (RBF). It is
exclusively perfused through descending vasa recta (DVR), which are capillary-like, long
vessels originating from the juxtamedullary nephrons. DVR are lined with pericytes on
their outer surface [1–3]. DVR supply the most energy-consuming cells, while warranting
minimum perfusion to glycolytic cells in remote regions of the inner medulla. Highly
oxygen-consuming structures, such as the S3 segment and the thick ascending limb of
Henle, rely on vasa recta anastomosis for their oxygen supply. On the other hand, blood
supply to deeper structures in the papilla must be minimal to prevent osmolyte washout.
High oxygen demand combined with low perfusion renders the inner part of the outer
medulla particularly susceptible to hypoxic damage in pathological events such as acute
kidney injury (AKI) and chronic kidney disease (CKD) [4]. As DVR are the only vessels sup-
plying blood to these renal areas at risk of hypoxia, maintaining blood supply is uniquely
demanding and is key to providing renoprotection.

The physiological functions of DVR have been extensively characterized over the
last two decades and the specific role that pericytes play in this context has also been
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described (for review see [5–7]). It is the response of pericytes to various stimuli, such as
sympathetic nervous activity, circulating and local hormones, and metabolites generated
by neighbouring tubuli, that enables DVR to constrict and relax [5,8,9].

While experimental ischemia/re-perfusion reduces the overall RBF, its effect on the
blood flow and oxygenation of the medulla is significantly prolonged compared to the
cortex [10,11]. Moreover, the damage is especially severe in the inner part of the outer
medulla [12]. These findings suggest that medullary blood flow plays an important role
in the genesis of renal damage in various renal pathologies. RBF is critically regulated by
nitric oxide (NO) through its vasodilatory effect. NO is probably the strongest antagonist of
several vasoconstrictors, including angiotensin II (Ang II), and plays an important role in the
physiology and pathophysiology of renal perfusion [13–16]. Experimentally induced NO
deficiency has been shown to reduce RBF and cause renal damage in several species [17,18].
NO deficiency is a hallmark of AKI and CKD and may contribute to the imbalance of
vasoconstrictor and dilator mechanisms that increase renal vascular resistance and reduce
cortical and medullary RBF [19]. Therefore, improving RBF, especially the medullary flow,
by restoring NO production and signalling may be a protective and therapeutic tool in AKI
and CKD. Pharmacological approaches have indeed been successful in animal experiments;
however, they have not been translated to the clinical setting to date.

Cyclic GMP (cGMP) is the mediator of the NO system in vascular smooth muscle cells.
Several pharmacological agents developed during the last two decades aim at modulating
the effects of the NO system by increasing cellular levels of cGMP. The most prominent
categories of such agents are phosphodiesterase 5 (PDE5) inhibitors and soluble guanylyl
cyclase (sGC) stimulators and activators [20,21]. Some of them are already used in the
clinic, e.g., to treat pulmonary hypertension [22]. Their dilatory capabilities in microvessels
of the renal cortex have recently been demonstrated [23]. Interestingly, the sGC activator
cinaciguat has been shown to dilate glomerular efferent but not afferent arterioles in mice
after strong hypoxia and subsequent re-oxygenation [24]. This indicates that NO signalling
after hypoxia is differently regulated in the two different types of glomerular arterioles.
However, little is known about the influence of hypoxia on microvascular NO signalling in
the renal medulla. Therefore, we investigated the dilatory capacity of the NO system in
DVR and tested the ability of an sGC activator to dilate these microvessels after hypoxia/re-
oxygenation (H/R). This could provide a new approach for protection and therapy in AKI
and CKD.

2. Results
2.1. Pharmacological Characterization of NO-sGC-System in Rat DVR
2.1.1. Effect of NOS Inhibition

NO deficiency was induced in isolated rat DVR by treating them with an inhibitor
of NO synthases (NOS)—Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME,
10−4 mol/L)—for 15 min. While a control group of vessels incubated under similar condi-
tions did not show a significant change in diameter, vessels treated with L-NAME were
significantly constricted (Figure 1A).

L-NAME-treated and untreated control vessels were subjected to increasing concentra-
tions of Ang II (10−12–10−6 mol/L) to study the effect of NOS inhibition on vasoconstriction.
L-NAME-treated vessels showed a significantly stronger constriction in response to higher
concentrations of Ang II (10−10–10−6 mol/L) compared to control vessels (Figure 1B). The
absolute initial diameters of L-NAME-treated vessels (mean ± SEM: 7.17 ± 0.99 µm) were
similar to control vessels (7.87 ± 0.70 µm, Mann–Whitney test, p > 0.05). To assess if
NOS inhibition also affects vasodilation, L-NAME-treated and untreated control vessels
were pre-constricted using 10−6 mol/L Ang II followed by treatment with cumulatively
increasing concentrations of acetylcholine (ACh, 10−11–10−4 mol/L). The dilatory response
of L-NAME-treated vessels was, indeed, significantly weaker compared to control vessels
(Figure 1C). The absolute initial diameters of the vessels after pre-constriction were not
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significantly different between the L-NAME-treated and control groups (mean ± SEM:
1.97 ± 0.41 µm (L-NAME) vs. 1.80 ± 0.11 µm (control), Mann–Whitney test, p > 0.05).
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Figure 1. Effect of L-NAME on rat DVR. (A) Vessels treated with L-NAME (10−4 mol/L) for 15 min
(n = 12) showed significant constriction compared to untreated control (n = 5) vessels (Mann–Whitney
test, * p < 0.05). Vessel diameters in both groups before treatment were not significantly different
(mean ± SEM: 8.48 ± 0.84 µm (L-NAME) vs. 7.84 ± 0.83 µm (control), Mann–Whitney test, p > 0.05).
(B) Concentration–response curves showing the constriction induced by Ang II in DVR with and
without 10−4 mol/L L-NAME pre-treatment for 15 min. L-NAME-treated DVR constricted signifi-
cantly more in response to higher Ang II concentrations (highlighted in a box) than the control group
(Brunner test, * p < 0.001). (C) Concentration–response curves showing the relaxation induced by
10−11–10−4 mol/L acetylcholine (ACh) in DVR with and without pre-treatment with 10−4 mol/L
L-NAME for 15 min. L-NAME-treated vessels showed a lower maximum response to ACh compared
to the control group (Brunner test, * p < 0.01).

2.1.2. Effect of PDE5 Inhibition

Vasodilation was tested by subjecting isolated rat DVR to cumulatively increasing
concentrations of sildenafil (10−9–10−6 mol/L). Vessels were pre-constricted using Ang II
(10−6 mol/L) and had a mean diameter ± SEM of 3.65 ± 0.32 µm. The pre-constricted
vessels showed concentration-dependent dilation in response to sildenafil (Figure 2A).
Bolus application of sildenafil (10−7 mol/L) to Ang II pre-constricted vessels resulted in
100% dilation of vessels in 5 min, while control vessels, which did not receive a bolus,
remained constricted throughout the experimental duration of 10 min (Figure 2B). Both
sildenafil-treated and untreated control vessels had comparable absolute diameters after
Ang II pre-constriction (mean ± SEM: 3.53 ± 0.44 µm (sildenafil) vs. 3.37 ± 0.47 µm
(control), Mann–Whitney test, p > 0.05).
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Figure 2. Effect of the PDE5 inhibitor sildenafil. Rat DVR were pre-constricted with 10−6 mol/L
Ang II. (A) Concentration–response curve showing vasorelaxation induced by 10−9 to 10−6 mol/L
sildenafil. Vessel diameter did not change in the absence of sildenafil (con). (B) Time–response curves
showing relaxation induced by 10–7 mol/L sildenafil over a period of 10 min. Sildenafil caused
an almost instantaneous relaxation of the vessels with 100% relaxation achieved in 5 min (Brunner
test, * p < 0.001). Control vessels without sildenafil treatment remained constricted throughout the
experiment.

2.1.3. Effect of sGC Activation in NO-Deficient Vessels

sGC was activated using increasing concentrations of the NO-independent activator
BAY 60-2770. Rat DVR were pre-treated with 10−4 mol/L L-NAME followed by a pre-
constriction with 10−6 mol/L Ang II. A concentration-dependent dilation was seen in
response to BAY 60-2770 (Figure 3A). The absolute initial diameter of vessels after pre-
constriction was 3.59 ± 0.32 µm (mean ± SEM). In another set of experiments, L-NAME-
treated Ang-II-constricted vessels that received a bolus of 10−6 mol/L BAY 60-2770 showed
maximum dilation in 6 min, while the vessels that did not receive the bolus remained
constricted throughout the duration of the experiment (10 min, Figure 3B). Both groups of
vessels had comparable initial diameters after pre-constriction with Ang II (mean ± SEM:
3.22 ± 0.38 µm (BAY 60-2770) vs. 2.90 ± 0.54 µm (control), Mann–Whitney test, p > 0.05).
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Figure 3. Effect of the soluble guanylyl cyclase activator—BAY 60-2770. Rat DVR were pre-treated
with 10−4 mol/L L-NAME and pre-constricted with 10−6 mol/L Ang II. (A) Concentration–response
curve showing relaxation induced by 10−11–10−5 mol/L BAY 60-2770. Vessel diameter did not
change in the absence of BAY 60-2770 (con). (B) Time–response curves showing relaxation induced
by 10−6 mol/L BAY 60-2770 over a period of 10 min. Control vessels without BAY 60-2770 treatment
remained constricted throughout the experiment (Brunner test, * p < 0.001).
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2.2. Characterization of Human DVR

Human DVR were isolated from tissue samples obtained from nephrectomies. The
viability of the vessels was tested by treating them with increasing concentrations of
Ang II (10−12–10−6 mol/L). The vessels constricted in a concentration-dependent fash-
ion in response to Ang II (Figure 4A). The initial absolute diameter of the vessels was
11.29 ± 0.88 µm (mean ± SEM). To test the effect of sGC activation on human DVR, Ang II
pre-constricted vessels were treated with a bolus of BAY 60-2770 (10−6 mol/L). The vessels
achieved maximum relaxation 3 min post bolus application (Figure 4B).
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Figure 4. sGC activation in human DVR. (A) Concentration–response curve showing constriction
induced by 10−12–10−6 mol/L Ang II. Vessel diameters did not change in the absence of Ang II (con).
(B) Time–response curve showing relaxation induced by 10−6 mol/L BAY 60-2770. Vessels were
pre-constricted with 10−6 mol/L Ang II. BAY 60-2770 caused an almost instantaneous relaxation of
the vessels with maximum relaxation achieved in 3 min.

2.3. Effect of H/R on Rat DVR

Isolated rat DVR were incubated in a 0.1% O2 environment (hypoxia) or a 20.9% O2 en-
vironment (normoxia) for 30 min. Hypoxia did not affect the resting diameters of the vessels
(mean ± SEM: 7.31 ± 0.45 µm (hypoxia) vs. 7.91 ± 0.50 µm (normoxia), Mann–Whitney test,
p > 0.05). To study the effect of hypoxia on vasoconstriction, both groups of vessels were
treated with increasing concentrations of Ang II. Hypoxic vessels showed a significantly
stronger constriction in response to Ang II (Figure 5A). The effect of hypoxia on vasodi-
lation was analysed by pre-constricting hypoxic and normoxic vessels with 10−6 mol/L
Ang II followed by treatment with cumulatively increasing concentrations of ACh. While
both groups had similar diameters after pre-constriction (mean ± SEM: 1.48 ± 0.10 µm
(hypoxia) vs. 1.97 ± 0.41 µm (control), Mann–Whitney test, p > 0.05), hypoxic vessels
showed a significantly weaker relaxation in response to ACh compared to normoxic vessels
(Figure 5B). In another set of experiments, hypoxic and normoxic vessels pre-constricted
using 10−6 mol/L Ang II received a bolus of 10−6 mol/L sildenafil. While PDE5 inhibition
with sildenafil resulted in the complete relaxation of normoxic vessels, hypoxic vessels re-
mained constricted throughout the experimental duration of 10 min (Figure 5C). The initial
diameters of hypoxic vessels after pre-constriction (mean ± SEM: 2.65 ± 0.47 µm) were not
significantly different compared to normoxic vessels (3.53 ± 0.44 µm, Mann–Whitney test,
p > 0.05).
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Figure 5. Effect of hypoxia/re-oxygenation on rat DVR. Vessels were pre-incubated either in
a 0.1% oxygen (O2) atmosphere (hypoxia) or in a 20.9% O2 atmosphere (normoxia) for 30 min.
(A) Concentration–response curves showing constriction induced by 10−12–10−6 mol/L Ang II in
hypoxic and normoxic vessels. Hypoxia/re-oxygenation group of vessels showed a significantly
stronger constriction in response to Ang II compared to the normoxia group (Brunner test, * p < 0.001).
(B) Concentration–response curve showing relaxation induced by 10−11–10−4 mol/L ACh in hypoxic
and normoxic vessels pre-constricted with 10−6 mol/L Ang II. Hypoxic vessels relaxed significantly
less in response to higher concentrations of ACh (10−9–10−4 mol/L, highlighted in a box) com-
pared to normoxic vessels (Brunner test, * p < 0.05). (C) Time–response curves showing the effect of
PDE inhibition using 10−6 mol/L sildenafil on hypoxic and normoxic vessels pre-constricted with
10−6 mol/L Ang II. Sildenafil caused normoxic vessels to relax, while no relaxation was observed in
hypoxic vessels for the entire duration of the experiment (Brunner test, * p < 0.001).

The effect of sGC activation on hypoxic vessels was analysed using the NO donor
sodium nitroprusside (SNP) and the NO-independent sGC activator BAY 60-2770. To deter-
mine the concentration response, SNP was used in cumulatively increasing concentrations
to treat isolated rat DVR that were pre-constricted with 10−6 mol/L Ang II and pre- treated
with 10−4 mol/L L-NAME (mean diameter ± SEM after pre-constriction: 3.59 ± 0.32 µm).
The vessels relaxed in a dose-dependent manner and 100% relaxation was achieved with
10−3 mol/L SNP (Figure 6A).
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Figure 6. Effects of sodium nitroprusside (SNP) and BAY 60-2770 on hypoxic rat DVR.
(A) Concentration–response curve showing relaxation induced by 10−11–10−5 mol/L sodium ni-
troprusside (SNP) in rat vasa recta. Vessel diameter did not change under control conditions (con), i.e.,
in the absence of BAY 60-2770. Time–response curves showing the effect of (B) the NO donor SNP
(10−3 mol/L) and (C) the NO-independent sGC activator BAY 60-2770 (10−6 mol/L) on hypoxic and
normoxic vessels over a period of 10 min. Vessels were pre-incubated either in a 0.1% oxygen (O2)
atmosphere (hypoxia) or in a 20.9% O2 atmosphere (normoxia) with 10−4 mol/L L-NAME for 30 min
followed by a pre-constriction with 10−6 mol/L Ang II. Relaxation to SNP and BAY 60-2770 were
similar in hypoxic and normoxic vessels, respectively. However, (D) hypoxic vessels showed faster
relaxation in response to BAY 60-2770 compared to SNP (Brunner test, p < 0.05, same data as (B,C)).

Isolated DVR were subjected to hypoxia or normoxia for 30 min in the presence of
10−4 mol/L L-NAME to inhibit cellular NOS, followed by pre-constriction with 10−6 mol/L
Ang II. Both groups of vessels had comparable diameters after pre-constriction (mean ± SEM:
2.72 ± 0.82 µm (hypoxia) vs. 2.51 ± 0.53 µm (normoxia), Mann–Whitney test, p > 0.05).
A bolus of 10−3 mol/L SNP was then applied to these vessels to study the effect of hy-
poxia on the NO-dependent activation of sGC. Both groups of vessels showed similar
relaxation in response to the bolus over a period of 10 min (Figure 6B). The effect of
the NO-independent activation of sGC was similarly analysed by applying a bolus of
10−6 mol/L BAY 60-2770 to L-NAME-treated hypoxic and normoxic vessels that were
pre-constricted using 10−6 mol/L Ang II. Both groups of vessels showed similar relax-
ation in response to BAY 60-2770 over a period of 10 min (Figure 6C). The absolute initial
diameters of hypoxic vessels after pre-constriction (mean ± SEM: 1.70 ± 0.19 µm) were
smaller compared to normoxic vessels (2.47 ± 0.24 µm, Mann–Whitney test, p < 0.05).
However, the NO-independent activator BAY 60-2770 caused a significantly quicker re-
laxation in L-NAME-treated pre-constricted hypoxic vessels compared to the NO donor
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SNP (Figure 6D). The absolute initial diameters of pre-constricted hypoxic vessels treated
with BAY 60-2770 (mean ± SEM: 1.70 ± 0.19 µm) were not significantly different than the
SNP-treated vessels (2.72 ± 0.82 µm, Mann–Whitney test, p > 0.05).

3. Discussion

In this study, we analysed the function of isolated, perfused outer medullary DVR
to demonstrate the importance of the NO system for vascular tone. Under physiological
conditions, DVR constricted strongly in response to Ang II and relaxed completely in
response to the ACh treatment that followed. Moreover, the dilatory function of DVR could
be substantially enhanced by pharmacological modulation of the NO system, as evident
from their strong dilatory responses to the PDE5 inhibitor sildenafil and the sGC activator
BAY 60-2770. After exposure to a strong and acute hypoxia, DVR response to Ang II
showed a significant increase, while there was a reduction in ACh-mediated dilation. This
corresponds to the imbalance between vasoconstriction and dilation that leads to reduced
renal (medullary) perfusion seen in ischemia/reperfusion models of AKI. Interestingly, the
natural agonist of sGC, NO, as well as the sGC activator could dilate DVR after H/R, but
sildenafil could not. Although all of these pharmacological agents increase cellular cGMP
levels, their ability to do so seems to be differently affected by H/R.

We used isolated, perfused DVR to characterize the NO-sGC-cGMP system and to
test the dilatory potency of pharmacological substances. This method is rarely applied due
to its technically demanding nature that necessitates long-term training. Nevertheless, it
is a well-established method and has been used in functional, electrophysiological, and
imaging studies [25,26]. It has several advantages compared to the living kidney slice
technique. For instance, while living kidney slices suffer from a lack of oxygen in the inner
parts owing to their commonly used thickness of 200–300 µm, isolated, perfused DVR allow
for sufficient oxygenation. This lack of oxygen in the slices may lead to metabolic changes
in the tubuli and vessels, resulting in a release of a cocktail of substances with potentially
vasoactive properties. In the case of isolated, perfused DVR, however, the experimental
conditions can be uniformly controlled with the help of the bath and perfusion solutions.
They can also be easily exposed to hypoxia and re-oxygenated in a precise and controlled
fashion. Moreover, the perfusion also closely simulates physiological conditions as the flow
itself is an important determinant of endothelial function.

The responses of isolated, perfused rat DVR to Ang II and ACh in our experiments
were consistent with previously published studies [27–29]. The inhibition of NOS clearly
enhanced Ang II response and diminished ACh-induced dilation, suggesting that NO is an
important regulator of DVR diameter. NO activates sGC in vascular smooth muscle cells
and pericytes, leading to cGMP production. This cGMP then activates protein kinase G,
which phosphorylates several proteins that reduce the levels of cytosolic calcium, which in
turn causes vasodilation [30].

While NO is the natural agonist of sGC, pharmacological agents can activate sGC
independently of NO. These sGC activators are functional with both oxidized and haem-
free variants of sGC [22]. We tested the sGC activator BAY 60-2770 in DVR, in which
NO was depleted using L-NAME. BAY 60-2770 was indeed able to dilate pre-constricted
DVR in a dose-dependent manner. This observation indicates that BAY 60-2770 may have
a high potency to dilate NO-deficient DVR in vivo. Cinaciguat, another sGC activator,
has also been shown to normalize renal resistance and blood flow in rats after L-NAME
treatment [31]. However, activators are considered to exert a systemic action, which
may reduce the overall arterial blood pressure and reverse the intended restoration of
renal perfusion in pathological situations [31,32]. We also tested BAY 60-2770 on human
DVR; however, these tests were without L-NAME pre-treatment due to the limited time
available for acute experiments after harvesting the tissue and its subsequent transport to
the laboratory. Nevertheless, BAY 60-2770 very effectively dilated pre-constricted human
DVR and has potential for clinical application. In addition to sGC, cGMP levels are
also regulated by PDEs. Here, we showed that PDE5 is an important component of the
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NO-sGC-cGMP system, and its inhibition had a strong dilatory effect on DVR under
physiological conditions.

After characterizing the NO-sGC-cGMP system, we tested the ability of sildenafil,
BAY 60-2770, and the NO donor SNP to dilate DVR after H/R. In most models of renal
pathologies, including AKI and CKD, H/R is a major contributor to the pathogenesis
of renal damage [33]. Animal models of ischemia/re-perfusion injury show reduced
oxygenation and perfusion of the kidney. Furthermore, the restoration of blood flow and
oxygenation after ischaemia is remarkably delayed in the renal medulla compared to the
cortex [34,35]. This delay does not only indicate that the regulation of medullary perfusion
after ischaemia is at least partly independent of that of the cortex, but also underscores
the critical role that DVR play in it. Likely reasons for this medullary malperfusion could
be a combination of functional changes such as the thrombotic occlusion of microvessels
and an increased DVR tone [34]. The latter seems to be caused by an imbalance between
vasoconstrictors and dilators. An increase in NO production and a reduced response
to Ang II, as seen in ex vivo functional experiments in rat DVR, 48 h after warm renal
ischaemia/re-perfusion, can be interpreted as a compensatory reaction to this imbalance.
A rise in iNOS expression may trigger the increase in NO-bioavailability [26]. In kidney
slices, fixed immediately following acute H/R (1 h each), vasa recta have been shown to
have reduced diameters at pericyte sites and disruptions in their fluorescent dye-filled
lumina [34]. Interestingly, the diameters of isolated DVR in the present study after 30 min
of hypoxia followed by 10 min of re-oxygenation did not differ significantly from those of
normoxic controls in the absence of vasoactive substances. However, the vessel response to
Ang II was stronger, and ACh-induced dilation was weaker. Ang II activates NO synthase
via Ang II receptor type I, resulting in NO release. This NO then dampens the Ang II-
induced vasoconstriction in renal microvessels [36]. This crosstalk between Ang II and the
NO system may be impaired after H/R, contributing to the stronger Ang II response and
diminished ACh response. Another important factor that comes into play in this context is
oxidative stress. Superoxide, a prominent representative of reactive oxygen species, does
not only increase the Ang II response, since it is a part of the signalling, but also scavenges
NO at the same time [37–39]. A similar increase in the Ang II response of DVR after H/R
has also been observed in living kidney slices [40]. Taken together, functional changes
in the outer medullary DVR seem to play a critical role in the disruption of medullary
perfusion caused by ischaemia/re-perfusion.

Since the acute period is characterized by an increased tone and reactivity to Ang II,
accompanied by reduced dilatory capacity, restoring vasodilation would be protective
for the kidney. The NO donor SNP showed a full dilatory potency. This was unexpected
because increased ROS generation after H/R may oxidize sGC, thereby rendering it less
responsive to NO [37,41]. The NO-independent activation of sGC using BAY 60-2770 also
led to complete DVR dilation, which was faster than the SNP-induced dilation. Surprisingly,
sildenafil did not affect the DVR diameter after H/R at all, which may at least partly be due
to low cGMP levels, as indicated by the significantly reduced response to ACh. However,
direct damage to the enzyme due to the strong hypoxia cannot be ruled out.

Our findings suggest a beneficial effect of NO donors and sGC activators in hypoxia-
damaged DVR in an acute pathological situation, where dilation is reduced and reactivity
to Ang II is increased. While the period of re-oxygenation was relatively short in our
experiments, prolonged re-oxygenation periods following strong hypoxia have also been
shown to increase Ang II response in cortical microvessels in living kidney slices [42].
Therefore, one can speculate that longer re-oxygenation periods in vivo induce oxidative
stress, resulting in stronger oxidation of sGC, making it unfit to be activated by NO. In
such a situation, sGC activators are especially beneficial as they activate oxidized sGC more
efficiently [43]. Therefore, the effect of sGC activators might be more pronounced in kidneys
damaged by ischaemia/reperfusion, suggesting potential for therapeutic application.
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4. Materials and Methods
4.1. Experimental Animals

Male Sprague Dawley rats were maintained at the animal facility of the Charité—
Universitätsmedizin Berlin under a 12 h light/dark cycle. They were housed in enriched
cages and were allowed free access to rat chow and tap water.

4.2. Dissection of DVR

To isolate DVR, rats (250 g) were anesthetized with isoflurane and then decapitated. The
left kidney was then taken out immediately and sliced along the corticomedullary axis. A
customized set of forceps (No. 5, Dumont, Switzerland) was used to isolate DVR from the
renal outer medulla. A single DVR was then transferred to a perfusion chamber assembled on
the stage of an inverted microscope. For some of the experiments, small bundles of DVR were
dissected and pre-treated, e.g., in a hypoxic chamber, so that they could be easily retrieved
after the pre-treatment to isolate single DVR for perfusion experiments. To follow the 3R
principle of ‘reduce’, multiple DVR were isolated from each animal; however, no more than
one DVR per animal was used for the same experimental protocol. Dulbecco’s modified
Eagle’s medium (DMEM, Gibco, Paisley, UK) with 0.1% albumin (Carl Roth GmbH, Karlsruhe,
Germany) was used as a bath solution for dissections as well as in the perfusion chamber.

4.3. Human DVR

Human DVR were isolated from non-malignant outer medullary renal tissue. The tissue
was obtained from 6 patients who underwent nephrectomies due to renal cell carcinoma at the
Klinik für Urologie, Charité—Universitätsmedizin Berlin between October 2019 and March
2022. All patients provided written informed consent. The study was approved by the ethical
committee of the Charité—Universitätsmedizin Berlin (Approval No. EA4/65/18).

4.4. Perfusion of Isolated DVR

A set of handmade glass pipettes were used to perfuse the DVR. In the perfusion
chamber, a single DVR was fixed in place using a holding pipette on each end. A smaller
pipette placed inside the left holding pipette (inner pipette) was advanced into the lumen of
the vessel (Figure 7A). The vessel was then perfused with DMEM supplemented with 1%
albumin. The perfusion was carried out under a pressure of 15 mm Hg using a pressure
head. This pressure is suitable to open the lumen of the DVR without any sign of overstretch-
ing. After warming to 37 ◦C, vessels were allowed to adapt for 5 min before starting the
experiment. All experiments were performed within 2 h after the animals were sacrificed.

4.5. Measurement of DVR Diameters

During the experiments, vessels were continuously displayed on a computer screen
using a video camera (Moticam 2.0, Motic Asia, Hong Kong, China). Luminal diameters
served for the estimation of vascular tone and reactivity and were measured using the free-
ware ImageJ at the site where the reaction to the agonist being tested was the strongest [44].
DVR do not react to agonists uniformly across their length since pericytes, their vasoactive
parts, do not completely cover their outer surface (Figure 7B,C). To analyse the effects of
pre-treatments and for concentration–response curves, an image was taken every second
and average vessel diameters were calculated using measurements from five consecutive
images. For time–response curves, diameters were measured from single images taken
every 10 s over a period of 10 min.

4.6. Protocols

All chemicals and drugs were purchased from Sigma-Aldrich (Darmstadt, Germany),
unless otherwise specified. Stock solutions of substances insoluble in distilled water were
prepared in dimethyl sulfoxide (DMSO, purity > 99.7%, Bellefonte, PA, USA). The final
concentration of DMSO did not exceed 0.1% in any of the experiments. All chemicals were
stored at −20 ◦C. Concentrations are given as final molar concentration in the bath solution.
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4.6.1. Pharmacological Characterization of NO-sGC System

To test the contribution of the NO system to the DVR tone, vessels were incubated in
bath solution with or without L-NAME (10−4 mol/L) for 15 min. Then, Ang II was given
in increasing concentrations (10−12 to 10−6 mol/L, 2 min each). After reaching a stable con-
striction, ACh was applied in cumulatively increasing concentrations (10−11 to 10−4 mol/L,
3 min each).

The effect of PDE5 inhibition on DVR was tested using sildenafil (Biomol GmbH,
Hamburg, Germany). Isolated rat DVR were pre-constricted using 10−6 mol/L Ang II
followed by treatment with increasing concentrations of sildenafil (10−9−10−6 mol/L,
3 min each) to obtain the concentration–response curves. The dynamics of vessel dilation
were investigated by applying a bolus of sildenafil (10−7 mol/L) or a corresponding amount
of DMSO (solvent control) and tracking the changes in vessel diameters over a period
of 10 min.

To study the effect of sGC activation, isolated rat DVR were pre-treated with 10−4 mol/L
L-NAME for 15 min followed by pre-constriction with 10−6 mol/L Ang II. A concentration–
response curve was then obtained by applying the sGC activator BAY 60-2770 (Bayer AG,
Wuppertal, Germany) in cumulatively increasing concentrations (10−11 to 10−5 mol/L,
3 min each). To obtain the time–response curve, L-NAME-treated Ang II pre-constricted DVR
were treated with a bolus of 10−6 mol/L BAY 60-2770 or a corresponding amount of DMSO
(solvent control) and the changes in vessel diameters were tracked over a period of 10 min.
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4.6.2. Human DVR

To check vessel viability and simultaneously pre-constrict the DVR, Ang II was applied
in increasing concentrations (10−12 to 10−6 mol/L, 2 min each). After reaching a stable
constriction, BAY 60-2770 (10−6 mol/L) was applied and the changes in the diameter were
tracked over a period of 10 min.

4.6.3. Effect of Hypoxia on the NO System

To investigate how hypoxia influences the NO system, DVR were incubated in an
environment with either 0.1% O2 (hypoxia) or 20.9% O2 (normoxia) for 30 min. Hypoxic
conditions were achieved using a hypoxia chamber (H35 hypoxystation, Don Whitley
Scientific Ltd., West Yorkshire, UK). After a re-oxygenation period of 10 min, Ang II
concentration–responses (10−12 to 10−6 mol/L, 2 min each) were measured. In an additional
series of experiments, ACh was applied (10−11 to 10−4 mol/L, 3 min each) after pre-
constriction with Ang II (10−6 mol/L) to obtain the concentration–response for ACh in
normoxic and hypoxic DVR. Sildenafil was applied as bolus (10−7 mol/L) after H/R and
pre-constriction with Ang II (10−6 mol/L). Changes in vessel diameters were tracked over
a period of 10 min.

The NO donor SNP was used to test the natural stimulation of sGC. The concentration–
response was measured after L-NAME (10−4 mol/L) pre-treatment and Ang II (10−6 mol/L)
pre-constriction. Furthermore, the time response to bolus application of SNP (10−3 mol/L)
was measured in normoxic and hypoxic DVR. Time–responses to the sGC activator BAY 60-
2770 were measured after Ang II (10−6 mol/L) pre-constriction and L-NAME (10−4 mol/L)
pre-treatment in DVR after H/R or normoxia.

4.7. Statistics

Mean and standard error of the mean (SEM) were calculated using GraphPad
Prism 9.3.1 (GraphPad software, San Diego, CA, USA). Data were tested for normal distri-
bution using the Shapiro–Wilk test. Although most data were normally distributed, we
used nonparametric statistical tests in this study as they provide the most robust testing.
Differences between concentration- or time-dependent changes in vascular diameters were
tested by Brunner test for repeated measurements, provided by the “R” project, which
is a nonparametric counterpart of the two-way ANOVA [45]. Differences between initial
diameters were tested by using the Mann–Whitney test for independent measurements.
The effect of L-NAME on vascular diameters was tested using the Wilcoxon test for depen-
dent measurements (GraphPad Prism 9.3.1). Differences were assumed to be significant if
p-values were <0.05.
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